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Abstract

Lipid-derived molecules produced by acylhydrolases play important roles in the regulation of diverse cellular
functions in plants. In Arabidopsis, the DAD1-like phospholipase A1 family consists of 12 members, all of which
possess a lipase 3 domain. In this study, the biochemical and cellular functions of AtDLAH, an Arabidopsis thaliana
DAD1-like acylhydrolase, were examined. Bacterially expressed AtDLAH contained phospholipase A1 activity for
catalysing the hydrolysis of phospholipids at the sn-1 position. However, AtDLAH displayed an even stronger
preference for 1-lysophosphatidylcholine, 1-monodiacylglycerol, and phosphatidic acid, suggesting that AtDLAH is
a sn-1-specific acylhydrolase. The AtDLAH gene was highly expressed in young seedlings, and its encoded protein
was exclusively localized to the mitochondria. AtDLAH-overexpressing transgenic seeds (35S:AtDLAH) were
markedly tolerant to accelerated-ageing treatment and thus had higher germination percentages than wild-type
seeds. In contrast, the atdlah loss-of-function knockout mutant seeds were hypersusceptible to accelerated-ageing
conditions. The 35S:AtDLAH seeds, as opposed to the atdlah seeds, exhibited a dark red staining pattern following
tetrazolium treatment under both normal and accelerated-ageing conditions, suggesting that AtDLAH expression is
positively correlated with seed viability. The enhanced viability of 35S:AtDLAH seeds was accompanied by more
densely populated epidermal cells, lower levels of accumulated lipid hydroperoxides, and higher levels of polar lipids
as compared with wild-type and atdlah mutant seeds. These results suggest that AtDLAH, a mitochondrial-localized
sn-1-specific acylhydrolase, plays an important role in Arabidopsis seed viability.
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Introduction

Seed viability is important for reproduction and propaga-
tion in higher plant species. Seeds also play a significant role
in food sources for animals and humans. Therefore, seed
quality and longevity are critical factors for ecology,
agriculture, and the economy (Chrispeels and Sadava,
2003; Walters et al, 2005; Li and Pritchard, 2009). Seed
quality is characterized by the seed’s capability to germinate
and maintain its storage contents (Coolbear, 1995).
However, seeds are continuously exposed to harsh environ-
ments, such as high humidity, extreme temperatures, strong
sun rays, and pathogen infections, during their develop-
ment, harvest, and storage. Thus, most seeds suffer gradual

deterioration, including decreased germination percentages,
storability, and stress tolerance (Nakayama er al, 1981;
McDonald, 1999). A number of mechanisms of seed
deterioration have been suggested, including disruption of
nucleic acids, proteins, storage lipids, and membranes
(Osborne, 1980; ReuZeau et al., 1992; Bewley and Black,
1994; Sun and Leopold, 1995; Thapliyal and Connor, 1997;
Pukacka, 1998). The disruption of membrane phospholipids
and storage lipids by peroxidation is regarded as the
primary reason for seed deterioration, because these lipids
can be ecasily damaged by oxidative stress caused by
unfavourable environmental conditions (Smirnoff, 1993).

Abbreviations: DGDG, digalactosyldiacylglycerol; LOOH, lipid hydroperoxide;

1-LPC,

1-lysophosphatidylcholine; MGDG, monogalactosyldiacylglycerol; PA,

phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; TAG, triacylglycerol.
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However, the molecular and biochemical events underlying
lipid peroxidation-mediated seced deterioration have not
been well characterized (Clerkx ez al., 2004).

Several lines of evidence have suggested that seed deteriora-
tion is associated with lipid peroxidation caused by peroxyl
radicals. Sattler ez al. (2004) reported that tocopherol-deficient
mutants had significantly reduced seed longevity and elevated
levels of lipid hydroperoxides (LOOHs) during germination.
Therefore, protection of membrane lipids and oils by
tocopherols (lipid-soluble antioxidants) against various oxida-
tive stresses is crucial for seed germination. Regeneration of
ascorbate may play an important role in protecting storage
reserves that serve as essential energy sources for seed
germination (Eastmond, 2007). Arabidopsis mutants with
defects in the peroxisomal membrane monodehydroascorbate
reductase isoform, a protein that generates reduced ascorbate,
exhibited elevated levels of H,O,, lipid peroxidation, and
protein oxidation, resulting in impaired seedling establish-
ment. This finding suggests that detoxifying H,O, and
preventing peroxisomal release of H,O, are critical for
protecting membrane lipids and storage oils. Phospholipase
Dal (PLDal), a membrane lipid-hydrolysing phospholipase,
plays a role in Arabidopsis seed deterioration and ageing
(Devaiah er al, 2007). Therefore, knockout mutants of
PLDal exhibited an increased tolerance to accelerated and
natural ageing. PLDal-deficient seeds lost fewer unsaturated
fatty acids and accumulated fewer lipid peroxides than wild-
type seeds after storage or exposure to adverse conditions.
This result supports the theory that production of phospha-
tidic acid (PA) from phospholipids by PLD is an initial step
of membrane degradation and seed deterioration, and that
PA-derived lipid peroxyl radicals will subsequently attack
phospholipids, resulting in a chain reaction of membrane lipid
peroxidation (Thompson, 1988; Samama and Pearce, 1993).

In higher plants, acylhydrolases play important roles in
the regulation of diverse cellular metabolic functions, in-
cluding seed germination, cell elongation, anther dehiscence,
jasmonate-mediated defence signalling, and leaf senescence
(Ishiguro et al, 2001; He and Gan, 2002; Lee et al, 2003;
Eastmond, 2006; Hyun et al, 2008). Based on their lipolytic
specificities, acylhydrolases are classified into different types
of lipases, such as galactolipases, triacylglycerol (TAG)
lipases, and phospholipases (Brady et al, 1990; Beisson
et al, 2003). The DEFECTIVE IN ANTHER DEHIS-
CIENCE 1 (DAD1) (At2g44810) was originally identified as
an Arabidopsis PLA1 that catalysed the initial step for
jasmonic acid production in chloroplasts (Ishiguro er al.,
2001). The DADI-like acylhydrolase family consists of 12
members, all of which contain sn-1-specific acylhydrolase
activity, and is further divided into three subgroups based on
predicted subcellular localizations (Beisson ez al., 2003; Ryu,
2004; Seo et al., 2008, 2009; Kim et al., 2011). Seven proteins,
including DADI1, belong to class I, which is typified by
a putative N-terminal chloroplast-targeting signal, while four
cytosolic proteins belong to class II. The sole class III protein,
At1g30370, was predicted to localize to the mitochondria with
unknown function. The class II enzyme At2g42690 was
suggested to be involved in the PR-1-mediated defensive

