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Abstract
Variegated expression of variable NK cell receptors for polymorphic MHC class I broadens the
range of an individual’s NK cell response, and the capacity for populations and species to survive
disease epidemics and population bottlenecks. On evolutionary time-scales this component of
immunity is exceptionally dynamic, unstable and short-lived, being dependent upon co-evolution
of ligands and receptors subject to varying, competing selection pressures. Consequently these
systems of variable NK cell receptors are largely species-specific and have recruited different
classes of glycoprotein, even within the primate order of mammals. Such disparity helps explain
substantial differences in NK cell biology between humans and animal models, for which the
population genetics is largely ignored. KIR3DL1/S1, that recognizes the Bw4 epitope of HLA-A
and –B and is the most extensively studied of the variable NK cell receptors, exemplifies how
variation in all possible parameters of function is recruited to diversify the human NK cell
response.
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Investigation of natural killer (NK) cell function began in the 1970s, with its emphasis on
anti-tumor immunity (1, 2). During the following decade, the capacity of NK cells to kill
cellular targets was inversely correlated with the amount of MHC class I on the target cell
surface (3). This seminal observation led to the missing-self hypothesis and the search for
NK cell receptors that recognize MHC class I (4). The 1990s first saw cellular, then
molecular, definition of receptors (5, 6), and characterization of the genomic regions that
encode them: the Natural Killer Complex (NKC) (7) and the Leukocyte Receptor Complex
(LRC) (8, 9). Whereas the binding domains of NKC receptors resemble C-type lectins (10),
their LRC counterparts are Ig-like (11, 12), a qualitative difference revealing that NK cell
receptors for MHC class I evolved independently in the two genetic complexes.

Species-specific evolution of variable NK cell receptors
That some NK cell receptors for MHC class I evolve rapidly, became apparent from species
comparison (13) (Fig. 1). The rodent NKC encodes variable Ly49 receptors that diversify
NK cell function in rats (14) and mice (15), while the LRC family of killer cell
immunoglobulin-like receptors (KIR) provides a comparable system for humans and other
simian primates (16). Mammalian species having only single-copy Ly49 and KIR genes can
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survive and flourish (17), but no species has yet been found to have both variable Ly49 and
KIR (Fig. 1A). In the context of variable KIR, human Ly49 is a single-copy pseudogene (18);
in the context of variable Ly49, the mouse KIR locus left the LRC for the X chromosome
(19), where it comprises two genes: one expressed by NK cells and T cells (20), the other by
brain cells (21). Such contrasting situations, point to past crises in mammalian evolution
when species-specific expansion of a new type of NK cell receptor accompanied extinction
of an older form.

Further evidence for independent evolution of MHC class I receptors is seen within the LRC.
Flanking the KIR locus is the gene family encoding the leukocyte immunoglobulin-like
receptors (LILR) (22). Of these, LILRB1 is an NK cell receptor that binds to the more
conserved Ig-like domains (α3 and β2-m) of MHC class I (12), whereas the variable α1 and
α2 domains of MHC class I are the target for KIR (11). Embedded within the LILR locus is a
KIR pseudogene (23), KIR3DX, which diverged from genes of the functional KIR locus
~120 million years ago, before the radiation of placental mammals (24). Cattle, even toed
ungulates, are the only non-primates known to have variable KIR (20), but in cattle it was
KIR3DX that became the variable gene family, while KIR3DL, the ancestral founder of the
variable primate KIR, remained a single-copy gene(24) (Figure 1A).

Common to mice (25) and humans (26) are NKC-encoded MHC class I receptors
comprising heterodimers of CD94 and an NKG2 family member. These CD94:NKG2
receptors recognize complexes of a conserved non-classical class I molecule (mouse Qa1 or
human HLA-E) and peptides derived from the leader sequences of other MHC class I
molecules (10). Like KIR (11), the CD94:NKG2 receptors interact with the upward face of
the α1 and α2 domains and are sensitive to residues of the bound peptide (27, 28). Although
CD94, NKG2 and HLA-E are conserved in humans (29), analysis of the grey mouse lemur,
showed the potential of CD94:NKG2 to be a variable NK cell receptor. This prosimian
primate has single Ly49 and KIR genes, but three CD94 genes and eight (five expressed,
three pseudogenes) NKG2 genes. Equally distinctive are the lemur’s MHC class I genes;
while four class I pseudogenes remain part of the MHC, the cluster of six functional class
Igenes, left the MHCfor a different chromosome (30).

