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Abstract
To obtain more information on the Hevea brasiliensis genome, we sequenced the transcriptome from

the vegetative shoot apex yielding 2 311 497 reads. Clustering and assembly of the reads produced a
total of 113 313 unique sequences, comprising 28 387 isotigs and 84 926 singletons. Also, 17 819
expressed sequence tag (EST)-simple sequence repeats (SSRs) were identified from the data set. To demon-
strate the use of this EST resource for marker development, primers were designed for 430 of the EST-
SSRs. Three hundred and twenty-three primer pairs were amplifiable in H. brasiliensis clones.
Polymorphic information content values of selected 47 SSRs among 20 H. brasiliensis clones ranged
from 0.13 to 0.71, with an average of 0.51. A dendrogram of genetic similarities between the 20 H.
brasiliensis clones using these 47 EST-SSRs suggested two distinct groups that correlated well with
clone pedigree. These novel EST-SSRs together with the published SSRs were used for the construction
of an integrated parental linkage map of H. brasiliensis based on 81 lines of an F1 mapping population.
The map consisted of 97 loci, consisting of 37 novel EST-SSRs and 60 published SSRs, distributed on
23 linkage groups and covered 842.9 cM with a mean interval of 11.9 cM and ∼4 loci per linkage
group. Although the numbers of linkage groups exceed the haploid number (18), but with several
common markers between homologous linkage groups with the previous map indicated that the F1
map in this study is appropriate for further study in marker-assisted selection.
Key words: transcriptome sequencing; marker development; rubber tree (Hevea brasiliensis); linkage map
construction

1. Introduction

Hevea brasiliensis, commonly known as rubber tree, is
almost the sole source of natural rubber production.
Natural rubber has a wide range of industrial appli-
cations and is under increasing global demand. Hevea
brasiliensis is a perennial cross-pollinating and

monoecious plant that belongs to the Euphorbiaceae
family. The observation of tetravalents during meiosis
has lead to the conclusion that H. brasiliensis is a stabil-
ized amphidiploid (2n ¼ 4x ¼ 36).1 However, the
pattern of marker ratios segregating in a population
of over 100 trees suggests that H. brasiliensis behaves
as a diploid (2n ¼ 36).2 Several research groups have
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developed molecular markers to study the genetic
diversity of H. brasiliensis,3–8 including isozymes,9

restriction fragment length polymorphisms (RFLPs),10

amplified fragment length polymorphisms (AFLPs),2

microsatellites (or simple sequence repeats,
SSRs)2,8,11,12 and expressed sequence tag (EST)-SSRs.3

These markers have also been used to construct the
linkage maps2 and quantitative trait loci (QTL)
maps.13–16 Lespinasse et al.14 produced the first
rubber tree linkage map containing 301 RFLPs, 388
AFLPs, 18 SSRs and 10 isozymes, which was later used
to identify the QTL variants conferring resistance to
the South American leaf blight.13–15 Recently, Le
Guen et al.16 constructed the linkage maps based on
SSR and AFLP markers and were able to identify the
QTL conferring resistance to Microcyclus ulei.

In many organisms, ESTs have been useful for the
annotation of genes during genome sequencing
efforts,17 for comparative genome studies18 and for
the production of a genetic linkage map.19 To date,
there are only 12 365 ESTs from H. brasiliensis in
GenBank, restricting the quality of research that can
be performed on this important plant species.
Previous transcriptome studies of H. brasiliensis have
been limited in range, focusing mainly on latex in
order to gain insight into the rubber biosynthesis
pathways.20–22 Of the available H. brasiliensis ESTs,
11 256 ESTs are from latex, 1091 ESTs are from
bark and 18 ESTs are from leaves. In addition to
gene discovery, EST resources enable the identification
of markers such as EST-SSRs and single-nucleotide
polymorphism. Since these markers are directly
linked to functional genes, they are useful for asses-
sing genetic diversity and mapping phenotypic traits.
Feng et al.3 identified 799 SSRs in 10 829 ESTs avail-
able in the GenBank database and carried out the
genetic diversity assessment of H. brasiliensis using
87 EST-SSR markers. The result provided evidence
for cross-taxa transferability and indicated moderate
polymorphisms of EST-SSR markers in Hevea
species.3 However, additional markers are desirable
to enable quality research into the genetic basis of
commercially relevant traits that can be used in
marker-assisted breeding programs.

Genomic and transcriptomic resources for H.
brasiliensis can greatly benefit from the application
of the recent high-throughput sequencing technol-
ogy, such as the 454 pyrosequencer,23 which has
been instrumental in the development of genetic
databases for several economical crops.24–27 The
purpose of the present study is therefore to sequence
the transcriptome of the shoot apical tissue, which is a
highly dynamic structure, to discover genes, expand
the EST database and develop EST-SSR markers that
can be used for assessing genetic diversity,

constructing linkage maps and identifying traits of
commercial interest.