response to ultraviolet-B (UV-B) irradiation (Lo et al., 2004).
The chloroplast-targeted DONGLE (DGL) (At1g05800)
participates in wound-induced jasmonate formation and is
functionally redundant with DADI1 in Arabidopsis (Ishiguro
et al., 2001; Hyun et al., 2008; Ellinger et al., 2010). In this
study, the biochemical and cellular properties of the class I1I
DADI-like acylhydrolase isoform AtDLAH encoded by
Atlg30370 was analysed. Transgenic Arabidopsis seeds that
overexpress AtDLAH exhibited strongly enhanced resistance
to lipid peroxidation and ageing treatments compared with
wild-type and atdlah knockout mutant plants, suggesting that
AtDLAH plays a significant role in Arabidopsis seed viability
and longevity.

Materials and methods

Plant materials

Wild-type Arabidopsis thaliana (ecotype Columbia-0) and the
T-DNA insertion AtDLAH (At1g30370) loss-of-function mutant
line (WiscDsLox489-492N9) were obtained from the Ohio State
University Arabidopsis Biological Resources Center (ABRC,
Columbus, OH, USA). The atdlah mutant was confirmed by
genotyping PCR using the T-DNA left-border primer and gene-
specific primers (Supplementary Table S1 available at JXB online).
Full-length AtDLAH cDNA was cloned into the binary vector
pBI121 (ABRC stock number CD3-388), and the resulting plasmid
was transformed into Arabidopsis as previously described (Seo
et al., 2008). 35S:AtDLAH transgenic lines were selected due to
their resistance to kanamycin (30 pg ml~"). Expression levels of
the AtDLAH gene in leaves and seeds of transgenic and mutant
plants were examined by reverse transcription-PCR (RT-PCR)
using gene-specific primers (Supplementary Table S1).

RNA extraction and cDNA synthesis

Total RNA was isolated from developing seeds (0, 12, and 21 d
after pollination) and germinating seeds (0, 1, 2, 3, and 4 d after
imbibition) as previously described (Ruuska and Ohlrogge, 2001).
RNA samples were extracted using an RNAiso RNA purification
kit according to the manufacturer’s protocol (Takara, Shiga,
Japan) and then treated with DNase I for 30 min. First-strand
cDNA synthesis was performed as previously described (Kim
et al., 2010). RT-PCR was conducted using gene-specific primer
sets (Supplementary Table S1) with the following conditions: 25
cycles were conducted, each consisting of 45 s at 95 °C, 1 min at
60 °C, and 90 s at 72 °C in an automatic thermal cycler (Applied
Biosystems, Carlsbad, CA, USA).

Construction of the MBP-AtDLAH recombinant protein

AtDLAH cDNA lacking the N-terminal transit peptide sequence
was amplified by PCR using gene-specific primers (Supplementary
Table S1). The products were introduced into the pMal-c2X
plasmid (New England BioLabs, Hertfordshire, UK). The fusion
protein was expressed in the Escherichia coli BL21 (DE3) strain
and purified by affinity chromatography using amylose resin (New
England BioLabs) as previously described (Seo et al., 2009).

In vitro lipase assay

The in vitro assay for measuring lipase activity was performed as
previously described (Seo ef al., 2009). To examine phospholipase
Al activity using radiolabelled phosphatidylcholine (PC) with
asymmetric fatty acids, a reaction mixture containing 15 pmol
1-palmitoyl-2-[**C]palmitoyl-PC (2.22 GBq mmol~!, GE Health-
care, Uppsala, Sweden) was incubated with 20 pg of recombinant
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fusion proteins for 30 min at 30 °C in a final volume of 200 pl of
0.2% Triton X-100, 100 mM NaCl, and 50 mM sodium phosphate
buffer (pH 6.8). Reaction products were separated by thin-layer
chromatography (TLC) (Silica Gel 60; Merck, Whitehouse Station,
NJ, USA) and developed with chloroform/methanol/CH;COOH/
water (85:15:12.5:3.5, v/v/v/v). The colorimetric assay for substrate
specificity was conducted with a mixture containing various lipid
substrates, including PC, phosphatidylethanolamine (PE), phos-
phatidic acid (PA), monogalactosyldiacylglycerol (MGDG), diga-
lactosyldiacylglycerol (DGDG), triolein (TAG), 1,2-diacylglycerol,
1,3-diacylglycerol, 1-monoacylglycerol, 2-monoacylglycerol, and
1-lysophosphatidylcholine (1-LPC). The recombinant fusion pro-
tein was incubated with the mixtures for 30 min at 30 °C, and then
released free fatty acids were measured using NEFA-HR colorimetric
kits (Wako Pure Chemicals, Osaka, Japan) according to the manu-
facturer’s protocol.

Protoplast transient assay

A full-length AtDLAH cDNA clone and a synthetic nuclear
localization signal (NLS; Woo er al, 2010) were ligated into
a soluble-modified green fluorescent protein (GFP) plasmid
(psmGFP) (Cho et al., 2008) to construct 35S:AtDLAH-GFP and
35S:NLS-GFP, respectively. The GFP fusion constructs were
transformed into protoplasts prepared from wild-type and mt-yk
CS16264 Arabidopsis rosette leaves by polyethylene glycol (PEG)
treatment (Seo et al., 2008). The mt-yk CS16264 plant was used as
a mitochondria-localized marker (Nelson ez al., 2007). After 16 h
of incubation, the expression of 35S:AtDLAH-GFP and 35S:NLS-
GFP was monitored with a cooled CCD camera and a BXS5I
fluorescence microscope (Olympus, Tokyo, Japan) as previously
described (Son ez al., 2009).

Furification of chloroplasts and mitochondria

Chloroplasts and mitochondria were isolated from light-grown 2-
week-old leaves from wild-type and 35S:4tDLAH-HA T, trans-
genic plants as previously described (Tanaka er al, 2004) with
some modifications. The collected leaves were homogenized in an
isolation solution containing 50 mM HEPES-KOH (pH 7.4),
0.33 M sorbitol, 1 mM MnCl,, 2 mM EDTA, and 0.2% bovine
serum albumin (BSA). The homogenate was filtered through four
layers of nylon mesh.

