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Abstract
The falsely annotated protein-coding genes have been deemed one of the major causes accounting for the

annotating errors in public databases. Although many filtering approaches have been designed for the over-
annotated protein-coding genes, some are questionable due to the resultant increase in false negative.
Furthermore, there is no webserver or software specifically devised for the problem of over-annotation. In
this study, we propose an integrative algorithm for detecting the over-annotated protein-coding genes in
microorganisms. Overall, an average accuracy of 99.94% is achieved over 61 microbial genomes. The extre-
mely high accuracy indicates that the presented algorithm is efficient to differentiate the protein-coding
genes from the non-coding open reading frames. Abundant analyses show that the predicting results are
reliable and the integrative algorithm is robust and convenient. Our analysis also indicates that the over-
annotated protein-coding genes can cause the false positive of horizontal gene transfers detection. The web-
server of the proposed algorithm can be freely accessible from www.cbi.seu.edu.cn/RPGM.
Key words: protein-coding gene; microbial genome; re-annotation; horizontal gene transfer

1. Introduction

Up to now, thousands of microbial genomes have
been published in public databases. The explosive
growth number of available genomic sequences pre-
sents unprecedented opportunities for probing the
secret of life and extract biological information on gen-
etics, which is highly dependent on the annotation
quality of each genome. In most cases, many people
think that gene finding in prokaryotic genomes is rela-
tively easy due to lack of introns, and they usually deem
the genes deposited in public databases such as
GenBank or EMBL are correctly annotated. However,
more and more researches indicate that the issue of
gene finding in microbial genomes is far from
thoroughly resolved; the annotation quality of

microbial genomes has been questioned continuously
in the past several years.1–29 Many studies implied
that some annotated protein-coding genes in most
completely sequenced microbial genomes do not
encode any proteins actually, but random open
reading frames (ORFs) occurring by chance.1–9,11–26

In current public databases, the careful annotators
have marked those questionable ORFs as hypothetical,
then which of them encode protein, and which do not?
As many users may take it for granted that all the anno-
tated genes are true protein coding, this can easily lead
to wrong conclusions. Then the researchers need to be
aware of the existing errors in the annotation of even
well-studied genomes and consider additional quality
control for their results. Although many groups have
performed re-annotation on different microbial
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genomes, some filtering strategies for the over-anno-
tated ORFs seemed to be questionable due to the resul-
tant increase in false negative, and then there is still
much room for improvement. Moreover, it is regretful
that there is no webserver or software reported for
addressing the problem of over-annotated genes in
public databases. Then the update speed of current
databases based on the one-by-one re-annotating
strategy is far from practical applications and the
increasing rate of novel sequenced genomes, which
will decrease greatly the value of public databases.
Therefore, the problem is still open for protein-coding
genes identification in microbial genomes.

Recent researches show that development of tech-
niques by combination of multiple programs may
produce a higher performance in prediction pro-
blems.30–32 In this paper, we put forward a meta-
approach for identifying the falsely annotated
protein-coding genes in microbial genomes. The
algorithm is evaluated by 61 microbial genomes
and an average accuracy of 99.94% is obtained. The
extremely high accuracy shows that the integrated
method can grasp universal information of protein-
coding genes. Subsequent analysis indicates that the
predicting results are much reliable. In order to facili-
tate the potential users, we exploited an interface-
friendly webserver aiming to NCBI’s RefSeq resources.
This platform only needs to input the accession
number of the queried microbial genome, and then
it is much convenient and easy to operate.

2. Methods

2.1. Numerical descriptors
The walking model method is such a kind of graphi-

cal representation that can transform biological
sequences into visual patterns based on different
encoding strategies. Since the first walking model
was proposed by Hamori and Ruskin,33 many graphi-
cal approaches have been reported for DNA
sequences, which can provide intuitive pictures or
useful insights for helping analysing complicated
relations in biological systems.34 The methodology
proposed in this work is based on the TN curve and
Z curve, from which we derive 75 numerical par-
ameters to exhibit the intrinsic properties of protein-
coding genes.

The TN curve is a recently proposed walking model
by us, with which one can inspect information of tri-
nucleotides both qualitatively and quantitatively.35

Consideration of trinucleotides instead of individual
and dual nucleotides has superior advantages for
protein-coding genes. In this paper, we derive 54 par-
ameters based on the encoding strategy of the TN
curve to exhibit the specific structures of protein

genes numerically, which are briefly introduced
below.

(i) According to the encoding strategy of the TN
curve, each kind of trinucleotide can be represented
by a 2D Cartesian coordinates (x, y). Here, we deter-
mine the signs of x and y by the base at the first pos-
ition (fþ, þg!A, f2, þg!G, f2, 2g!C, fþ, 2g!T)
and decide the absolute values of x and y by the bases
at the second and third positions (1!A, 2!G, 3!C,
4!T), respectively. Taking GCG as an example, the
base ‘G’ at the first position denotes that the signs of
x and y are negative and positive, respectively; the
base ‘C’ at the second position and the base ‘G’ at
the third position imply that the absolute values of x
and y are 3 and 2, respectively. Therefore, GCG is rep-
resented by (23, 2). In this way, other kinds of trinu-
cleotides can also be denoted numerically. According
to the definition, x . 0 or x , 0 mean that the base at
the first position is an element of (A, T) or (G, C),
which corresponds to week-H bond (A, T)/strong-H
bond (G, C) groups, y . 0 or y , 0 mean that the
first base is (A, G) or (C, T), which corresponds to
purine (A, G)/pyrimidine (C, T) groups. Letting z ¼ x
� y, it is noted that when z . 0, x and y are positive
or negative simultaneously, the second base must be
A or C, which corresponds to the amino group,
when z , 0, the sign of x is opposite to y, the first
base must be G or T, which corresponds to the keto
group. Thus, the 64 kinds of trinucleotides can be
classified into two groups in three ways based on x, y
and z, respectively. On the other hand, x links the
first and second bases of a trinucleotide, and this
can be used as an approximate descriptor of dual
nucleotide. Similar results can be obtained for y
which links the first and third bases of a nucleotide
triplet. Then, we can obtain more information from
these parameters.35

In a protein-coding sequence, there are three
forward and three reverse reading frames, of which
usually only one can encode protein sequence.
Supposing S ¼ s1s2s3s4s5s6s7s8,. . . , sN25sN24sN23sN22

sN21sN is a protein-coding sequence, the three
forward frames fs1s2s3, s4s5s6, s7s8. . .g, fs2s3s4,
s5s6s7, s8. . .g and fs3s4s5, s6s7s8, . . .g are denoted by
þ0, þ1 and þ2, respectively. For frame þ0, we can
map it into a plot set f(Sþ0) ¼ ff(s1s2s3) f(s4s5s6),