2. Materials and methods

2.1. Plant materials
The shoot apical meristem (SAM; 1-cm long from the

vegetative shoot apex) of H. brasiliensis (clone
RRIM600) was collected for RNA extraction from an
experimental field at the Rubber Research Institute of
Thailand, Ministry of Agriculture and Cooperatives,
Thailand. The sample was immediately frozen in
liquid nitrogen and stored at 2808C until RNA extrac-
tion. For the analysis of SSR markers, leaf samples
from 20 clones of H. brasiliensis, 2 accessions of
Manihot esculenta, 3 accessions of Jatropha curcas and
1 accession of Jatropha gossypifolia (Supplementary
data, File S1) were collected and DNA was extracted
using a DNeasy Plant Mini Kit (Qiagen). For genetic
linkage map construction, 81 samples of an F1

mapping population were developed from a cross
between RRIM600 as a female parent and RRII105 as
a male parent. The plants were grown at
Chachoengsao Rubber Research Center Office of
Agriculture Research and Development, Department
of Agriculture, Ministry of Agriculture and
Cooperatives, Thailand. DNA samples were extracted
using a DNeasy Plant Mini Kit (Qiagen). The concen-
tration of each sample was calculated from the OD
measurement using a nanodrop ND1000 (NanoDrop
Technologies).

2.2. cDNA library preparation and sequencing
Total RNA was extracted using ConcertTM Plant RNA

Reagent (Invitrogen). Two hundred nanograms of the
poly-A mRNA sample was isolated using an Absolutely
mRNA Purification Kit (Stratagene) and fragmented in
10� fragmentation buffer (0.1 M ZnCl2, 0.1 M Tris–
HCl, pH 7.0) at 708C for 30 s. The reaction was
stopped by adding 2 ml of 0.5 M EDTA and 28 ml of
10 mM Tris–HCl, pH 7.5. The mRNA sample was
cleaned using Agencourt RNAClean reagent
(Beckman Coulter), washed with 200 ml of 70%
EtOH, air dried and eluted in 20 ml of 10 mM Tris–
HCl, pH 7.5. Fragmented mRNA samples were con-
verted to double-stranded cDNA with the cDNA
Synthesis System Kit (Roche Applied Sciences) using
random primers and AMV Reverse Transcriptase. A
cDNA library for 454 pyrosequencing was prepared
according to the October 2008 version of the cDNA
Rapid Library Preparation protocol (Roche Applied
Sciences). The cDNA library was amplified in emulsion
PCR and subject to pyrosequencing on two full picoti-
ter plates of the Genome Sequencer (GS) FLX
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Titanium platform using the October 2008 version of
the titanium chemistry protocol (Roche Applied
Sciences).

2.3. Sequence analysis
Poly-A/T(18) and 454-adapter sequences were

trimmed off. Sequence reads with low quality
(average quality scores ,20), short reads
(,100 bp), rRNAs and tRNAs were removed.
Sequence assembly was performed using the cDNA
option of Newbler 2.5, the de novo sequence assembly
software. The cDNA option assembles reads into
contigs much like a genomic assembly; however, this
option allows/expects contigs to have multiple
joining contigs representing alternately spliced
genes. These contigs (which essentially represent
exons) are then assembled into isotigs (representing
processed mRNA) and isotigs utilizing the overlapping
subsets of contigs are grouped into isogroups (repre-
senting genes, isoforms or gene families). When the
maximum number of contigs in an isogroup is
exceeded, the contigs are output as un-traversed
contigs in the isotigs file; all further mention of
isotigs will include these un-traversed contigs.
Unique sequences were searched for sequence hom-
ology against the Uniprot plant protein database
(www.uniprot.org); and reference protein sequences
of Manihot, Ricinus, Arabidopsis and Oryza (www.
phytozome.net) using the BLASTx program with a
cutoff at E-6.28 The assignment of functionality via
gene ontology (GO) was performed using Blast2GO.29

The MISA-MIcro SAtellite identification tool
(http://pgrc.ipk-gatersleben.de/misa/misa.html) was
used to search for SSR from the EST data set. For the
searches and comparison of microsatellites, SSRs
were defined as being mononucleotide repeats
(MNRs) �10 repeats and di- (DNRs), tri- (TNRs),
tetra- (TTNRs), penta- and hexanucleotide repeats
�6 repeats; criteria for composite SSRs was an interval
of bases �100. For the purpose of marker evaluation,
we increased stringency to reduce the number of can-
didates. We designed primer pairs overlapping DNRs
and TNRs �8, TTNRs �7, pentanucleotide repeats
(and more) �6 or containing complex SSRs �30
nucleotides. In some cases, candidate SSRs that
passed the criteria suggested by Feng et al.3 were
prioritized based on the presence of motif size poly-
morphisms in the sequence alignment results.

2.4. SSR markers from the previous reports
Primer pairs designed for the amplification of

genomic SSR markers from the NCBI database
(AY486558.1–AY486910.1) and previously
described8 were used to construct a linkage map
together with novel EST-SSR markers.