To fractionate chloroplasts, extracts were centrifuged at 350 g
for 5 min at 4 °C and the resulting supernatant was layered on to
an uncontinuous gradient consisting of 30% and 60% (v/v) Percoll
in isolation solution. The gradients were centrifuged at 8000 g for
15 min at 4 °C. The intact chloroplasts distributed around the 30/
60% Percoll interface were isolated and diluted with the isolation
solution. After samples were centrifuged at 4000 g for 10 min at
4 °C to remove Percoll, pellets were re-suspended in isolation
solution.

To separate mitochondria, the filtered extracts were centrifuged
at 3000 g for 5 min at 4 °C and supernatants were re-centrifuged
at 22 000 g for 15 min at 4 °C. Pellets were resuspended with
isolation solution and centrifuged at 3000 g for 15 min at 4 °C. To
obtain mitochondrial pellets, supernatants were centrifuged at
22 000 g for 15 min at 4 °C and pellets were resuspended with
isolation solution. The quality of the purified chloroplasts and
mitochondria was assessed by an immunoblot analysis using
a specific antibody for the mitochondrial protein VDACI
(voltage-dependent anion-selective channel protein 1) (Clausen
et al., 2004). The signals were detected with an ECL Western
Detection kit (Millipore, Billerica, MA, USA).

Measurement of mitochondrial lipase enzyme activities in wild-
type, 35S:AtDLAH transgenic, and atdlah mutant plants

Total proteins were isolated from purified mitochondrial fractions
from wild-type, 35S:AtDLAH transgenic, and atdlah knock-out

mutant seedlings as previously described by Seo e al. (2008). Cell
extracts were used for colorimetric assays (40 pg total protein) as
previously described by Seo ez al. (2008).

Accelerated-ageing treatment and germination tests

For normal growth conditions, freshly harvested seeds were
surface-sterilized and imbibed at 4 °C for 5 d. These seeds were
plated on 0.5X MS medium (Duchefa, Haarlem, The Netherlands)
and 0.7% phytoagar (Duchefa), pH 5.7, and then incubated in
a growth chamber. For the accelerated-ageing treatment, seeds
were incubated for 48 h at 43 °C and 100% relative humidity in
a closed bottle before the cold imbibition (Sattler ez al., 2004). In
order to validate comparisons, all seeds are grown under the same
conditions and harvested at the same time. Each day for 5d,
germination was scored by radicle emergence from the seeds.

Scanning electron microscopy

Dry seeds were coated with platinum—palladium in a sputter-coater
as previously described by Ryu ez al. (2009). The surface structure
was subjected to high-resolution scanning electron microscopy
(model S-800, FESEM, Hitachi, Tokyo, Japan) at an accelerating
voltage of 3 kV under high vacuum conditions (Penfield er al,
2001; Atia et al., 2009).

FOX assay

To determine the level of LOOHs, total lipids were extracted and
assayed as previously described (Griffiths ez al., 2000; Zhu et al.,
2009) with minor modifications. Briefly, the lipid extracts were
incubated with FOX solution [90% methanol (v/v), 25 mM H,SOy,
4 mM butylated hydroxytoluene (BHT), 250 uM ferrous ammo-
nium sulphate hexahydrate, and 100 uM xylenol orange] for
30 min at 25 °C. Absorbancies were immediately measured at
560 nm. Because the reactivity of 18:2-derived hydroperoxides
with the FOX reagent was reported to be nearly identical to that of
hydrogen peroxide (DelLong er al, 2002), serial concentrations
(0, 0.05, 0.10, 0.20, 0.25, 0.30, and 0.50 mM) of hydrogen peroxide
were used to make a standard curve, and the levels of LOOHSs in
the seeds were calculated using the standard curve.

TLC analysis of total polar lipid contents

Total lipids were extracted from 30 mg of dry seeds as previously
described (Welti er al., 2002; Devaiah et al, 2006). To inhibit
phospholipase activities, seeds were homogenized in 1 ml of
isopropanol with 0.01% BHT at 75 °C. For lipid extraction, the
ground samples were extracted several times with chloroform. The
lipid extracts were separated on TLC plates and stained with
iodine vapour. Stained bands were quantified using Multi Gauge
v.3.1 (Fwji Film, Tokyo, Japan).

Results
Characterization of AtDLAH

Atl1g30370 is classified as the only member of the class III
PLA1 family because it contains a putative N-terminal transit
peptide for localizing to the mitochondria (Ryu, 2004). The
Atl1g30370 gene is comprised of a single 1,590 bp exon, and
encodes a 530 amino acid protein containing a lipase 3
domain (Fig. 1A). The predicted molecular mass of the
Atl1g30370 protein was determined to be 60.8 kDa and the
calculated pl was 9.9. Sequences common to lipase active sites,
such as the GXSXG motif and a catalytic triad (serine,
aspartate, and histidine residues), were conserved in the lipase
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Fig. 1. Structure, expression, and subcellular localization of Arabidopsis AtDLAH. (A) Schematic representation of AtDLAH (At1g30370)
¢DNA and its deduced protein. Solid lines depict the 5’- and 3’-untranslated regions. The coding region (grey box) with restriction
enzyme sites, the lipase 3 domain (black box), and the putative N-terminal transit peptide (hatched box) are represented. The lipase
consensus sequence (GHSLG) and the catalytic triad (serine, aspartate, and two candidate histidine residues) are indicated. (B) AtDLAH
expression in developing and early germinating seeds was analysed by RT-PCR. AtACT8 was used as a loading control. (C) Subcellular
localization of AtDLAH in Arabidopsis protoplasts. The 35S:AtDLAH-GFP fusion gene was introduced into protoplasts using a PEG-
mediated method. The 35S:GFP and 35S:NLS-GFP constructs were used as controls for cytosolic and nuclear proteins, respectively.
The mt-yk plant was used as a mitochondria-localized marker. Scale bars=10 um.

3 domain, indicating that Atlg30370 has typical lipase
features. Therefore, Atlg30370 was termed AtDLAH
(Arabidopsis thaliana DADI1-like acylhydrolase). A database
search revealed that AtDLAH was most closely related to
a poplar protein (Populus trichocarpa, XP_002314049.1) and
a castor bean triacylglycerol lipase (Ricinus communis,

XP_002531054.1) with 68% and 63% identities, respectively
(Supplementary Fig. S1 at JXB online). AtDLAH also shared
relatively high sequence identity with a grape protein (Vitis vi-
nifera, XP_002272780.1; 59% identity) and a rape chloroplast
lipase (Brassica napus, ACJ76846.1; 45% identity). The cellular
functions of these putative plant lipases are currently
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unknown. Protein sorting signal prediction programs, such
as PSORT (http://psort.ims.u-tokyo.ac.jp/form.html) and
TargetP (http://www.cbs.dtu.dk/services/TargetP), predicted that
AtDLAH has a 92 amino acid N-terminal transit peptide for
targeting to the mitochondria (TargetP score: 0.513). These
results strongly suggest that AtDLAH is a mitochondria-
localized DADI1-like acylhydrolase.