. . . , f(snsnþ1snþ2) . . .g, where f(snsnþ1snþ2) ¼ (xn, yn,
zn), xn, yn and zn are the initial assignment introduced
above, n ¼ 1,4,7, . . .. Letting

xfþ0g0
i ¼

Xi

k¼1

xk; yfþ0g0
i ¼

Xi

k¼1

yk; zfþ0g0
i ¼

Xi

k¼1

zk

to represent the cumulative effects of xn, yn and zn in
frame þ0, respectively, where i [ [1, 2, 3, . . . , Nþ0],
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Nþ0 is the total number of trinucleotides in frame þ0.
We can transform frame þ0 into six sets of 2D curves
by fxi, yi, zi, x0, y0, z0g vs. i, respectively. Then, six
numerical descriptors corresponding to the six geo-
metric centre of each 2D curve can be derived to
describe the corresponding reading frame. In this
way, we have a 3 � 6 ¼ 18D vector V1¼ [v1, v2, v3,
. . . , v18] as a quantitative descriptor for a complete
protein-coding sequence, which corresponds to the
geometric centre of each 2D curve of frames þ0,
þ1 and þ2, i.e.

uI
1¼
PNfþ0g

i¼1 xfþ0g
i

Nfþ0g ;uI
2¼
PNfþ0g

i¼1 yfþ0g
i

Nfþ0g ;uI
3¼
PNfþ0g

i¼1 zfþ0g
i

Nfþ0g ;

uI
4¼
PNfþ0g

i¼1 xfþ0g0
i

Nfþ0g ;uI
5¼
PNfþ0g

i¼1 yfþ0g0
i

Nfþ0g ;uI
6¼
PNfþ0g

i¼1 zfþ0g0
i

Nfþ0g ;

uI
7¼
PNfþ1g

i¼1 xfþ1g
i

Nfþ1g ;uI
8¼
PNfþ1g

i¼1 yfþ1g
i

Nfþ1g ;

uI
9¼
PNfþ1g

i¼1 zfþ1g
i

Nfþ1g ;uI
10¼

PNfþ1g

i¼1 xfþ1g0
i

Nfþ1g ;uI
11¼

PNfþ1g

i¼1 yfþ1g0
i

Nfþ1g ;

uI
12¼

PNfþ1g

i¼1 zfþ1g0
i

Nfþ1g ;uI
13¼

PNfþ2g

i¼1 xfþ2g
i

Nfþ2g ;uI
14¼

PNfþ2g

i¼1 yfþ2g
i

Nfþ2g ;

uI
15¼

PNfþ2g

i¼1 zfþ2g
i

Nfþ2g ;uI
16¼

PNfþ2g

i¼1 xfþ2g0
i

Nfþ2g ;

uI
17¼

PNfþ2g

i¼1 yfþ2g0
i

Nfþ2g ; uI
18¼

PNfþ2g

i¼1 zfþ2g0
i

Nfþ2g

Where, Nfþ0g, Nfþ1g and Nfþ2g denotes the total
number of trinucleotides in the three forward
reading frames, respectively. To differentiate the
present encoding strategy from the subsequent
encoding strategies, an ‘I’ is marked at the top right
corner.

(ii) Following the similar encoding strategy above-
mentioned, we can also determine the signs of x
and y according to the base at the second codon pos-
ition, and determine the absolute values of x and y by

the bases at the first and third positions, respectively.
Still taking GCG as an example, the base ‘C’ at the
second position implies that the signs of x and y are
both negative. The bases ‘G’ at the first and third pos-
itions imply that the absolute values of x and y are 2,
respectively. Therefore, GCG is numerically rep-
resented by (22, 22). Following the same steps intro-
duced in (i), we can also derive an 18D vector, which
corresponds to the geometric centres of the corre-
sponding 2D curves of the three forward reading
frames,

uII
l
¼
PNfjg

i¼1 V
fjg
i

Nfjg
;

where, l ¼ 19, 20, 21, . . . , 36, V [ fx, y, z, x0, y0, z0g,
j ¼ þ0, þ1, þ2 represents the three forward
reading frames, Nf jg is the total number of trinucleo-
tides in each reading frame.

(iii) In the third encoding strategy, the signs of x and
y are determined by the category of the base at the
third codon position, while the absolute values of x
and y are decided by the bases at the first and
second positions, respectively. Therefore, the trinu-
cleotide GCG can be numerically represented by
(22, 3). Following the similar way in (i) and (ii), we
have another 18D vector as numerical descriptors, i.e.

uIII
m ¼

PNfjg

i¼1 V
fjg
i

Nfjg
;

where m ¼ 37, 38, 39, . . . , 54.
To explain the implications of the derived 54

numerical descriptors, we present three short
sequences that have the same trinucleotide compo-
sitions but different trinucleotide order as examples
in Table 1. In our previous work, we have demon-
strated that one can obtain intuitive information of
trinucleotides both compositions and distributions
based on xi, yi, zi and their derivants x 0, y 0, z 0, respect-
ively.35 As can be seen from Table 1, u1, u2 and u3

have equal values, while the values of u4, u5 and u6

Table 1. Numerical descriptors for two short sequence (a) ATG CAT TTA, (b) CAT ATG TTA and (c) ATG TTA CAT

Numerical
descriptors

Encoding strategy I Numerical
descriptors

Encoding strategy II Numerical
descriptors

Encoding strategy III

Seq.
a

Seq.
b

Seq.
c

Seq.
a

Seq.
b

Seq.
c

Seq.
a

Seq.
b

Seq.
c

u1 7/3 7/3 7/3 u19 8/3 8/3 8/3 u37 2 2 2

u2 21 21 21 u20 1/3 1/3 1/3 u38 7/3 7/3 7/3

u3 8/3 8/3 8/3 u21 2 2 2 u39 3 3 3

u4 14/3 3 19/3 u22 13/3 5 14/3 u40 7/3 11/3 8/3

u5 21 23 0 u23 1/3 7/3 4/3 u41 14/3 3 19/3

u6 28/3 8 20/3 u24 14/3 28/3 22/3 u42 22/3 21/3 17/3
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differ greatly. This indicates that u1, u2 and u3 reflect
the information of trinucleotide compositions and
u4, u5 and u6 are sensitive to the trinucleotides
orders along the corresponding sequences. For
other numerical descriptors, the same results can
also be observed. Then, we can obtain sufficient
information from the two groups numerical descrip-
tors u1, u2, u3, u7, u8, u9, . . . and u4, u5, u6, u10, u11,
u12, . . . . Recently, we have re-annotated the
genome of Amsacta moorei entomopoxvirus using an
18D vector according to encoding strategy III.36 In
the present work, the number of numerical descrip-
tors is extended to 54. As we discussed above, based
on each kind of encoding strategy, the 64 kinds of
trinucleotides can be divided into two groups in
three ways. That is, we can provide sufficient infor-
mation with the 54D vector based on the three
encoding strategies, which can reveal more universal
properties for protein-coding genes than the 18D
vector.