2.5. SSR analysis
DNA samples were extracted from young leaf tissue

using a DNeasy Plant Mini Kit (Qiagen). Primer pairs
were designed to amplify SSR regions using
PRIMER3.30 PCR was carried out in a total volume of
10 ml containing 2 ng of DNA template, 1� Taq
buffer, 2 mM MgCl2, 0.2 mM dNTPs, 1 U Taq-DNA
polymerase (Fermentas) and 0.5 mM each of
forward and reverse primers. Amplification was per-
formed in a GeneAmp PCR 9700 thermocycler
(Applied Biosystems) programmed as follows: 948C
for 2 min followed by 35 cycles of 948C for 30 s,
528C for 30 s, 728C for 1 min and a final extension
step at 728C for 10 min. Amplified products were sep-
arated on 5% denaturing polyacrylamide gels and
visualized by silver staining.

2.6. Analysis of polymorphic loci
Twenty accessions of H. brasiliensis, as listed in

Supplementary data, File S1, were used for the poly-
morphism analysis of SSR markers. Details of primer
pairs for amplifiable EST-SSR markers are listed in
Supplementary data, File S2. Scored data from poly-
morphic loci were used to calculate the polymorphism
information content (PIC).31 Observed heterozygosity
and expected heterozygosity were calculated using
the PowerMarker 3.25 software.32 The cross-taxa
transferability of H. brasiliensis SSR loci were evaluated
using six other taxa of Euphorbiaceae plants, including
two accessions of M. esculenta, three accessions of J.
curcas and one J. gossypifolia (Supplementary File S1).
The percentage of transferability was calculated for
each taxon by dividing the number of successfully
amplified SSR loci by the total number of loci
analysed. A genetic similarity matrix was prepared for
the 20 H. brasiliensis genotypes at 47 EST-SSR loci
(Supplementary File S3) using the NTSYSpc 2.2 soft-
ware.33 UPGMA (un-weighted pair group method
with arithmetic mean) cluster analysis was conducted
usizSpc 2.2 software.33

2.7. Linkage map construction
Eighty-one of H. brasiliensis progenies derived from

across between RRIM600 and RRII105 were used as
mapping population. Genomic DNA of individual
samples was used to genotype with informative
primers and genotypic data were scored as codomi-
nant markers under the cross-pollination model, e.g.
,abxcd., ,efxeg., ,lmxll., ,nnxnp. and
,hkxhk.) with up to four distinguishable alleles as
described by Van Ooijen and Voorrips.34 The inte-
grated parental genetic linkage map was constructed
using the double pseudo-testcross strategy by
JoinMap 3.0.34 The Mendelian segregation ration of
all markers was evaluated using the chi-square test
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(x2) and distorted markers (P � 0.1) were excluded.
The map was constructed with an LOD score
threshold of 3.0 and the mapping parameters were
set with a recombination threshold of 0.4, a jump
threshold of 5.0 and a minimum LOD score threshold
of 1.0. The map distance between two markers in
centiMorgan (cM) was calculated using Kosambi’s
mapping function.35 The linkage map was drawn
using MapChart 2.2.36

3. Results and discussion

3.1. Transcriptome sequencing of rubber tree
A total of 2 311 497 filtered sequence reads were

generated from the vegetative shoot apical tissue
with an average read length of 294 bases totalling
676.5 Mb. The majority of the reads were in the
range 200–400 bp (Fig. 1). All reads were deposited
in DDBJ Read Archive (ID ¼ DRA000170). There
were 191 369 (8.27%) reads with homology to
plant tRNAs and rRNAs and 139 838 (6.04%) reads
shorter than 100 bp which were removed before

sequence assembly. Raw sequencing reads were
assembled by Newbler 2.5, the de novo sequence
assembly software,23 currently the most robust soft-
ware for 454 transcriptome assembly.37 A total of
28 387 isotigs from 19 152 isogroups and 84 926
singletons were obtained from the assembly. An iso-
group theoretically represents a single gene;
however, genes with high sequence similarity may
be grouped together and therefore isogroups may
also represent gene isoforms or gene families. The
isotigs had an average length of 1326 bp and the
majority of isotigs were between 500 and 1000 bp
(Table 1). The largest isotig (isotig08423) was
9041 bp, which showed sequence similarity to the
M. esculenta chloroplast polycistronic transcript psaA-
psaB (YP_001718437.1; E-value ¼ 0). The most
highly represented isotig (isotig00002) was
assembled from 22 641 reads and the highest blast
match was the Hevea hydroxynitrile lyase Chain A
(AAC49184.1; E-value ¼ 1E-59), reflecting the high
level of cyanogenesis activity in the tissue sample. It
is well recognized that all living tissues of H.
brasiliensis, including seeds, are strongly cyanogenic
accumulating high quantities of cyanogenic precur-
sors such as linamarin and lotaustralin.38 The
average GC content of the H. brasiliensis transcrip-
tome generated in this study was 42.16%, which is
similar to the GC content of H. brasiliensis sequences
in the GenBank EST database (42.18%). The GC
content of H. brasiliensis coding sequences is slightly
lower than the average GC content of Arabidopsis
coding sequences (44.5%) and rice coding sequences
(51.5%);39 but much higher than Arabidopsis inter-
genic regions (32.9%; http//gi.kuicr.kyoto-u.ac.jp). All
unique transcripts were annotated and characterized
according to GO using BLAST2GO29 and the result is
available at http://www4a.biotec.or.th/rubber.