Expression and subcellular localization of AtDLAH

Using semi-quantitative RT-PCR with gene-specific pri-
mers, the temporal expression patterns of AtDLAH in
developing and early germinating Arabidopsis seeds were
examined. Figure 1B shows that AtDLAH transcript was
slightly detected during seed development stages, while its
level was elevated in germinating seeds after imbibition.
Since the mRNA for AtDLAH was gradually expressed in
germinating seeds, 4tDLAH probably plays a role in early
Arabidopsis seedling development.

To determine if AtDLAH was localized to the mitochondria
as predicted, a protoplast transient assay using AtDLAH-
fused GFP as a fluorescent marker was performed. Figure 1C
shows that control GFP was uniformly distributed through-
out the cytosolic fractions of protoplasts, and GFP fused to
the synthetic NLS sequence (NLS-GFP) was exclusively
localized to the nuclei. In contrast, the AtDLAH-GFP fusion
protein displayed a spotted pattern. Because similar spotted
signals were previously detected for mitochondria-localized
proteins (Kabeya and Sato, 2005; Sheahan et al., 2005), there
is a possibility that the AtDLAH-GFP fusion protein is also
localized to the mitochondria. To test this possibility, the
AtDLAH-GFP fusion protein was expressed in protoplasts of
organelle-specific marker plants (mt-yk CS16264), which
contain a mitochondrial protein fused with yellow fluorescence
protein (YFP) (Nelson et al., 2007). The GFP signals were
overlaid with the yellow fluorescence signal of the mitochon-
drial marker. These results indicate that the AtDLAH-GFP
fusion protein is primarily localized to the mitochondria of
Arabidopsis leaf protoplasts.

In vitro enzyme activity and substrate specificity of
AtDLAH

Ishiguro er al (2001) previously reported that DADI
exhibits PLA1 activity. Because AtDLAH has a highly
conserved lipase 3 domain similar to that in DADI,
AtDLAH is also considered to be a member of the PLA1
family (Ryu, 2004). To test whether the AtDLAH protein
exhibits PLA1 activity, AtDLAH was expressed without its
transit peptide in E. coli as a fusion with maltose-binding
protein (MBP). The cleavage site of the transit peptide for
the protein was determined using the TargetP program
(probability score: 0.513) and analysis of previous reports
(Ishiguro et al, 2001; Padham et al, 2007; Hyun et al.,
2008). The purified MBP-AtDLAH protein produced
1-LPC after incubation with 1-palmitoyl-2-["*C]linoleoyl-
PC as a substrate (Fig. 2A). These results indicate that

AtDLAH can catalyse the hydrolysis of PC at the sn-1
position in vitro.

Although AtDLAH has PLA1 activity in vitro, it could
possess activities for other lipid substrates as reported
previously (Padham ez al, 2007; Hyun et al, 2008; Seo
et al, 2009). To examine this possibility, various lipid
substrates, including PC, PE, PA, MGDG, DGDG, triolein,
1,2-diacylglycerol, 1,3-diacylglycerol, 1-monodiacylglycerol,
2-monodiacylglycerol, and 1-LPC, were used for in vitro
enzyme assays. Under the experimental conditions used in
this study, MBP-AtDLAH displayed a strong preference for
I-LPC, 1-monodiacylglycerol, and PA, and, to a lesser
extent, MBP-AtDLAH possessed phopholipase activity
toward PC and PE (Fig. 2B). Therefore, AtDLAH contains
lipase activity toward a broad range of lipid substrates with
preferential specificities for lipids with an acyl chain on their
sn-1 position. Additionally, AtDLAH functions optimally at
a pH of 6.6 with 1-LPC as a substrate (Fig. 2C).

Generation and characterization of AtDLAH-
overexpressing transgenic and atdlah loss-of-function
mutant plants

To address the cellular function of AtDLAH, overexpression
and reverse-genetic approaches were used. Transgenic
Arabidopsis plants (35S:AtDLAH) that ectopically expressed
AtDLAH under the control of the Cauliflower mosaic virus
(CaMV) 35S promoter were developed. Overexpression of
AtDLAH in independent T, transgenic lines was confirmed
by RT-PCR (Fig. 3A). The loss-of-function T-DNA knock-
out mutant (WiscDsLox489_492N9; atdlah) for AtDLAH was
also identified by genotyping PCR and RT-PCR (Fig. 3B, C).
In normal and accelerated-ageing-treated seeds, transcript
levels of AtDLAH in wild-type, 35S:AtDLAH, and mutant
plants were highly similar to those in leaves (Fig. 3D). These
plants were subsequently used for phenotypic analysis.

To ensure further the ectopic expression of AtDLAH and
its mitochondrial localization at the protein level, chloroplast
and mitochondrial fractions were isolated from light-grown
2-week-old leaves of wild-type and 35S:AtDLAH-HA T4
transgenic leaves. Protein extracts were prepared from each
fraction and subsequently analysed by protein gel blotting
using an anti-haemagglutinin (HA) antibody. As shown in
Fig. 4A, the 65.9 kDa band specific to AtDLAH-HA was
predominantly present in the mitochondrial fraction, con-
firming its mitochondrial localization. VDACI, a mitochon-
dria-specific marker protein, was exclusively detected in the
corresponding fraction.