The Z curve is another graphical representation
proposed for displaying information of individual
nucleotides,37,38 which has been applied to some
protein-coding genes re-annotation works.15,19,21 In
this work, the 21 statistical numerical descriptors
derived from the Z curve method are adopted to
perfect the presented algorithm, which is introduced
briefly below, for details refer to the work by Gao
and Zhang.39

Supposing a1, c1, g1, t1; a2, c2, g2, t2; a3, c3, g3, t3

denote the occurring frequencies of A, C, G and T
at different codon positions 1, 4, 7, . . .; 2, 5, 8, . . .;
3, 6, 9, . . . , respectively, then, ai, ci, gi, ti (i ¼ 1, 2,
3) can be mapped onto a point Pi in a 3D space,
the coordinates of which are calculated by Z-
transform

xi ¼ ðai þ giÞ � ðci þ tiÞ;
yi ¼ ðai þ ciÞ � ðgi þ tiÞ;
zi ¼ ðai þ tiÞ � ðgi þ ciÞ

Obviously, xi, yi and zi display the statistical features of
the base compositions at different codon positions,
then nine numerical descriptors can be obtained,

uZ
1 ¼ x1; uZ

2 ¼ y1; uZ
3 ¼ z1;

uZ
4 ¼ x2; uZ

5 ¼ y2; uZ
6 ¼ z2;

uZ
7 ¼ x3; uZ

8 ¼ y3; uZ
9 ¼ z3

In addition to the nine codon position-dependent
parameters, 12 phase-specific dinucleotides were
also considered. Let the occurring frequencies of the
16 dinucleotides AA, AC, . . . , and TT be denoted by
p(AA), p(AC), . . . , p(TT), respectively. Using the

Z-transform,

xX ¼ ½ pðXAÞ þ pðXGÞ� � ½ pðXCÞ þ pðXTÞ�;

yX ¼ ½ pðXAÞ þ pðXCÞ� � ½ pðXGÞ þ pðXTÞ�;

zX ¼ ½ pðXAÞ þ pðXTÞ� � ½ pðXGÞ þ pðXCÞ�

where X ¼ A, C, G and T. Then, an additional 12D
vector can be obtained, which is written as follows,

uZ
10 ¼ xA; uZ

11 ¼ yA; uZ
12 ¼ zA;

uZ
13 ¼ xC; uZ

14 ¼ yC; uZ
15 ¼ zC;

uZ
16 ¼ xG; uZ

17 ¼ yG; uZ
18 ¼ zG;

uZ
19 ¼ xT; uZ

20 ¼ yT; uZ
21 ¼ zT

Comparing with the 54D vector based on the TN
curve, the 21 numerical descriptors provide statistical
information of the base compositions at different
codon positions and adjacent nucleotides. The critical
differences between protein-coding genes and non-
coding sequences exist, in that the former has regu-
larly specific features such as asymmetric nucleotide
distributions at the three codon positions and codon
usage bias, while the latter does not. Then, how to
propose sufficient numerical descriptors to exhibit
the specific features of protein-coding genes is the
core for gene prediction programs. Previous research
showed that the first and second bases determine
the category of translated amino acid, while the
third base is associated with a synonymous
codon.40,41 Because of the uneven distribution of
synonymous codons, protein-coding genes are differ-
ent from non-coding sequences in gene structure,
which can be used to find protein-coding
sequences.42 In this paper, the outlined
75-component vector can be represented by the
direct combinations of the subspaces, i.e. V Þ fVI, VII,
VIII, VZg, the former three items reflect the compo-
sitions and distributions of trinucleotides along the
DNA sequences and the latter item provides statistical
significances of protein-coding genes. Therefore, the
two groups of parameters can complement each
other, which provide sufficient information for
protein-coding genes from different angles.

2.2. The Fisher discriminant algorithm
The Fisher discriminant algorithm is a simple

method that has been extensively used in gene predic-
tion. For detail introductions, refer to the work by
Zhang and Wang.13 To accomplish the presented algor-
ithm, two sets of samples are required to train the dis-
criminant coefficients, i.e. positive samples
corresponding to true protein-coding genes and nega-
tive samples corresponding to non-coding ORFs. For
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each queried genome, its annotated known functional
genes are used as the positive training set and the nega-
tive training set is composed of the shuffled comp-
lementary sequences of corresponding known
functional genes, which has been initially introduced
by Guo et al.32 It was found that the 75 parameters
are sensitive to the specific gene structures. Then we
shuffle the primary sequences only 50 times, hence
the runtime can be shorten remarkably. The Fisher
linear equation for discriminating the positive and
negative samples in the 75D space V represents a
super-plane, described by a vector C that has 75 com-
ponents. To avoid loss of generality, the vector C was
determined according to the criterion jCj2 ¼ 1.
Besides, an appropriate threshold C0 is obtained by
strictly letting the false-negative rate and the false-posi-
tive rate to be identical. Once the vector C and the
threshold C0 are determined, each sequence is assigned
a T_score ¼ CV 2 C0. Then the decision of coding/non-
coding foreach genes in the test set is simply performed
by the criterion of T_score . 0 or T_score , 0, where C
¼ (C1, C2, . . . , C75) and V ¼ (u1, u2 . . . , u75).

2.3. Evaluation index
The accuracy (Ac), sensitivity (sn) and specificity (sp)

proposed by Burset and Guigo43 are used to evaluate
the performance of the presented method

sn ¼
TP

TPþ FN
; sp ¼

TN
TNþ FP

; Ac ¼
sn þ sp

2

Where, TP and FN denote the number of coding ORFs
that have been predicted as coding and non-coding
sequences, respectively. Then, sn is the proportion of
the coding ORFs that have been predicted correctly
as coding sequences. Similarly, TN and FP denote the
number of non-coding sequences that have been pre-
dicted as non-coding and coding sequences, respect-
ively. Then, sp is the proportion of the non-coding
sequences that have been correctly predicted as
non-coding.