Figure 1. Read length distribution of 454 reads of the H. brasiliensis transcriptome.

Table 1. Isotig and singleton sequence length distribution

Sequence length (bp) Number of singleton Number of isotig

101–500 83 630 2670

501–1000 1296 9553

1001–1500 0 7018

1501–2000 0 4371

2001–2500 0 2271

2501–3000 0 1306

.3000 0 1198

Total 84 926 28 387

474 Transcriptome Sequencing of Hevea brasiliensis [Vol. 18,



In total, 61 625 isotigs and singletons were
assigned one or more GO terms. Under the biological
process domain, 71 071 assignments were made,
with a large proportion of assignments falling into
the categories metabolic process (31.07%) and cellu-
lar process (29.94%). A total of 60 927 assignments
were made to the molecular function domain, with
the majority falling into the categories binding
activity (46.52%) and catalytic activity (39.82%).
This distribution of GO terms is similar to the previous
study in the pea SAM transcriptome sequencing.40

The large number of annotated sequences shows
that ESTs generated by high-throughput sequencing
are more likely to represent mRNA than ESTs gener-
ated by lower-throughput methods, such as previous
studies performed on the latex transcriptome.20–22

The reason for this is that high-throughput sequen-
cing generates sequence data supported by multiple
reads, often representing complete mRNAs. The
majority of EST sequences currently in GenBank
from Chow et al.20 are mostly un-annotated single-
tons with only 904 sequences (26%) that have GO
terms assigned. Also, the diversity of the latex tran-
scriptome is limited as Han et al.22 pointed out that
the genes expressed in latex are mainly associated
with rubber biosynthesis pathways, defence mechan-
isms and allergenic proteins. A larger diversity of
genes was considered more likely to be found in the
vegetative shoot apex tissue than in latex, and that is
what has been found here.

A unique characteristic of the shoot apical tissue is
the maintenance of the SAM via intercellular com-
munication involving a complex signalling network
such as epigenetic control,41,42 transcriptional gene
regulation43–45 and hormonal regulation.46 Key
regulatory genes controlling SAM maintenance, such
as WUSCHEL (WUS) and SHOOT MERISTEMLESS
(STM) genes, were identified as putative full-length
cDNAs in this data set. Recent studies revealed that
WUS plays the key role in SAM maintenance through
the regulatory loop of WUS– CLAVATA (CLV) feed-
back41,47,48 and interacts with STM via phytohor-
mone signalling pathways.49 Furthermore, the
regulation of WUS expression is also controlled by
auxin signalling, chromatin remodelling and positive
and negative transcriptional regulators.50 Transcripts
for a positive transcriptional regulator of WUS, such
as APETELA2,45 SPLAYED and BARD1, which bind to
the WUS promoter sequence43 were found in this
data set. Whereas, WUS negative transcriptional regu-
lators which are required for development of floral
organs, such as ULTRAPETALA151 and HANABA
TARANU52 transcripts, were not detected.

Also identified were genes from the KNOX (Knotted-
like homeobox) family such as STM and KNOTTED-LIKE
FROM ARABIDOPSIS THALIANA (KNAT) genes which are

essential in maintaining the balance between organ
primordia growth and stem cell maintenance in the
SAM.53 KNOX transcription factors have roles in sup-
pressing gibberellins (GAs) in the SAM by inhibiting
GA-20 oxidase, which is required for GA biosynthesis,
and promoting GA-2 oxidase, which inactivates the
active GA.54 Thus, KNOX proteins prevent the
accumulation of GA in the central zone of the SAM,
consequently preventing the differentiation of stem
cells. KNOX proteins also promote cytokinin activity
in the SAM central zone stimulating division and
maintenance of undifferentiated stem cells.46

Flanking the SAM, high levels of auxin and GA activi-
ties have roles in development and growth of lateral
organ primordia.46 The tissue sample in this study
contained both undifferentiated meristem and differ-
entiated organ primordia; therefore, it was likely to
identify transcripts of genes involving in many phyto-
hormone biosynthesis and signalling pathways.

3.2. Similarity of rubber tree ESTs to other plant
proteins

To investigate the efficiency of gene discovery in the
H. brasiliensis transcriptome, the isotigs and single-
tons were searched for homology using BLAST28

against other plant reference sequences such as M.
esculenta (Euphorbiaceae, Rosids), Ricinus communis
(Euphorbiaceae, Rosids), Arabidopsis thaliana
(Brassicaceae, Rosids) and Oryza sativa (Poaceae,
Liliopsida). The majority of H. brasiliensis unigenes
matched against proteins from Manihot (102 936 or
48.1%), followed by Ricinus (97 089 or 45.4%),
Arabidopsis (84 643 or 39.5%), then Oryza (77 805
or 36.3%) as shown in Fig. 2. Hevea, Manihot and
Ricinus are phylogenetically related and grouped
together in the Euphorbiaceae family; therefore, it
was expected that a large number of H. brasiliensis
isotigs and singletons would match proteins from
Manihot and Ricinus. These observations agree with
previous studies on cross transferability of EST
markers which demonstrated a high level of genome

Figure 2. Homology results of H. brasiliensis isotigs and singletons
that matched to proteins in the plant reference databases
(Manihot esculenta, Ricinus communis, Arabidopsis thaliana and
Oryza sativa) using BLASTx.
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conservation among plants in Euphorbiaceae,
especially Hevea and Manihot.3,55,56 However, it
should also be noted that sequence homology analy-
sis by BLAST can be biased by the number and quality
of query database and the reference databases.