AtDLAH lipase activity was measured using mitochon-
drial protein extracts from wild-type, 35S:AtDLAH-HA, and
atdlah leaves. The results in Fig. 4B demonstrate that the
level of mitochondrial lipase activity in 35S:4AtDLAH-HA
(lines #2 and #3) was 1.3 times greater than that of the wild-
type leaves. These results indicate that ectopic expression of
AtDLAH caused a small but specific increase in mitochon-
drial lipase activity. However, the predicted decrease in
mitochondrial lipase activity in the atdlah mutant as com-
pared with that of the wild-type leaves was not identified.
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Fig. 2. AtDLAH enzyme assays. (A) AtDLAH catalyses the hydrolysis of PC at the sn-1 position. PLA1 activity was measured by the
production of radiolabelled lysophosphatidylcholine (LPC) after incubation with 1-palmitoyl-2-['*Clpalmitoyl-PC. The resultant '*C-
labelled LPC was detected by TLC. MBP was used as a negative control, and At1g06800.1 and At2g30550.2, which have PLA1 activity
(Seo et al., 2009), were used as positive controls. (B) Lipolytic enzyme assays to determine substrate specificity. Lipolytic activities were
determined using an NEFA-HR kit with PC, PE, PA, MGDG, DGDG, triolein, 1,2-diacylglycerol, 1,3-diacylglycerol, 1-monodiacylglycerol,
2-monodiacylglycerol, and 1-LPC as substrates. Results are expressed as the means =SD from four independent experiments.

(C) Optimal pH for AtDLAH activity. Lipase activity of AtDLAH was determined by quantifying the release of free fatty acids from 1-LPC in
phosphate buffers with different pHs at 30 °C for 30 min. Results are expressed as the means =SD from four independent experiments.

AtDLAH-overexpressing transgenic seeds had higher
germination percentages after ageing treatment as
compared with wild-type and atdlah mutant seeds

The morphological comparison of light-grown wild-type,
358:AtDLAH (lines #2 and #3), and atdlah mutant seedlings
at an early stage of development is presented in Fig. SA. The
AtDLAH-overexpressing transgenic plants displayed signifi-
cantly longer roots than control seedlings 5 d after germination,
while the atdlah mutant plants exhibited shorter roots than did
the wild-type plants (Fig. 5A). To investigate whether the
longer roots in 35S:AtDLAH seedlings were due to enhanced
cell elongation and/or cell division, expression patterns of cell
elongation- and division-associated genes were monitored. The
expression levels of several cell elongation/division marker
genes, including AtCYCD3, AtCDC2b, AtEXP5, and AtPCNA
(Seo et al, 2008), were indistinguishable between the three
types of seedlings (Supplementary Fig. S2 at JXB online),

suggesting that the longer roots in the 35S:AtDLAH seedlings
may not be a consequence of enhanced cell elongation or cell
cycle progression.

The germination percentages of wild-type, 35S:AtDLAH
transgenic, and atdlah mutant seeds were examined. Under
normal germination conditions, 35S:AtDLAH transgenic
seedlings (lines #2 and #3) displayed higher (~15%) germina-
tion percentages 1 d after germination than the wild-type and
mutant seedlings (left panels in Fig. 5B, C). Thereafter, the
germination percentages were very similar among the three
different types of plants, though the germination percentage
of the mutant plant was slightly lower (~3%). The higher
germination percentage of the transgenic seeds probably
resulted in the slightly larger cotyledons in the AtDILAH-
overexpressing plants 5 d after germination (Fig. 5A, B).
Therefore, the longer roots of the 35S:AtDLAH seedlings
were also probably not due to increased cell elongation/
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division, but rather due to quicker germination. The slightly
quicker germination in overexpressors and later germination in
the mutant were also supported by the finding that there were
apparent differences in root length even in the earlier germina-
tion stage (1-3 d after imbibition) (the inset graph of the right
panel in Fig. 5A). In contrast, the root elongation rates
remained constant in wild-type, 35S:AtDLAH, and atdlah
seedlings for 10 d after germination (right panel in Fig. 5A),
further supporting the role of AtDLAH in germination.

The germination of wild-type, 35S:AtDLAH, and atdlah
mutant seeds was further analysed following treatment with
accelerated-ageing conditions. Seeds were incubated with
high temperature (43 °C) and high humidity (100% relative
humidity) for 2 d, conditions known to accelerate seed ageing
(Tesnier et al., 2002; Devaiah et al, 2007; Oge et al., 2008;
Rajjou et al., 2008). Aged seeds were imbibed at 4 °C for 5 d
to break dormancy, and then placed at 22 °C to germinate
while root radicle emergence was monitored (Sattler et al,
2004). In response to the accelerated-ageing treatment, the
germination percentage of wild-type seeds was reduced to the
level of 16-27% at 1-5 d after germination (right panels in
Fig. 5B, C). In contrast, aged 35S:AtDLAH seeds (lines #2
and #3) displayed markedly higher germination percentages

(61-83%) than aged wild-type seeds, whereas aged mutant
seeds rarely germinated (1-5%).

Abscisic acid (ABA) is a plant hormone that inhibits seed
germination (Leung and Giraudat, 1998). To test whether
the higher germination percentages of 35S:AtDLAH seeds
under normal and accelerated-ageing treatments were due
to reduced sensitivity to ABA, seed germination percentages
of wild-type, 35S:AtDLAH, and atdlah plants in the
presence of various ABA concentrations (0.1, 0.5, or 1 uM)
were examined. All three types of plants displayed highly
similar sensitivities to the various concentrations of exoge-
nously applied ABA (Supplementary Fig. S3 at JXB
online). Thus, the greater germination percentage of the
35S:AtDLAH seeds was probably due to increased seed
viability, not decreased sensitivity to ABA. Taken together,
the results in Fig. 5 suggest that AtDLAH activity is
positively associated with germination ability, and this
effect was more evident after accelerated-ageing treatments.

AtDLAH activity was positively correlated with seed
viability and longevity

Seed coats play an important role in seed viability and
longevity since they provide the primary line of defence


http://jxb.oxfordjournals.org/cgi/content/full/err250/DC1
http://jxb.oxfordjournals.org/cgi/content/full/err250/DC1

5690 | Seo et al.