The Matthew’s correlation coefficient (MCC) is also
used to describe the agreement of predictions and
annotation with a single value in the range of [21, 1],
where,

MCC¼ TP�TN� FN� FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ� ðTPþ FPÞ� ðTNþ FNÞ� ðTNþ FPÞ

p

3. Results and discussions

3.1. Performance of the presented algorithm
According to the annotation files, the protein-

coding genes in public databases can be classified

into two groups, i.e. the genes with known function
and those marked with different prefixes, such as
‘putative’, ‘probable’, ‘possible’, ‘possibly’, ‘similar’,
‘alternate’, ‘uncharacterized’, ‘unknown’, ‘predicted’,
‘conserved hypothetical’ and ‘hypothetical’ genes. In
this study, we divide all the annotated protein-
coding genes into four classes. The first class includes
the known functional genes, while those marked ‘con-
served hypothetical’ and ‘hypothetical’ genes are
assigned to the third and fourth classes, respectively,
the rest marked ‘putative’, ‘probable’, ‘possible’, ‘poss-
ibly’, ‘similar’, ‘alternate’, ‘uncharacterized’, ‘unknown’,
and ‘predicted’ belong to the second class. It is noted
that the genes in the first class are genuine protein-
coding with validated functions, while some ORFs in
other classes may be random sequences that are
falsely predicted as protein-coding genes. In the pre-
sented re-annotating algorithm, the known functional
genes in the first class and their corresponding
shuffled sequences are used to train the Fisher coeffi-
cients and evaluate the predicting performance, this
can also regarded as self-test. In addition, the
10-fold cross-validation is also employed to evaluate
our algorithm. In the 10-fold cross-validation, the
positive and negative samples composed of the
known functional genes and their shuffled sequences
are randomly divided into three groups averagely, one
is used as the training set and the others are used as
the testing set. Here, 61 bacterial and archaeal
genomes (listed in Supplementary Table S1) are
taken as examples to accomplish the algorithm. For
convenience, the abbreviation names are used, for
example, Candidatus Phytoplasma mali is abbreviated
as C. Phytoplasma. The genome size of the 61
species ranges from 412 348 to 7 036 071 bp, and
the G þ C content ranges from 21 to 72%. In
Supplementary Table S2, we present the sensitivity
(sn), specificity (sp), accuracy (Ac) and the MCC of
self-test and the 10-fold cross-validation. Since the
proposed algorithm is a supervised learning strategy,
which may be impacted by the shuffling negative
samples, then the program is performed five times
over each genome, and the mean evaluating indices
are calculated. Because the threshold C0 is strictly
demined by the false-positive rate equal the false-
negative rate, then, for self-test, sn is identical to sp,
and Ac ¼ sn ¼ sp. In addition, some ORFs with lengths
that cannot be divided by three integrally are
excluded. For comparison, the results by 54- and
21-vectors are also presented in Supplementary
Table S2. As can be seen, the overall average accu-
racies of self-test over the 61 microbial genomes are
99.62, 99.79 and 99.94% for the 54, 21 and 75D
vectors, respectively. As for the 10-fold cross-vali-
dation, overall average accuracies of 99.55, 99.75
and 99.88% are obtained by 54, 21 and 75D
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vectors, respectively. The overall average MCCs over
the 61 microbial genomes for the self-test are
0.9925, 0.9958 and 0.9989, for the 10-fold cross-
validation, 0.9910, 0.9951 and 0.9977 obtained by
54, 21 and 75D vectors, respectively. Although the
integrated algorithm achieves an extremely high per-
formance, the parameters also increased. Then the
main question remains open—why can this so-called
combined methodology achieve such higher accu-
racy? Can we obtain more information about the
specific protein-coding genes, in other words, can
the integrated 75D vector grasp the universal features
of protein-coding genes different from non-coding?
To give explicit answer, we should perform sufficient
analysis in the following sections.

3.2. Correlation between the G þ C content and the
Fisher coefficients

The ratio of G þ C to the total bases appears to be
constant in particular microbial genomes, but varies
between species, which is found somehow related to
phylogeny, as well as the genomic components, such
as protein-coding genes, stable RNA genes and
spacers including various signals.44 Muto and
Osawa’s45 researches indicated that the G þ C
content of each kind of genomic component posi-
tively but differentially correlate to the genomic G þ
C content for a given bacterium. When the genetic
code was deciphered in the early 1960s, it was
observed to be universal for most organisms,
whereas there are no universal gene-finding par-
ameters suitable for any organism, which can be
reflected that the 61 sets of Fisher coefficients are dis-
similar from each other. The 75 numerical descriptors
in our algorithm are proposed to demonstrate the
general features of protein-coding genes, and then it
is interesting to explore the correlation between the
genomic G þ C content and the trained Fisher coeffi-
cients among different genomes.

To accomplish the analysis, the following steps are
proposed. (i) Six species with different G þ C contents,
Buchnera (26%), Streptococcus uberis (36%), Yersinia
pestis (47%), Brucella melitensis (57%), Pseudomonas

aeruginosa (66%) and Clavibacter michiganensis
(72%) are selected discretionarily. (ii) Based on the
six genomes, six sets of the Fisher coefficients are
obtained, each of which is trained by its known func-
tional genes. (iii) Each set of the Fisher coefficients is
singled out in turn to identify the known functional
genes in other genomes. For convenience, we list the
discriminating results in Table 2.

As can be seen from Table 2, 88.79% known func-
tional genes of S. uberis genome can be correctly
identified using the Fisher coefficients and threshold
trained in Buchnera. With the increase in the G þ C
content, the discriminating accuracy obtained by the
Fisher coefficients of Buchnera drops quickly.
Observing the results obtained by the Fisher coeffi-
cients of C. michiganensis, it was found that 99.18%
known functional genes of P. aeruginosa are correctly
identified, with the decrease in the G þ C content,
the accuracy drops to an extremely low level (2.67%
for Buchnera). As for the results obtained by S. uberis,
it was found that 99.79 and 87.11% known func-
tional genes of Buchnera and Y. pestis can be correctly
identified, respectively, but the accuracy for genomes
with significantly different G þ C content is much
lower. The similar phenomenon that high accuracies
can be achieved among genomes with similar G þ C
contents can be observed in other species. To give
an exhaustive interpretation, we also perform the
similar steps based on the 54 and 21D vectors
(Supplementary Tables S3 and S4), respectively.
Meaningfully, the similar phenomenon to the above
analysis can be found in both tables. In some sense,
the genomic G þ C content can reflect the phyloge-
netic relationship among bacteria and archaea,45,46

and it was suggested that the divergence of genomic
G þ C content of various bacterial species in one
genus is ,10%.19 Therefore, we infer that genomes
with similar G þ C content may share similar gene-
finding parameters.