3.3. EST-SSR: distribution and frequencies
A total of 17 819 SSRs were identified in the isotigs and

singletons from the H. brasiliensis transcriptome
(Table 2). This represents an average frequency of one
EST-SSR in every 3383 bp, which is a lower frequency
than the previous report (1 SSR per 2.25 kb) by Feng
et al.3 Among plant species, SSR frequencies range from
1 per 1.5 kb in coffee57 to 1 per 67 kb in mungbean.25

The distribution and frequencies of EST-SSRs significantly
vary between different studies due to SSR search criteria,
the size of the EST database and software tools,58 so the
MISA software was used with the same criteria as the pre-
vious study on H. brasiliensis EST-SSRs3 to allow for direct
comparability. From 17 819 SSRs identified, there were
12 682 MNRs, 3458 DNRs, 1593 TNRs, 51 TTNRs and
35 SSRs with pentanucleotide repeats or more. It
should be noted that the number of MNRs may not be
accurate due to the limitations of the 454 technology
in reading long homopolymer sequences. MNRs were
described here for the purpose of comparison with pre-
vious studies but they were not used for polymorphism
analysis. The most common type of DNR was AG/CT
which accounted for 64.43% of the repeats, followed by
AT/TA (26.75%), AC/GT (8.48%) and GC/CG (0.3%).
The most common type of TNR was AAG/CTT
(32.53%), followed by AAT/ATT (19.17%) and ACC/
GGT (18.33%). The least frequent DNR and TNR motif
types were GC-rich motifs, which were found at only 33
loci. SSRs with GC-rich motif repeats are rare in many
plants, such as H. brasiliensis,3 rice, corn, soybean,59

wheat,60 Arabidopsis, apricot, peach61 and coffee.57

3.4. Polymorphism test in EST markers
Four hundred and thirty EST-SSRs were selected from

EST-SSR present in the data set to give a range of repeat
units and motif types, and primers were designed to

amplify them. Based on the sequence homology
search, 16 of 430 (3.7%) SSR primer pairs were
mapped to the EST reads with GenBank accession
numbers reported for the development of EST-SSR
markers by Feng et al.3 The primary PCR screening in
three clones of H. brasiliensis (RRIM600, RRIC110
and BPM24) showed that 323 primer pairs (75.11%)
were amplifiable (primer sequences were listed in
Supplementary File S2). We selected 47 primer pairs
that flanked long SSR motifs (criteria mentioned
above), gave clear PCR bands in the primary amplifica-
tion screening and represented in all classes of nucleo-
tide repeats for polymorphism evaluation among 20
different H. brasiliensis clones (Table 3). The number
of alleles observed at each locus ranged from two to
six, with an average of 3.85. Although H. brasiliensis is
believed to be a stabilized amphidiploid, only five SSRs
(EHB61, EHB100, EHB109, EHB115 and EHB144)
gave more than two alleles supporting the report by
Lespinasse et al.14 that H. brasiliensis behaves as a
diploid. The value of expected heterozygosity varied
from 0.1349 to 0.7494 with an average of 0.5594,
while direct count heterozygosity ranged from
0.1429 to 0.8095 with an average of 0.5076. PIC
values ranged from 0.13 to 0.71 with an average of
0.50, which is higher than the previous report (PIC ¼
0.38) by Feng et al.3 The higher PIC value in this study
was probably due to a larger sample size of H. brasilien-
sis clones tested (n ¼ 20) than the previous study (n ¼
12). The average number of alleles and PIC values of
EST-SSR markers are lower than those of genomic SSR
markers,8 as expected for functional sequences.

The 47 polymorphic EST-SSR markers were used to
evaluate the genetic relatedness among 20 different
H. brasiliensis clones which were classified into two
groups at the level of genetic similarity 0.44 (Fig. 3).
This generally corresponded well to the clone
pedigree (Supplementary File S1). The first group
(Group I) contains clones: PB260, PB310, RRIM605,
PB217, PB5/51 and PB235. The majority of these
clones have PB5/51 or PB49 clones as one of the par-
ental lines. Group II contains a mixture of primary
clones and cultivated clones from various rubber

Table 2. Distribution of identified SSRs using the MISA software according to SSR motif types and repeat numbers

Repeats Number of repeat units

6 7 8 9 10 11 12 13 14 15 .15 Total

MNR N/A N/A N/A N/A 2999 1915 1435 1127 813 688 4393 12 682

DNR 991 535 414 307 237 200 123 132 110 94 315 3458

TNR 700 292 192 114 103 45 42 31 14 15 45 1593

TTNR 33 10 5 2 1 0 0 0 0 0 0 51

�PTNR 24 5 4 0 2 0 0 0 0 0 0 35

MNR, mononucleotide repeat; DNR, dinucleotide repeat; TNR, trinucleotide repeat; TTNR, tetranucleotide repeat; PTNR,
pentanucleotide repeat.
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Table 3. Characteristics of the 47 primer pairs targeting polymorphic microsatellite loci analysed in 20 different clones of H. brasiliensis.