A wild type 358:AtDLAH-HA

chloroplast
mitochondria
chloroplast
mitochondria

total
total

anti-HA -“ -

coomassie . .'.'.
:

’ *
- l . 4 65.9 kDa

antivDACT 4 D B ..4— 29.0 kDa

1.5 *kk
1

1.0 T

i

0.5

Relative activity

0.0

35S:AtDLAH #3
35S:AtDLAH #3

to

B

mitochondrial

Fig. 4. Mitochondrial localization of AtDLAH-HA and mitochondrial lipase activities in wild-type, AtDLAH-overexpressing T,4 transgenic,
and atdlah mutant plants. (A) Cellular fractionation analysis of the AtDLAH-HA fusion protein. Extracts of total, chloroplast, and
mitochondrial fractions were prepared from wild-type and 35S:AtDLAH-HA T, transgenic plants. Total proteins from each fraction were
analysed with anti-HA and anti-VDAC1 antibodies (control for mitochondrial proteins). Loaded proteins were visualized by Coomassie
staining. Arrows indicate AtDLAH-HA (65.9 kDa) and VDAC1 (29.0 kDa) proteins. An asterisk indicates non-specific binding to a 70 kDa
protein by the anti-HA antibody. (B) Mitochondrial lipase enzyme assays. Total and mitochondrial proteins were prepared from wild-type,
AtDLAH-overexpressing transgenic (line #3), and atdlah mutant plants and incubated with 1-palmitoyl-2-['*Clpalmitoyl-PC as the
substrate at 30 °C for 30 min. Lipase activities were determined by quantifying the release of '*C-labelled lyso-PC as described in

Fig. 2A. Results are expressed as the means £SD from three independent experiments. The data were analysed by Student’s t-test. The
statistical significance was determined at ***P <0.01, **P <0.05, and *P <0.1, respectively.

against unfavourable environmental conditions (Mohamed-
Yasseen et al., 1994). Development of the epidermal layer in
the Arabidopsis seed coat is a complex process, involving cell
growth, biosynthesis and secretion of pectinaceous mucilage,
and production of a secondary cell wall (Beeckman et al,
2000; Western et al., 2000, Windsor et al., 2000). Because of
the water-holding capacity of the mucilage layer in Arabidop-
sis seeds, it is difficult to monitor seed viability (Debeaujon
and Koornneef, 2000). Therefore, the tetrazolium uptake
assay was employed to assess seed viability. Upon entry of
the tetrazolium solution into seeds, the aleurone layer of live
embryos stain red, whereas seeds with low viability stain
a whitish colour (Rossetto et al., 2004; Oge et al., 2008). The
35S:AtDLAH (lines #2 and #3) seeds had a dark-red staining
pattern after tetrazolium treatment under both normal and
accelerated-ageing conditions (Supplementary Fig. S4A at
JXB online). However, the atdlah mutant seeds clearly had
less of a red-stained pattern as compared with the AtDLAH
overexpressors. As expected, the wild-type seceds had an
intermediate degree of tetrazolium staining (Supplementary
Fig. S4A). Therefore, the level of 4tDLAH expression was
positively correlated with seed viability.

The structural aspects of the seed coat of wild-type,
35S:AtDLAH transgenic, and atdlah mutant seeds was
examined using a scanning electron microscope. In general,
the epidermal layers of Arabidopsis seed coats have hexagonal
morphologies, a volcano-shaped structure known as the
columella, and mucilage. The epidermal cells of wild-type
and mutant seed coats displayed these typical properties
(Fig. 6). However, the AtDILAH-overexpressing transgenic
seed coats exhibited unusual epidermal cells that were more
populous and had amorphous shapes (Fig. 6). To determine

if this structural abnormality affects the extrusion of pectina-
ceous mucilage, wild-type, 35S:4tDLAH, and atdlah mutant
seeds were subjected to ruthenium red staining that selectively
stains pectinaceous mucilage layers (Arsovski ez al., 2009).
The mucilage layers extruded from seed coats were equally
stained with ruthenium red, regardless of the plant type
(Supplementary Fig. S4B at JXB online), indicating that the
unusual morphology of the cell layers of the 35S:AtDLAH
seed coat did not alter the mucilage layers. The overexpres-
sion of AtDLAH resulted in dense and amorphous epidermal
cells in seed coats, which correlated with the enhanced seed
longevity of 35S:AtDLAH transgenic plants.

Analysis of lipid peroxidation and total polar lipid
contents after ageing treatments

To examine further why 35S:AtDLAH seeds have a higher
germination percentage, qualitative and quantitative changes
in total seed lipid content were evaluated. Total lipids from
wild-type, 35S:AtDLAH, and atdlah mutant seeds with or
without accelerated-ageing treatment were extracted, sepa-
rated on TLC plates, and visualized with iodine vapour.
Under normal growth conditions, the total polar lipid
content was highly similar among these seeds. More detailed
inspection, however, indicates that there were detectable
differences in intensities of 2-3 polar lipid bands on TLC
plates. These lipid bands are indicated by an asterisk in
Fig. 7A. Furthermore, after accelerated-ageing treatments,
the quantities of polar lipids in wild-type and atdlah mutant
seeds were reduced by ~50% as compared with seeds under
normal conditions (Fig. 7A), a finding consistent with
previous results (Pearce and Abdel-Samad, 1980; Pukacka
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and Kuiper, 1988; Ouzouline ez al, 2009). However, the decrease in polar lipids in 35S:AtDLAH seeds was not as
358:AtDLAH seeds (line #2 and #3) lost only 15-19% of drastic as those in wild-type and mutant seeds. On the other
their polar lipids during accelerated-ageing treatments rela- hand, the levels of neutral storage lipids, including TAGs and
tive to the seeds under normal conditions, indicating that the diacylglycerols, were not significantly changed in response to
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Fig. 6. Structural aspects of the seed coat of wild-type, AtDLAH-overexpressing T, transgenic, and atdlah mutant plants. Scanning
electron microscopic examination was performed with wild-type, AtDLAH-overexpressing, and atdlah mutant seeds. Scale bars=150 um.

accelerated-ageing treatments (Supplementary Fig. S5 at JXB
online). These results suggest that enough polar lipids remain
in 35S:AtDLAH seeds to germinate following accelerated-
ageing treatment, as overexpression of 4tDLAH resulted in
a smaller reduction of polar lipids.