Among the six researched genomes, Y. pestis has a
medium G þ C content. Using the Fisher coefficients
and threshold of Y. pestis, over 97% known functional
genes of the other five genomes can be correctly
identified. The similar results can also be observed

Table 2. Accuracies of mutual validations for the genomes with different G þ C content based on the 75D vector

Species Buchnera (%) S. uberis (%) Y. pestis (%) B. melitensis (%) P. aeruginosa (%) C. michiganensis (%)

Buchnera 100 88.79 50.25 9.01 0.97 0

S. uberis 99.79 99.87 87.11 60.66 12.84 2.15

Y. pestis 99.38 99.53 99.85 99.47 99.32 96.97

B. melitensis 91.99 96.86 96.59 100 99.46 99.24

P. aeruginosa 98.36 99.13 99.75 100 99.78 100

C. michiganensis 2.67 13.35 70.06 99.34 99.18 100
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in Supplementary Tables S3 and S4, which imply that
the Fisher coefficients and thresholds trained by
genomes with medium G þ C content (�50%) are
much universal, this is consistent with previous
works by Chen et al.19 In Table 2, the results obtained
by P. aeruginosa are much conspicuous, for this
genome has a high G þ C content of 66%. As can be
seen, much high accuracies over the other five
tested genomes are achieved (�98%) by this
genome. By contrast, the results listed in
Supplementary Tables S3 and S4 for P. aeruginosa is
found to be much different in some cases. In
Supplementary Table S3, only 21.36% known func-
tional genes of Buchnera are correctly predicted by
the coefficients of P. aeruginosa, while in
Supplementary Table S4, the accuracy is 95.69%.
Similarly, the accuracy on S. uberis based on the 54D
vector is also lower than that of 21D vector. Then,
we divide the 75 trained Fisher coefficients into
three subcomponents, i.e. W1 ¼ [C1– C3, C7– C9,
C13– C15, C19– C21, C25– C27, C31– C33, C37– C39,
C43– C45, C49– C51], W2 ¼ [C4– C6, C10– C12,
C16– C18, C22– C24, C28– C30, C34– C36, C40– C42,
C46– C48, C52– C54], W3¼ [C55– C75]. According to

the definitions, W1 and W2 correspond to information
of trinucleotides and their corresponding cumulative
effects, and W3 represents the information of base
compositions and dinucleotides, respectively. For
comparison, the three subcomponents for P. aerugi-
nosa and Buchnera are intuitively plotted in Fig. 1.
Observing the distribution of W3, it seems that P. aer-
uginosa and Buchnera have similar patterns in the
regions of 10–21, while in the regions of 1–9, the
patterns of the two genomes seem to be much differ-
ent. W3 represents the Fisher coefficients that corre-
sponding to the 21 statistical parameters, which
reflect the statistical properties of base distributions
in the three codon positions and phase-specific dinu-
cleotides. The G þ C content of P. aeruginosa is much
different from that of Buchnera, which can account for
the differences in regions 1–9 that correspond to
base distributions at the three codon positions.
While in regions 10–21, the similar tendency imply
that there are some universal properties on the
phase-specific dinucleotides in P. aeruginosa genome
that accounts for the high accuracy on other
genomes as shown in Supplementary Table S4,
which needs further experimental validations. W1

Figure 1. Comparing the Fisher coefficients (C) between P. aeruginosa and Buchnera.

No. 6] Method for Identifying the Over-Annotated Protein-Coding Genes 441

http://dnaresearch.oxfordjournals.org/lookup/suppl/doi:10.1093/dnares/dsr030/-/DC1
http://dnaresearch.oxfordjournals.org/lookup/suppl/doi:10.1093/dnares/dsr030/-/DC1
http://dnaresearch.oxfordjournals.org/lookup/suppl/doi:10.1093/dnares/dsr030/-/DC1
http://dnaresearch.oxfordjournals.org/lookup/suppl/doi:10.1093/dnares/dsr030/-/DC1
http://dnaresearch.oxfordjournals.org/lookup/suppl/doi:10.1093/dnares/dsr030/-/DC1
http://dnaresearch.oxfordjournals.org/lookup/suppl/doi:10.1093/dnares/dsr030/-/DC1
http://dnaresearch.oxfordjournals.org/lookup/suppl/doi:10.1093/dnares/dsr030/-/DC1


and W2 represent the Fisher coefficients correspond-
ing to the 54D vector that derived from the trinucleo-
tide-based walking model, which reflects the
distribution and compositions of trinucleotides
along the DNA sequences. It was found that codon
usages in protein-coding genes are highly dependent
on the G þ C content, then the remarkable differ-
ences in the G þ C content between P. aeruginosa
and Buchnera cause the low accuracy in
Supplementary Table S3. From the bar graphs in
Fig. 1, the accordant patterns of W1 and W2 can be
observed, for both exhibit much different tendency
between the two species. Then, the results of Fig. 1
indicate that the 75 integrative parameters in the pre-
sented re-annotating algorithm can demonstrate
more underlying information of protein-coding genes.

3.3. Correlation between the genome size and the
Fisher coefficients

Although it has been validated that the Fisher coef-
ficients is much universal for genomes with medium
G þ C content, the high accuracy obtained by
P. aeruginosa presented in Table 2 seems to be
much unexpected, for its G þ C content is up to
66%. On the other hand, the genome size of P. aerugi-
nosa is 6 588 339 bp with 6286 annotated protein-
coding genes. Then, another issue is questioned that
whether the high accuracy is caused by its huge
genomic contents. To explore the correlation
between the genome size and the trained Fisher coef-
ficients, four additional species with different genome
size, Stenotrophomonas maltophilia (4 851 126 bp),
Burkholderia cenocepacia (875 977 bp), Deinococcus
radiodurans c2 (412 348 bp) and D. radiodurans c1
(2 648 638 bp) are selected, which have similar G þ
C content (66%) with P. aeruginosa (Supplementary
Table S1). Whereupon we use the Fisher coefficients
and threshold trained by P. aeruginosa, S. maltophilia,
B. cenocepacia, D. radiodurans c2 and D. radiodurans
c1 to identify the protein-coding genes in the
genomes with different G þ C content, where the
other five species listed in Table 2 are employed,
respectively. The predicting results are presented in
Table 3. Among the four selected species, S.

maltophilia has the biggest genome size, but it
seems that its Fisher coefficients are not as universal
as that of P. aeruginosa. Based on the coefficients
and threshold trained by S. maltophilia, 98.99%
known functional genes in C. michiganensis are cor-
rectly predicted, while the accuracy drops to 0.21%
with the decrease in the G þ C content. Deinococcus
radiodurans c2 is the smaller chromosome of D. radio-
durans R1, which has only 368 protein-coding genes,
while its performance is comparable with that of
P. aeruginosa. As for the other two species, the
average accuracy of B. cenocepacia is higher than that
of D. radiodurans c1, although the latter has a much
bigger genome size.