Marker Forward sequence Reverse sequence Repeat motif
and count

PCR product
size (bp)

Number of
alleles

Expected
heterozygosity

Observed
heterozygosity

PIC

EHB012 AAGATTGAACTAGGGTTGAACTGG CCAAATGTTCATTTAATTGTGGA (CAA) 8, (TAA)
6

250–300 5 0.6746 0.3333 0.6186

EHB013 AAGCAAGGAAGAGGAAGGGA CAAGAAGTTGCCCATTTTCA (TTTTA) 8 225–255 3 0.4206 0.5238 0.3824

EHB025 ACCGTCCACCATAACCACAT AAAGGCCATGCCTACATTTG (CT) 10, (CA)
12

245–250 3 0.4989 0.2857 0.447

EHB033 ATACCCAGACCTATGTGGCG AATGGGCTCGGAGATTCTTT (TC) 16 225–240 3 0.2166 0.1429 0.2051

EHB034 ATAGCCGACCCCAAATTCTT GGACAGCAAGACATGAAGAGTG (AGTTG) 6 148–155 5 0.7154 0.7619 0.6783

EHB061 CCACAGCAACACCACCATTA TCATCCATCCAATGAAGCAA (CAGCAA) 6 150–200 4 0.568 0.5238 0.4876

EHB063 CCAGCTGGTTGTGTTAGAAGG GAGCTCATCTTCCAGGGACTT (CTT) 12 160–270 4 0.6565 0.4286 0.605

EHB065 CCAGTGAGCAcAGGCATAAT TGGAGAGTGCagATGAATGC (AAT) 10 300–350 3 0.5408 0.4286 0.4648

EHB069 CCCATTTCTACAACACACACTTTC TGCTAGGGCCTTGTCGATAC (AAAAAT) 5 100–110 4 0.5884 0.2381 0.5459

EHB070 CCCCACATGCGATTTAAGTT TGGGCTGTGTTGTGCTATTC (AAG) 10 230–250 5 0.7494 0.4762 0.7051

EHB079 CCTATCCTTCTGCTCGTTCG TTTCCACAGAAGGGAAGGTG (ATC) 11 150–165 6 0.6837 0.6667 0.64

EHB081 CCTCTTGCTCTGAAAGCCAC AACCAACCAACTGGGATCAA (CACCGG) 5 235–245 4 0.6213 0.7619 0.5455

EHB085 CGATTAGGTACGTGATCCCA AAGTTGTTGAGGAATGATCAGGA (TCATGC) 5 110–120 6 0.7472 0.5238 0.7061

EHB086 CGCATCCCAACAAGCTAAAT CAGAAAGCAATCACAACACACA (TC) 10,
(GTTT) 7

245–250 3 0.1349 0.1429 0.13

EHB087 CGGAGCTAAGTTCGAGTCCTT CTGGAACCGTATTTCCAGGT (ATT) 13 180–200 4 0.6202 0.5714 0.5693

EHB088 CGGAGGCTCCAATTAGACAA AAGATGGTCTGTGATCGTGCT (TGAGT) 7 160–250 4 0.2959 0.2381 0.2825

EHB100 CTGCCGATGTGCTCTTCATA AAATGAGGTTGGTCGTCGTC (GCTTCT) 6,
(CTT) 8

240–270 3 0.5612 0.7143 0.465

EHB109 GAAaGCTAACGGTGGACTCG ACGAATCGGACTTTGGTGTT (ATC) 10 252–254 6 0.6984 0.619 0.6613

EHB110 GAATCCTGCCAGTGGGACTA GAGAAGGTGCCGAAGAAGAA (TCT) 10 200–230 2 0.4592 0.619 0.3538

EHB112 GACATTACCATCCCACTCCC TCAGTTACCAGCAGCCATTG (ATA)10 180–188 2 0.4444 0.4762 0.3457

EHB113 GAGGCACTTGAGCTCCAAAC CGAATCCGGAATTTTCTTCA (GCT) 10 170–175 4 0.6859 0.6667 0.6308

EHB115 GATCAAGCTGAAAAGCACCC GAGtcgaAGAATCCACGAGC (CTTT) 8 225–250 3 0.6315 0.381 0.5584

EHB118 GCAAATAATGGCGAGCTGTT TGGTTGATGGCAGAACAAAG (CAA) 11 160–178 4 0.5862 0.381 0.542

EHB120 GCAACCGTTCCTCTTCACAT TCCTCCGTCACCAAAGACTC (AGA) 10 134–140 2 0.4082 0.4762 0.3249

EHB122 GCATGATTGGGAAACCAGAT GAGTCAACCTGGAAATTAGCG (TCT) 13 230–250 4 0.6134 0.5238 0.5486

EHB125 GCTTCCAGTCCACAAAGCAG TCATCAGACAGAAATAGTAATAGCCG (TC) 9, (AC) 9 152–154 4 0.5181 0.381 0.442

EHB126 GCTTCCTCTTTCCGTGTTTG ACCAATTGAAAGGCACTGCT (ATTTC) 6 115–140 4 0.5941 0.619 0.5396

EHB127 GGAAATTCTGCTGGCACTGT TCGTGACCCAACAGAATAAAGA (ATTA) 8 190–220 4 0.6723 0.6667 0.61

EHB133 GGCCATCACTCAACATCCTT CTCACCCTTTTGAAAGCGAA (CTT) 10 210–225 3 0.5159 0.5238 0.4233

EHB135 GGGGACGCTTCATGGTAGTA ACTTGTCAATTGGTGGCACA (TTA) 12 114–125 2 0.3628 0.4762 0.297
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Table 3. Continued

Marker Forward sequence Reverse sequence Repeat motif