The loss of polar lipids during ageing is mainly due to
lipid peroxidation, and this oxidative stress is a major
contributor to seed deterioration (Bailly ez al, 1996, 1998;
Devaiah er al, 2006, 2007; Ouzouline et al., 2009). To
determine the level of lipid peroxidation in wild-type,
35S:AtDLAH, and atdlah mutant seeds, the quantity of
LOOHs in seeds was measured using ferrous oxidation—
xylenol orange (FOX) assays (DelLong er al, 2002; Zhu
et al., 2009). Total lipids were extracted from seeds and
incubated with FOX solution, and LOOH levels were
measured by spectrophotometry. Because the reactivity of
18:2-derived hydroperoxides with the FOX reagent was
reported to be nearly identical to that of hydrogen peroxide
(DelLong et al., 2002), different concentrations of H,O,

were used for generating a standard curve, and the levels of
LOOHSs were calculated as H,O, levels. The mean LOOH
level in wild-type seeds was 2.42+0.15mM g ' FW
(Fig. 7B). The mean concentrations of LOOHs in
35S:AtDLAH (lines #2 and #3) and atdlah mutant seeds were
1.11+0.068-1.23+0.11 mM g ! FW and 3.08+0.084 mM
g ' FW, respectively. Therefore, the 35S:AtDLAH seeds
accumulated a significantly lower level of LOOHs than wild-
type seeds, whereas the mutant seeds contained the highest
level of lipid hydroperoxidation (Fig. 7B). After accelerated-
ageing treatments, this lipid hydroperoxidation trend was
maintained, even though the absolute amounts of LOOHs in
all seeds were reduced to nearly half of their starting levels
(Fig. 7B). In addition, the ratio of LOOH to polar lipids in
35S:AtDLAH seeds (lines #2 and #3) was further reduced by
one-third of that in the wild-type seeds in response to
accelerated-ageing treatment, whereas the relative level was
increased 1.4 times in atdlah mutant seeds (Fig. 7C). These
results indicate that propagation of lipid peroxidation during
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Fig. 7. Lipid peroxidation and lipid content in wild-type, AtDLAH-overexpressing T4 transgenic, and atdlah mutant seeds. (A) Total lipid
content in wild-type, AtDLAH-overexpressing (lines #2 and #3), and atdlah mutant seeds under normal and accelerated-ageing
conditions. Total polar lipids were separated by TLC and visualized with iodine vapour. The lipid standards from top to bottom are
MGDG, PA, DGDG, PC, and LPC. The amounts of individual polar lipids (represented above the plate) were quantified from the TLC
plates using Multi Gauge v.3.1 (Fuiji Film, Tokyo, Japan). The lipid bands which showed the detectable differences in intensity on the TLC
plate among wild-type, 35S:AtDLAH, and ataldh are indicated by asterisks (*). Results are expressed as means =SD from three
independent experiments. (B) Absolute levels of lipid hydroperoxide in wild-type, AtDLAH-overexpressing (lines #2 and #3), and atdlah
mutant seeds under normal and accelerated-ageing conditions. The levels of lipid hydroperoxides (LOOHSs) were measured by FOX
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atdlah mutant seeds under normal and accelerated-ageing conditions. Each ratio was calculated by dividing the amount of LOOH by the
relative amount of polar lipids. Results are expressed as means =SD from three independent experiments.

seed ageing was repressed by overexpression of AtDLAH and Discussion

accelerated by ablation of the gene. Thus, overexpression of In this study, AtDLAH, an Arabidopsis DADI-like acylhy-
AtDLAH decreased the reduction of polar lipids and reduced  §5]ase hom,ologue enc’()ded by the At1g30370 gene, was

lipid peroxidation, which probably led to the increased seed  characterized. AtDLAH has a well-conserved GHSLG
viability. lipase consensus sequence and a catalytic triad similar to
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fungal and animal lipases (Fig. 1A) (Brady et al., 1990;
Winkler et al., 1990). Similar to DADI1, AtDLAH also has
a highly conserved lipase 3 domain, and therefore, it
belongs to the Arabidopsis PLA1 family (Ryu, 2004).
Several recent reports suggested that DADI-like PLAI1
family members contain lipase activities in addition to their
PLALI activity (Padham et al., 2007; Hyun et al., 2008; Seo
et al., 2009). Consistently, bacterially expressed AtDLAH
had PLAL activity for catalysing the hydrolysis of phospho-
lipids at the sn-1 position (Fig. 2A); however, it displayed
an even stronger preference toward 1-LPC, 1-monodiacyl-
glycerol, and PA (Fig. 2B). These results suggest that
AtDLAH has lipase activity toward a broad range of lipid
substrates with a preferential acylhydrolase activity on the
sn-1 position of its lipid substrates.

In silico analyses indicated that AtDLAH is a mitochondria-
localized class III PLA1 (Ishiguro er al., 2001; Ryu, 2004).
AtDLAH was predominantly found in the mitochondria in
both the protoplast transient assay (Fig. 1C) and the cellular
fractionation study (Fig. 4A). In addition, 35S:4AtDLAH
transgenic lines had significantly higher lipase activities in their
mitochondrial fractions relative to those of the wild-type and
atdlah mutant plants (Fig. 4B). Thus, AtDLAH is most
probably a mitochondria-localized DADI-like acylhydrolase.
A number of mitochondrial lipases with critical cellular
functions, such as preventing oxidant-induced lipid peroxida-
tion and rescuing cells from death, have been identified in
various species, including humans, animals, and yeast (Clay-
comb and Kilsheimer, 1971; Schousboe, 1976; Demant, 1978;
Andersen ez al., 2009). In contrast, only a few plant lipases,
such as peanut lipase and potato PLA, have been identified as
mitochondria-targeted lipases (Jacks ez al., 1967, Hasson and
Laties, 1976). Research elucidating functional roles of these
putative plant mitochondrial lipases is scarce.

These results prompted this investigation of the cellular
functions of AtDLAH. This initial phenotypic analysis
demonstrated that A¢tDLAH-overexpressing young seedlings
contained significantly longer roots than wild-type and atdlah
seedlings (Fig. 5A). This apparent phenotype was reminiscent
of the transgenic Arabidopsis plants that constitutively
expressed a hot pepper phospholipase 1 (CaPLAI). The root
length of 35S:CaPLAI seedlings was longer than that of
wild-type plants, and was caused by promotion of the cell
cycle and enhanced fatty acid metabolism (Seo et al., 2008).
However, the longer-root phenotype of 35S:AtDLAH was
unlikely to be due to increased cell elongation or cell cycle
progression (Supplementary Fig. S2 at JXB online), but was
probably due to enhanced seed germination under normal
conditions (Fig. 5B, C). More importantly, 35S:AtDLAH
seeds were markedly tolerant to accelerated-ageing treat-
ments, while most atdlah seeds failed to germinate under the
accelerated-ageing conditions. Because 35S:AtDLAH and
atdlah seeds displayed very similar sensitivities to ABA in
terms of germination percentages (Supplementary Fig. S3 at
JXB online), AtDLAH probably plays a positive role in
protecting and/or maintaining seed contents that are impor-
tant for germination. This view is further supported by the
finding that AtDLAH-overexpressing seeds were more

effectively stained by tetrazolium (Supplementary Fig. S4A)
and contained more densely populated epidermal cells with
amorphous shapes (Fig. 6) in comparison with the wild-type
and atdlah mutant seeds.