Deinococcus radiodurans c2 and D. radiodurans c1
are the smaller and larger chromosomes of D. radio-
durans R1, respectively. In previous works, some
authors deemed the bases distribution patterns in
different chromosomes for one bacterium to be
similar, then they do not have independent
origins.15 While some other works conjectured that
the smaller chromosome was originally a megaplas-
mid captured by an ancestral species.47 Both the
two chromosomes share similar G þ C content. In
the larger chromosome, the G þ C contents of the
annotated protein-coding genes range from 34.1 to
77.1%, with the average of 67.44%, the values of
GC3 range from 28.2 to 96.3%, with the average of
83.54%. In the smaller chromosome, the G þ C con-
tents of the annotated protein-coding genes range
from 37 to 76.1%, with the average of 67.14%, the
values of GC3 range from 28.4 to 93.1%, with the
average of 82.34%. Nevertheless, from Table 3, we
note that there are much differences between the
results obtained by D. radiodurans c2 and D. radiodur-
ans c1, which indicates that their Fisher coefficients
display discrepant properties. We speculate that the
differences can be accounted by their intrinsic genes
features. For protein-coding genes, the relative synon-
ymous codon usage (RSCU) is an effective index used
to examine synonymous codon usage without the
confounding influence of amino acid composition of
different gene samples.48 Correspondence analysis
(COA) can be used to investigate the major trend in
codon usage variation among protein-coding genes.

Table 3. Predicting results based on genomes with different sizes

Species Buchnera (%) S. uberis (%) Y. pestis (%) B. melitensis (%) C. michiganensis (%)

P. aeruginosa 98.36 99.13 99.75 100 100

S. maltophilia 0.21 0.80 41.62 91.91 98.99

B. cenocepacia 71.46 81.58 93.68 99.47 99.12

D. radiodurans c2 98.15 99.53 99.80 100 100

D. radiodurans c1 7.60 71.09 95.64 99.54 99.87
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After performing COA on the RSCU values of the
annotated protein-coding genes, it was found that
axes 1 and 2 of COA account for 24.59 and 5.31%
for D. radiodurans c2, and those for D. radiodurans
c1 account for 15.6 and 5.69%, respectively. The pro-
minent weight of the first principle suggests strong
codon bias trend in both chromosomes. To assess
the factors that affect the codon usage bias, we
plotted axis 1 against their codon adaptation index
(CAI) values in Fig. 2. CAI is used to measure the
gene expression level,43 highly expressed genes are
presumed to have high CAI values. In Fig. 2, the
scatter plot for D. radiodurans c1 indicates a signifi-
cant positive correlation with the position of the
genes on axis 1 and their corresponding CAI values
(r ¼ 0.5275, P , 0.01). Further analysis suggests
that the coordinates of axis 1 also show a significant
positive correlation with the GC3 (r ¼ 0.9090, P ,

0.01). On the contrary, from the scatter plot of D.
radiodurans c2, a significant negative correlation
between axis 1 and their CAI values (r ¼ 20.5712,
P , 0.01) can be observed. Further analysis shows
that axis 1 is also significantly negatively
correlate with the GC3 (r ¼ 20.9267,
P , 0.01). Furthermore, the CAI value shows positive
correlation with GC3 in both D. radiodurans c1 (r ¼
0.3437, P , 0.01) and D. radiodurans c2 (r ¼ 0.4726,
P , 0.01). These results show that gene expression
level and base compositions play an important role
to shape the codon usage patterns in both chromo-
somes; the highly expressed genes prefer higher GC
content at their synonymous third codon position.
However, the opposite trends exhibit different evol-
utionary pressures on them, which seem to support
the speculation that the smaller chromosome was
originally a megaplasmid. Therefore, our analysis
shows that there is no causality between the
genome size and the Fisher coefficients, but the
highly universal Fisher coefficients in some species
imply that there may be general properties, which is
worthy of further researching in the future. On the
other hand, the present analysis implies that the inte-
grated 75D vector is sensitive to the specific gene
structures, which may provide novel clues for gene-
finding algorithms.

3.4. Why the filtered ORFs do not encode proteins
Using the presented re-annotating algorithm, we

re-identified the protein-coding genes in the 61
genomes. For objectivity, the algorithm is performed
five times on each genome, those ORFs with T_score
,0 occurring equal or more than three times are
recognized as non-coding. Consequently, an average
of 99.94% over the 61 microbial genomes is achieved
(Supplementary Table S2). From the predicting results
listed in Supplementary Table S5, we can find that
different numbers of ORFs are predicted as non-
coding in most species. Taking the genomes of
Pyrococcus horikoshii and Caulobacter crescentus as
examples, 72 and 76 hypothetical genes are filtered
as non-coding, respectively (Supplementary Table S6).

Previous analysis of protein-coding genes showed
that there are severe restrictions on bases distri-
butions at different codon positions because they
are associated with different biological functions. It
was found that the restrictions are universal that the
first codon position prefers purine bases.49 After cal-
culating the purine–pyrimidine disparities at the
first codon position, an average of 20.026 (22.6%)
is obtained for the 71 filtered hypothetical ORFs in
P. horikoshii genome, while an average value of
0.3785 (37.85%) is obtained for the protein-coding
genes. In C. crescentus genome, an average ofFigure 2. Scatter plot of axis 1 against CAI.
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0.0425 (4.25%) for the 76 filtered hypothetical ORFs
is obtained, while for those protein-coding genes, an
average of 0.2131 (21.31%) is obtained. These
results show that purine bases are dominant at the
first codon position for the protein-coding genes,
while the purine bases are equivalent to the pyrimi-
dine bases for the recognized non-coding ORFs,
which indicate that they are likely random sequences
that are falsely predicted as protein-coding genes. The
differences between coding and non-coding ORFs can

also be displayed by the principal component analysis
(PCA). PCA defines the correlation among the vari-
ables of given data. We have demonstrated that the
integrative 75D vector carries sufficient information
to exhibit the specific properties of protein-coding
genes. After performing PCA, we project the 75 par-
ameters of each ORF into a 2D coordinates by the
first two principal components, which is shown in
Fig. 3. It can be seen that the filtered non-coding
ORFs are clustered far from the core of coding
sequences. The different regions reflect that there
are intrinsic differences between the recognized
ORFs and coding sequences. Then, the results based
on PCA also indicate that the filtered ORFs are unlikely
to encode proteins.