Co-evolution of MHC class I and KIR in simian primates
That prosimians and most non-primates have just one KIR gene shows that the diverse
family of human KIR genes originated during simian primate evolution, following their
separation from pro-simians ~58–69 mya (31) (Fig. 1B). Simian primates comprise New
World monkeys, Old World monkeys, lesser apes (gibbons), and hominids (great apes, and
humans). Distinctive lineages of human KIR recognize epitopes carried by different HLA
class I molecules: notably, lineage II KIR recognize some HLA-A and B allotypes, and
lineage III KIR recognize HLA-C and some HLA-B allotypes (32–34). These functional
interactions are the result of the co-evolution of ligands with receptors during simian primate
diversification (35).

Lacking counterparts to HLA-A, B and C, New World monkeys have distinctive MHC class
I and KIR, showing they took a different evolutionary tack from that followed by other
simian primates (36, 37). The abundance of Old World monkey MHC class I genes
resembling either HLA-A or HLA-B (38, 39) correlates with increased numbers of lineage II
KIR genes (40–42). Associated with the emergence of MHC-C in hominids is a multiplicity
of lineage III KIR genes (34). While KIR evolution in Old World monkeys and hominids is
marked by gene expansions, the lesser apes took a different road (43). Although having
orthologs of most human class I genes and pseudogenes, gibbon MHC haplotypes lack an
ortholog of HLA-G that provides the ligand for KIR2DL4 (44). Correlating with this
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absence, KIR2DL4 has been either deleted from gibbon KIR haplotypes or disabled. Gibbon
MHC haplotypes also lack an HLA-C ortholog, and correspondingly gibbon KIR haplotypes
lack the multiplicity of lineage III KIR genes characterizing species with MHC-C (43).
Spared from the deletions and mutations that diminished and disordered the gibbon KIR
locus were lineage II KIR3DL1, predicted to recognize MHC-A and/or MHC-B, and
KIR3DL3 (lineage V) for which neither ligand nor function is known (45, 46).

Although first studied in the context of tumor immunity (1, 2), NK cells are now firmly
placed in the response to infection (47) where they cooperate with dendritic cells (48). NK
cells also play a seminal role in reproduction through cooperation with extravillous
trophoblast to enlarge maternal blood vessels that supply the placenta and nourish the fetus
(49). All such cellular interactions of NK cells can be influenced by KIR engagement of
MHC class I. Whereas most cell types express HLA-A, B and C, only HLA-C is expressed
by extravillous trophoblast (50). It is also the only normal tissue to express HLA-G, which
binds avidly to LILRB1 (51) and interacts with lineage I KIR2DL4 in endosomes (44).

The tissue distributions of HLA-C and G, and the fate of the gibbon KIR locus in their
absence (43) suggest that selective pressures from reproduction induced MHC-C to evolve
away from its MHC-B-like ancestor: to be expressed on trophoblast and recognized by the
lineage III KIR preferentially expressed on uterine NK cells (52). In this model, HLA-C
interactions with lineage III KIR are subject to selection pressures from both immunity and
reproduction, whereas the interactions of lineage II KIR with HLA-A and HLA-B evolve
principally under selection by infection. As a consequence HLA-A and HLA-B evolved to
be exceptionally variable, as has lineage II KIR3DL1/S1 that recognizes a broad range of
HLA-A and B allotypes. In contrast, KIR3DL2, which recognizes a narrow range of HLA-A
allotypes, has variability that does not stand out from the mass of human genes (Fig. 2).
Because of these features, the genetic and functional properties of KIR3DL1/S1 have been
most extensively studied, making it an exemplary variable NK cell receptor.