and count

PCR product
size (bp)

Number of
alleles

Expected
heterozygosity

Observed
heterozygosity

PIC

EHB136 GGGTATGGATGTGGTGAAGG ATGGTTTGGTTCTCATCCCA (GTG) 10 253–255 4 0.6224 0.619 0.5605

EHB140 GGTAGAGGTTTGGAGGGGAG TGATGGCAGCTATGCTGAAG (TGAGAC) 5 140–153 4 0.602 0.5238 0.5528

EHB143 GGTGGTAAAAGTGGCAATGG CTCCATTTTGTCACCACCACT (TGG) 8 175–220 3 0.5442 0.8095 0.4393

EHB144 GGTTCTTTGCCGGATCTACA CTgGGGCATGAGAGATTTGT (CAG) 6, (AAG)
6

160–182 3 0.2098 0.2381 0.1878

EHB148 GGTTTTCAAAATCTTTTCTATACATCC TGCAGAAGCATCAACAAACC (ATT) 16 160–180 6 0.7392 0.5238 0.7014

EHB151 GTCCGGTGAAATGAGATGCT AGGCGGAAACAGACTCTGAA (ATT) 15 225–245 3 0.3571 0.381 0.3254

EHB157 GTTGGCCTGGTCAATCTCAT GATTAATTCAGTGGTGGCGG (CCCAAT) 5 200–215 2 0.2778 0.3333 0.2392

EHB159 TACCAAGCATGTTGCCCATA TCTCAGAAACAAGGGTTGGG (CA) 17 185–210 5 0.7063 0.6667 0.6497

EHB160 TAGAAGCTGCCCACAATGC TTGACGCCAAATGTTTATGC (AAT) 13 210–235 6 0.6338 0.7143 0.5817

EHB161 TAGGATGAGGTTTTGGCTGC TGGCTCCTTGAAACTGCTCT (CATCGT) 5 250–270 3 0.4751 0.3333 0.3826

EHB168 TCAAGCGCATCACAGGTATC TGGTCACCGAACAACAACAT (TCA) 10 118–120 3 0.4524 0.3333 0.3845

EHB169 TCACTTTTCACAACCCACCA GGCAAACCAGGAAATCAACA (TCT) 11 200–225 4 0.7336 0.619 0.6845

EHB177 TCGCTTTCTCCATATAGAGTTTCA CAGCAAGAAATCCCTCAACC (GAA) 7, (TTC)
8

209–212 6 0.7188 0.8095 0.6674

EHB178 TCGTGACCCAACAGAATAAAGA GGAAATTCTGCTGGCACTGT (ATTA) 8 190–215 4 0.7302 0.619 0.68

EHB190 TGATCCCAAGAACTAGCTTGC TAGGAATGGTACCGACCCAC (TCATGC) 7 130–140 4 0.6655 0.5714 0.6043

EHB197 TGGAAGTGAGAATGAcGGTTT CGAAGACTTGTGTCAGCAGC (GAT) 7, (GAG)
7

250–258 4 0.6134 0.381 0.5486

EHB198 TGGCATTCCCACTAATTCAA CGGTGGAAATGGTAAGCTGT (AAACCAG) 5 194–200 5 0.7245 0.8095 0.6754

Mean 3.8511 0.5594 0.5076 0.5026
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Figure 3. Similarity relationships of 20 different H. brasiliensis clones based on 47 EST-SSR loci.

Figure 4. The genetic linkage map of rubber tree F1 population (H. brasiliensis) developed from EST-SSR and SSR markers. The map is
composed of 97 loci covering 842.9 cM on 23 linkage groups.
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research institutes. In one branch of Group II, RRII 203,
RRIT21 and RRIC100 were clustered together and
shared PB86 as one of the parents. Clone RRIT21,
which is a descendant of PB86 � RRIT13, was closely
grouped together with RRIT13 with a genetic similarity
of 0.66. Another branch of Group II contained descen-
dants of the Tjir 1 clone (RRIM600, RRII105 and
RRIM703). Although RRIM605 has Tjir 1 as a female
parent, RRIM605 was classified in Group 1 because it
shares the same male parent (PB49) with PB260.
Since these markers are able to reproduce the relation-
ship that was already known from pedigree infor-
mation, they can be used to provide reliable
genotypic information for clonal identification and
the selection of parents in breeding programs. The
minimal set of five highly informative microsatellites
(EHB85, EHB109, EHB169, EHB177 and EHB178)
was able to distinguish each of the H. brasiliensis
clones included in this study.