In the RefSeq database,50 clusters of orthologous
groups (COG)51 are used to shape the potential func-
tions of proteins produced by the annotated ORFs.
Each COG is a group of three or more proteins that
have evolved from a common ancestor. Then, these
ORFs assigned with a COG are highly likely to be
true protein-coding genes. According to the annota-
tion file of P. horikoshii, 98.69% (678 out of 687)
known functional genes and 94.87% (37 out of 39)
putative genes are marked COG, while among the
1229 hypothetical genes, only 740 (56.97%) are
marked COG. In the annotation file of C. crescentus,
the percentages of the marked COG of known func-
tional genes, putative genes and hypothetical genes
are 96.25% (2107 out of 2189), 100% (15 out of
15) and 51.21% (785 out of 1533), respectively.
Among the recognized 71 þ 76 ¼ 147 non-coding
ORFs in genomes of P. horikoshii and C. crescentus,
none has been assigned with COG tags. According to
the results in Supplementary Table S5, up to 925
hypothetical ORFs are recognized as non-coding,
among which only 50 (5.41%) are marked with
COG. Some previous works show that a significant
fraction of annotated short ORFs may be not true
genes, which is one of the major causes that
account for the over-annotation of microbial
genomes.3,52 In P. horikoshii genome, the average
length of the 71 annotated non-coding sequences is
391 bp, which is much shorter than that of these
recognized protein-coding genes (858 bp). The
similar result is also obtained in the genome of
C. crescentus, in which the average length of the 76
annotated non-coding ORFs is 466 bp, while that of
these protein-coding genes is 981 bp. In Table 4, we

Table 4. Distribution of sequence length among the 925 recognized non-coding ORFs

L � 300 bp 300 bp , L , 500 bp L . 500 bp Average (bp)

Number Percentage Number Percentage Number Percentage

367 39.68 335 36.22 223 24.11 411

Figure 3. Projecting the annotated ORFs into 2D coordinates by
PCA.
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present the statistical results of the length distri-
butions among all the 925 recognized non-coding
ORFs. Then, from the above analysis, sufficient evi-
dences suggest that most of these filtered ORFs are
random sequences that are falsely predicted as
protein-coding genes.

3.5. Influence of horizontal gene transfer
Horizontal gene transfer (HGT) is one of the most

important driving forces in prokaryotic evolution that
can drift among bacteria not only from similar strains,
but also from distantly related species.53 In the cases
of P. horikoshii and C. crescentus, 9 (PH0055,
PH0216.1n, PH0221, PH0428, PH1184, PH1187,
PH1741, PH1861, PHs009) and 16 (CC_0370,
CC_0605, CC_0853, CC_1246, CC_1274, CC_1712,
CC_2413, CC_2699, CC_2731, CC_2732, CC_2737,
CC_3515, CC_3516, CC_3517, CC_3520,
CC_3548) of the recognized non-coding ORFs listed
in Supplementary Table S6 are detected as HGTs by
the HGT database,54 respectively. The predicting pro-
cedure employed in the HGT database is based on the
parametric methods, which identify anomalous
sequence signatures of all the genes and derived
protein sequences for each organism. The parametric
approaches are based on the hypothesis that sequence
features are similar within a genome but differ signifi-
cantly between genomes. However, just as the
authors of the HGT database have pointed out, these
predicting results should be used with caution, for
other forces may be responsible for the codon usage
or G þ C content heterogeneity of a genome. A recent
comparison of different HGT prediction programs
showed that these sequence composition-based
methods could predict very different classes of
genes.55 In addition, very recently acquired prophage
elements tended to have sequence compositions that
are more similar to the host genome, not representing
amelioration but rather specialization and adaptation
to their hosts.56 A recent study of large viruses further
supported that some genes with atypical sequence
composition are not horizontally acquired but are
likely related to certain functions and gene features.57

This means that there are a considerable number of
false negatives and false positives among the detecting
results. Although very strict methodology has been out-
lined to improve the performance, recent researches
show that the mean error of these HGT predicting
methods is up to 39.96%, even for the most efficient
programs.58 In most cases, the false positives are attrib-
uted to pseudogenes, segments of fossilized DNA, and
the compositional asymmetries between genes lying
on the leading versus lagging strand, selection for trans-
lational efficiency, mutation biases and random drift.59

In Section 3.4, we have verified that the filtered ORFs by

our re-annotating algorithm are highly likely non-
coding sequences that are over-annotated as protein-
coding genes. On the other hand, our proposed algor-
ithm is trained by the positive samples composed of
those genuine protein-coding genes and the negative
samples composed of the shuffled random sequences.
Thereupon we infer that the 9 þ 16 ¼ 25 ORFs in P.
horikoshii and C. crescentus that have been detected as
HGTs by the HGT database are not laterally transferred
in fact. That is, the falsely predicted protein-coding
genes should also be taken into account for the false
positives in HGT predictions in future studies.