KIR3DL1 recognizes the Bw4 epitope of HLA-A and HLA-B
Sequences for >1,500 HLA-B allotypes are now known (53), but when first described in the
1960s, HLA-B was a simple serological dimorphism comprising the 4a and 4b antigens (54),
later renamed the Bw4 and Bw6 epitopes, respectively (55). Every HLA-B allotype carries
either Bw4 or Bw6, while some HLA-A allotypes also carry Bw4. Correlating with the
Bw4/Bw6 difference are polymorphic sequence motifs at residues 77–83 in the helix of the
HLA class I α1 domain (56), and the capacity for Bw4+ HLA-A and -B to be ligands for the
inhibitory KIR3DL1 NK cell receptor(57, 58), formerly known as NKB1 (59).

Of the five residues that distinguish Bw4 and Bw6 motifs (77, 80, 81, 82, and 83) only
arginine 83 is essential for binding KIR3DL1 (60). This contrasts with the position 80
dimorphism specifying the C1 and C2 epitopes recognized by lineage III KIR (61). As a
further important structural difference, lineage III KIR interaction with HLA-C is
accomplished with two Ig-like domains (D1 and D2), whereas an additional domain (D0) is
necessary for 3DL1 to bind Bw4 (62, 63). Although a crystallographic structure for KIR3D
has yet to be achieved, the combination of mutagenesis and modeling, based on the three-
dimensional structures of KIR2D bound to HLA-C (11), predicts that the D0, D1, and D2
domains contribute equally to the HLA-binding surface in which a central pocket grasps
arginine 83 (64). That all lineage III KIR genes contain an exon encoding D0, but which is
no longer used, points to the more recent evolution of the interaction between HLA-C and
lineage III KIR (65).

Some 25–42% of HLA-B and 15–43% of HLA-A allotypes carry the Bw4 epitope (Fig. 3).
The Bw4 and Bw6 sequence motifs are frequent targets for short interallelic conversion
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events. Thus > 51 pairs of HLA-B allotypes differ only in presence or absence of Bw4. Gene
conversion similarly introduced Bw4 into HLA-A, where it spread by interallelic conversion
to the HLA-A*23, A*24, A*25, A*26, and A*32 allotypes. Although individual allotype
frequencies vary between populations, the Bw4 and Bw6 frequencies remain remarkably
constant (66), with around 50% of HLA haplotypes providing the Bw4 epitope. This even
balance points to complementary functions for Bw4− allotypes more focused on T cell
immunity and Bw4+ allotypes contributing to both NK cell and T cell immunity.

KIR3DL1 and KIR3DS1 segregate as functionally divergent alleles of the
KIR3DL1/S1 gene

KIR3DL1 and KIR3DS1 are, respectively, inhibitory and activating receptors that diverge in
the domains mediating signal transduction, but have very similar ligand-binding Ig-like
domains. On the basis of their opposing signaling functions, 3DL1 and 3DS1 were initially
considered to be the products of different genes (67), but with segregation studies, their
allelic relationship was recognized(68) and signified by naming the gene KIR3DL1/S1 and
numbering the 3DS1and 3DL1 variants as a single series of alleles (69). Complicating the
situation, unequal crossing over, has produced several KIR haplotypes that either lack 3DL1/
S1 (70), have both 3DS1 and 3DL1 (66, 71, 72), or have a fusion of 3DL1/S1 with 3DL2
(73).

Functional difference between 3DL1 and 3DS1 is not restricted to signaling. Whereas
KIR3DL1 recognition of Bw4 can be readily detected in assays of binding and NK cell
function (57, 58, 64), 3DS1 has no demonstrable interaction with Bw4, or any other HLA
class I epitope (74–76). Despite this apparent lack of function, 3DS1 is present at significant
frequency in every human population (66, 77). Another difference is in the variation: 3DL1
being highly polymorphic and 3DS1 conserved. All human populations have a balance
between several 3DL1 alleles, even genetically less variable populations such as Japanese
(five alleles) (78) and Yucpa Amerindians (3 alleles) (79), whereas 3DS1*013 dominates all
populations, except Sub-Saharan Africans, and is the most abundant 3DL1/S1 allele
worldwide (66). When the six residues distinguishing the extracellular domains of 3DS1
from 3DL1 were individually introduced into 3DL1, three abrogated interaction with Bw4,
while having only minor affects on conformation and cell-surface expression, consistent
with 3DS1 having been subject to strong positive selection for losing its avidity for Bw4
(64).