Seed deterioration during storage is accompanied by a pro-
gressive loss of membrane lipids (Stewart and Bewley, 1980;
Samama and Pearce, 1993; Al-Maskri er al, 2003; Sattler
et al, 2006; Devaiah et al, 2007). This type of polar lipid
degradation is mainly due to lipid peroxidation caused by
natural ageing and environmental factors, such as temperature,
humidity, and oxygen (Smirnoff, 1993; Bailly ez al., 1996, 1998;
Rajjou and Debeaujon, 2008; Ouzouline et al, 2009; Mene-
Saffrane er al, 2010). A previous study using accelerated-
ageing-treated, tocopherol-deficient Arabidopsis mutants (vtel
and vre2 plants), indicated that tocopherols can prevent
membrane lipid peroxidation during seed storage, germination,
and early seedling development, thus preserving seed viability
(Sattler er al, 2004). The 35S:AtDLAH seeds harboured
greater amounts of polar lipids following accelerated-ageing
treatments than wild-type and atdlah knockout mutant seeds
(Fig. 7A). Furthermore, the lipid peroxidation level of
35S:AtDLAH seeds was almost 2-fold lower than that of
wild-type and mutant seeds under normal conditions, and this
difference was increased to 3-fold following accelerated-ageing
treatments (Fig. 7B). Therefore, cellular levels of AtDLAH are
inversely correlated to the peroxidation of polar lipids in
mature seed embryos and, in turn, the reduction of lipid
hydroperoxide content enhances ageing tolerance and seed
viability.

For germination, Arabidopsis seeds obtain most of their
metabolic energy from sucrose in the cotyledons of mature
embryos, rather than from storage lipids (Baud ez al., 2002;
Dekkers et al., 2004; Cernac et al., 2006; Andre and Benning,
2007). On the other hand, storage lipid mobilization is
essential for subsequent seedling establishment, including
elongation of the hypocotyl and root, greening of the
cotyledons, and transition from a heterotroph to a photoau-
totroph (Eastmond, 2006). Therefore, the increased ageing
tolerance of 35S:AtDLAH seeds may have been caused by
limiting the peroxidation and degradation of the polar lipids
in structural embryonic membranes, not by reduction of
oxidative damage in neutral storage lipids. The results of the
current study suggest that there was no difference in the
quantity of neutral lipids among wild-type, 35S:AtDLAH,
and atdlah seeds following accelerated-ageing treatments
(Supplementary Fig. S5 at JXB online). Additionally, root
elongation rates were constant in these seedlings 1-10 d after
germination (Fig. 5A), suggesting that the differences in seed
viabilities were not a result of the mobilization ability of the
storage lipids. In addition, although the total amounts of the
polar lipids seemed to be indistinguishable among wild-type,
overexpressors, and mutant seeds, the intensities of 2-3 polar
lipid bands on TLC plates were apparently different among
these lines under normal conditions (Fig. 7A). These results
suggest that the differences in some kinds of polar lipid
contents resulting from the changes in expression of
AtDLAH are possibly attributed to germination under
normal conditions (Fig. 5A). These differences were further
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exacerbated by accelerated-ageing treatment (Fig. 7) suffi-
cient to produce large differences in germination ability (Fig.
5B, C).

Recently, polar lipid profiling and lipid peroxidation
analyses with a PLDal knockout mutant indicated that the
activity of PLDal may promote membrane lipid degradation
and reduce seed viability (Devaiah ez al, 2006, 2007). After
storage and accelerated ageing, the pldxl mutant seeds
exhibited higher germination percentages, decreased reduc-
tion in oil content, and significantly lower lipid hydroperox-
ide levels than did wild-type seeds that were similar to the
35S:AtDLAH seeds. Therefore, it is possible that PLDal and
AtDLAH have conflicting roles in peroxidation and degrada-
tion of polar lipids. One possible mechanism is that PLDal
and AtDLAH compete for the same phospholipid substrates.
This hypothesis is partially supported by the finding that
PLDal is found not only in the plasma membrane fractions
but also in the mitochondria (Fan ef al, 1999) where
AtDLAH is predominantly localized (Figs 1C, 4).

PA is a strong candidate for a signalling molecule for
generating reactive oxygen species (ROS) and inducing lipid
peroxidation (Sang et al., 2001; Park et al, 2004; Devaiah
et al, 2007). In Arabidopsis leaves, PA activates NADPH
oxidase activity to produce superoxide, which is immediately
converted to H>O,. These PA-induced ROS, in turn, promote
the death of leaf cells (Sang et al, 2001; Park ez al, 2004).
There is circumstantial evidence that PA produced by PLDal
enhances production of lipid peroxidation in Arabidopsis
seeds, thereby decreasing seed quality during natural and
accelerated ageing processes (Devaiah ef al., 2007). Under the
in vitro lipase enzyme assay conditions used in this study, PA
was one of the preferred substrates for AtDLAH (Fig. 2B).
Therefore, PA produced by natural and accelerated ageing
conditions could be degraded by AtDLAH in transgenic
358:AtDLAH seeds, resulting in increased seed longevity.

Alternatively, PLDa1 and AtDLAH may work independently.
The overall level of PA detected by TLC was similar in wild-type,
358:AtDLAH, and atdlah seeds (Fig. 7A). Thus, more detailed
quantifications of PA and other signalling lipids are required to
elucidate the roles of PLDal and AtDLAH further. Current
efforts are focused on analysing total and mitochondrial lipid
profiles in wild-type, 35S:AtDLAH, and atdlah seeds using an
electrospray ionization tandem mass spectrometer (ESI-MS/
MYS), rather than TLC, to eclucidate the effect of AtDLAH
expression on both qualitative and quantitative traits of seed
lipids. In addition, analysis of phenotypes and cellular functions
of AtDLAH with fine-regulated ageing treatments under lower
relative humidity conditions, which may be more similar to
natural ageing conditions (Oge et al, 2008), is also being
conducted. These results will clarify the mode of action of
mitochondrial DADI-like acylhydolase in seed viability and
longevity.

Supplementary data

Supplementary data are available at JXB online.
Figure S1. Sequence analysis of Arabidopsis AtDLAH.

Figure S2. Expression levels of cell cycle- and cell
elongation-related genes in wild-type, 35S:4tDLAH, and
atdlah mutant seedlings.

Figure S3. Germination analysis of  wild-type,
35S:AtDLAH, and atdlah mutant seeds in response to ABA.
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