3.6. Comparing the presented algorithm with other
programs

In the past decade, many de novo gene-finding
algorithms have been proposed for discriminating
the protein-coding genes in prokaryotic genomes.
Thereinto, the HMM-based methods such as
Glimmer60 and GeneMark61 are two most popular
gene-finding programs that have been used in some
re-annotating works.17,25 Our re-annotating algor-
ithm has been shown to enhance the predicting per-
formance extremely. The initial annotations of the 61
genomes listed in Supplementary Table S1 did not use
these HMM-based programs. Then it is interesting to
compare the presented method with the two preva-
lent gene-finding programs. Glimmer 3.02 and
GeneMark.hmm 2.4 are performed on the 61
species, and the performance is evaluated based on
the known functional genes. In Supplementary
Table S2, we present the predicting results. As a
result, Glimmer 3.02 and GeneMark.hmm 2.4
achieve the average accuracies of 98.89 and
99.14%, respectively. It is noted that no records or
appropriate reference species were found for S. malto-
philia, Acidovorax citrulli and C. michiganensis
genomes when performing the GeneMark.hmm
program. Using the models trained by other species
to annotate these genomes, the accuracies are much
lower (,50% in most cases). By contrast, the pre-
sented integrative method achieves an average accu-
racy of 99.94%, which is �1% higher than the two
other programs. Analysing the predicting results of
Glimmer 3.02 and GeneMark.hmm 2.4, we found
that although similar accuracy is obtained, the
results differ greatly in most cases. Taking the
genome of Escherichia coli CFT073 as an example,
Glimmer 3.02, GeneMark.hmm 2.4 and our algor-
ithm miss 21, 20 and 3 items of the 2580 annotated
known functional protein-coding genes, respectively.
Then highly similar accuracies are obtained by
Glimmer 3.02 (99.19%) and GeneMark 2.4
(99.22%). Based on the two programs, 5155
(Glimmer) and 5015 (GeneMark) ORFs are predicted
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as protein-coding genes in E. coli CFT073 genome,
respectively. Among the 5338 potential protein-
coding genes annotated in the current RefSeq data-
base, there are 4803 common items identified by
Glimmer 3.02 and 4701 common items identified
by GeneMark.hmm 2.4, which mean that 535 and
637 ORFs are excluded as non-coding by the two pro-
grams, respectively. Besides, there are only 4803
common items observed by Glimmer and
GeneMark. These comparisons indicate that there
are significant differences among the predicting
results by Glimmer and GeneMark.hmm even they
share similar accuracy. Then, it is difficult to deter-
mine which one is superior to another, and additional
bioinformatics analysis is necessary to avoid the
increase in both false positives and false negatives
when using these programs. Recently, Luo et al.25

excluded 608 annotated protein-coding genes in E.
coli CFT073 genome from the RefSeq database. In
their work, four gene-finding programs were
adopted and the ORFs that are co-predicted less
than three were deemed as non-coding. However,
according to our analysis, this kind of filtering strategy
is not rigorous enough, and some genuine genes can
be lost, which results in the increase in false negatives.
For comparison, we also re-annotated the
protein-coding genes in E. coli CFT073 genome
(Supplementary Table S5), and 77 hypothetical
genes are recognized as non-coding. We have demon-
strated that the presented integrative algorithm is
reliable for the problem of over-annotation of
protein-coding genes in microbial genomes, then we
hope our work can provide an efficient platform for
future re-annotation researches.

3.7. Stability of the re-annotating algorithm
In the presented re-annotating algorithm, the nega-

tive samples used as the training set are generated by
the randomly shuffled sequences. Then it is necessary
to investigate the influence of the shuffled negative
samples on the output of the re-annotating
program. To accomplish the analysis, the known func-
tional genes of P. horikoshii and C. crescentus genomes
are employed following the subsequent steps. First,
the re-annotating algorithm is performed on each
genome 10 times, which correspond to 10 sets of
negative samples. Then, for each genome, 10 vectors
composed of the T_scores of these known functional
genes are obtained. Finally, the correlations among
the 10 vectors are calculated, and a 10 � 10 matrix
can be obtained for each genome (Supplementary
Tables S7 and S8). In the obtained 10 � 10 matrix,
the elements listed in the diagonal equal to 1
(omitted in corresponding tables), which represent
the self-correlation of each vector. The underlying

assumption is that the more significantly correlated
among the 10 vectors, the more stable the re-annno-
tating program is. The results can also be visualized in
Fig. 4, in which we present the standard deviation and
the average values of each column. The average corre-
lation coefficients are bigger than 0.97 for both
genomes. Then the correlations among the 10
vectors are overall significantly positively correlated
(P , 0.01). This can be validated by normalizing the
T_score vectors with the following equation,
T 0n ¼ Tn=

P
n Tn, where Tn is the initial T_score of corre-

sponding ORF. For convenience, we present the nor-
malized results in Supplementary Table S9, from
which one can find the results by the 10 running
times are much consistent with each other.
Therefore, our re-annotating algorithm is robust.
Even so, the T_score of some individual ORFs may
slightly fluctuate in some cases, hence we advise the
users to perform the program more than one times
(five in the present paper) and determine those
ORFs with T_score ,0 whose occurring times equal
or more than a given threshold (three in the present
paper) as non-coding.

3.8. Conclusion
Genome annotation is a multi-level process and

annotating errors can emerge at different stages.12

As have been reported in many works, most of
the over-annotated protein-coding genes are gener-
ated by the de novo gene-finding programs.
However, it is difficult to validate these predicted
genes by database searches or ‘wet’ experiments
one by one, because the excessive computational
and expensive cost. In addition, recent re-annotation
works showed that only a limited proportion of
hypothetical genes can be validated through data-
base searches method.24,25 Therefore, the deposit

Figure 4. Correlations among the 10 vectors composed of each
genome.
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of experimental information cannot meet the
update speed of explosively increased number of
microbial genomes. In this work, we propose an
integrative method for filtering the falsely predicted
protein-coding genes in microbial genomes. After
testing the re-annotating algorithm on 61 microbial
genomes, we demonstrate that the re-annotating
algorithm is efficient and robust based on sufficient
bioinformatics analysis. Our study indicates that the
phenomenon of over-annotated protein-coding
genes exists in most microorganisms in different
degree. Although many re-annotating works have
been conducted on some functional microbial
genomes in recent years, our research shows that
precise analysis is necessary to avoid increasing the
false-negative rate of protein-coding genes.

4. Availability

Based on our integrative re-annotating algorithm,
webserver with a user-friendly interface was devel-
oped, which can be freely accessible from www.cbi.
seu.edu.cn/RPGM. This web-based platform aims to
the genomic sources in RefSeq databse, which is
easy to operate. For convenience, we introduce the
platform as follows.

(i) Input
The users are only required to input the accession
number of their queried genome, for example,
NC_000919.

(ii) Options
The self-test is default in the program. To facili-
tate the users for evaluating the predicting
results, the 10-fold cross-validation is also
provided.

(iii) The Job ID
When running the program every time, a Job ID
will be assigned randomly, with which the users
can retrieve the predicting results anytime
within 3 days by input of the assigned ID.

(iv) Output
In the output interface, the predicting results of
the protein-coding genes in the four classes are
listed and the trained Fisher coefficients can
also be downloaded.

(v) TN_curve Num 2.0: a generator for the 75-D
vector
We exploit a software package titled TN_curve
Num 2.0 that can generate the 75D vector of
a given DNA sequence, with which one can
also generate the 75D vector of the corre-
sponding shuffled sequence. TN_curve Num
2.0 can be downloaded from the webserver.

Supplementary data: Supplementary Data are
available at www.dnaresearch.oxfordjournals.org.
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