Genotyping of the 93 EST-SSR makers that were
amplifiable in H. brasiliensis was performed across
genera with two accessions of M. esculenta, three acces-
sions of J. curcas and one accession of J. gossypifolia, all
belonging to the same family as H. brasiliensis,
Euphorbiaceae. The results showed that 47 of 93
primer pairs (40%) gave successful amplifications in
Manihot species. Fourteen primer pairs (15%) and
nine primer pairs (10%) were successfully amplified
in J. curcas and J. gossypifolia, respectively. The higher
rate of cross-transferability in Manihot species com-
pared with that in Jatropha species suggests a closer
relationship of Hevea with Manihot than with
Jatropha. Six primer pairs, EHB61, EHB63, EHB85,
EHB115, EHB116 and EHB156, were able to amplify
unique products from all plant taxa tested.

3.5. Genetic linkage map
From 323 novel EST-SSR primer pairs amplifiable in

H. brasiliensis, 59 primer pairs were polymorphic
between RRIM600 and RRII105 parental clones. All
of these polymorphic primers were used to genotype
with 81 individual F1 samples together with 98 pub-
lished SSR markers. Genotypic data were scored and
subjected to linkage analysis. Of 157 polymorphic
markers, 124 markers (78.9%) revealed the expected
Mendelian segregation ratio and used to construct the
genetic linkage map. The F1 map consisted of 97 loci
distributed on 23 linkage groups. Of these, 37 loci
were novel EST-SSRs. The total map distance covered
842.9 cM with a mean interval of 11.9 cM and the
average loci per linkage group were approximately
four loci (Fig. 4). The number of linkage groups
exceed the expected haploid number of linkage
groups (18 linkage groups), suggesting that more
markers are required to fill the gap between adjacent

markers. Moreover, the comparison between the F1

map in this study and the map constructed by Le
Guen et al.16 using different parents revealed 25
common markers on nine homologous linkage
groups between both maps (Table 4). A total of
seven marker intervals of 20 markers showed co-line-
arity between homologous linkage groups. Some
linkage groups in this study (LG7-LG8, LG11-LG15
and LG12-LG13) could be joined together based on
the linked markers in Le Guen et al.16 The common
and collinear markers indicated the reliability
between different maps.62 Therefore, the F1 map of
this study is appropriate for further studies in
marker-assisted selection.

Supplementary data: Supplementary data are
available at www.dnaresearch.oxfordjournals.org.
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Table 4. Comparison of common SSR marker positions between
linkage maps

Common SSR
loci

Position in Le Guen
et al.16

Position in this
study

mHbCIRTAs2557 LG1 (96.7 cM) LG23 (9.9 cM)

mHbCIRTAs2510 LG2 (48.2 cM) LG6 (42.6 cM)

mHbCIRTAs2186 LG5 (19 cM) LG5 (22 cM)

mHbCIRTAs2603 LG5 (97.6 cM) LG5 (84.1 cM)

mHbCIRT67 LG8 (106.6 cM) LG4 (97.8 cM)

mHbCIRTAs2260 LG11 (15.6 cM) LG10 (35.9 cM)

mHbCIRa268 LG11 (24.7 cM) LG10 (19.5 cM)

mHbCIRA2736 LG11 (34.1 cM) LG10 (8.1 cM)

mHbCIRA2536 LG11 (38.3 cM) LG10 (0 cM)

mHbCIRa282 LG14 (19 cM) LG1 (80.3 cM)

mHbCIRA2435 LG14 (53.9 cM) LG1 (7.1 cM)

mHbCIRA2423 LG14 (58 cM) LG1 (0 cM)

mHbCIRA2298 LG9 (9.5 cM) LG8 (20.9 cM)

mHbCIRa104 LG9 (54 cM) LG8 (0 cM)

mHbCIRA2432 LG9 (119.9 cM) LG7 (36.9 cM)

mHbCIRTAs2225 LG16 (0 cM) LG11 (42.5 cM)

mHbCIRa131 LG16 (6.3 cM) LG11 (31 cM)

mHbCIRA2410 LG16 (101.1 cM) LG15 (7.1 cM)

mHbCIRA463 LG18 (44 cM) LG13 (0 cM)

mHbCIRA320 LG18 (46.4 cM) LG13 (3.9 cM)

mHbCIRA2409 LG18 (54.5 cM) LG13 (19.9 cM)

mHbCIRAs2217 LG18 (64. cM) LG13 (29 cM)

mHbCIRT373 LG18 (94 cM) LG 12 (0 cM)

mHbCIRA2439 LG18 (100.6 cM) LG12 (3.8 cM)

mHbCIRTAs2744 LG18 (109.5 cM) LG12 (6.5 cM)
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Biotechnology (Thailand). The database server is sup-
ported from the national infrastructure project by
National Science and Technology Development
Agency (NSTDA, Thailand).
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