Human KIR haplotypes form two groups, A and B, that differ in gene content, allele content,
variability and disease association (80–82). Both haplotype groups are present in all human
populations, often at even frequency, and are maintained by balancing selection (79).
KIR3DL1 is characteristic of A haplotypes, which have mainly polymorphic genes encoding
inhibitory receptors, whereas 3DS1 is a characteristic B haplotype gene. B haplotypes are
enriched for genes encoding activating receptors with either reduced (2DS1) or undetectable
(2DS2 and 3DS1) avidity for HLA class I, compared to their inhibitory counterparts (83,
84). Differential KIR and HLA associations with infectious and reproductive disease suggest
that the balance between A and B haplotypes might derive from the former favoring
resolution of infection, the latter successful reproduction (79, 85).

Balanced polymorphism between three lineages of KIR3DL1/S1 alleles
KIR3DL1/S1 alleles represent three phylogenetic lineages: 3DS1, 005, and 015, that have
existed for >3 million years and are present in all populations. KIR3DS1*01301, 3DL1*005,
and 3DL1*01502 are considered the prototypical alleles of the 3DS1, 005, and 015 lineages,
respectively, because they are the only alleles present in all human populations (Fig. 4).
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Simulations point to their maintenance by balancing selection, indicating that each receptor
lineage makes distinctive, complementary contributions to NK cell biology. The 015 lineage
is uniquely diversified in African populations (Fig. 4, green shading) with commensurate
reduction of the 005 and 3DS1 lineages, whereas the 3DS1 lineage is highly represented in
Amerindians, and the 005 lineage in Caucasians (66).

NK cell killing assays show that the interaction of KIR3DL1 with Bw4+ HLA class I is
sensitive to polymorphisms in the Bw4 motif, notably position 80 (57), to polymorphism at
positions away from the Bw4 motif that affect peptide binding (60) and to the sequence of
the bound peptide (86–88). KIR3DL1 polymorphism also affects specificity for HLA class I,
as seen in both cellular (78, 89) and direct-binding assays (90), as well as inferred by
disease-associations (91). For example, measurement of binding for five complexes of
defined viral peptide and Bw4+ HLA class I to four common KIR3DL1 allotypes gave three
patterns of reaction and only eight of the 20 possible reactions (Table I) (90), a proportion
identical to that seen in an earlier study using cytotoxicity assays (88). 3DL1*015 and
3DL1*007 have identical Ig-like domains and the same narrow reaction pattern, whereas
3DL1*005 has a broader specificity. 3DL1*001 combines the D0 domain of 3DL1*005,
with the D1 and D2 domains of 3DL1*015 and also has a broad but distinctive specificity,
illustrating the importance of the D0 domain in ligand-binding specificity.

KIR polymorphism was originally observed through its influence on the proportion of NK
cells expressing 3DL1 and the amount of 3DL1 on their surfaces (92). For example, of five
common 3DL1 allotypes in Japanese, 3DL1*005 and 3DL1*007 are expressed at low level,
3DL1*001 at intermediate level, and 3DL1*020 and 3DL1*01502 at high level; a hierarchy
reflected also in the proportion of NK cells expressing each allele (78). The relative level of
3DS1 expression remains uncertain because it is detected only by weak crossreactivity with
anti-KIR3DL1 antibody (74, 75). Although KIR3DL1 allotypes differ in their capacity to
educate NK cells and inhibit NK cell effector function, these differences do not correlate in
a simple way with the level of cell-surface expression. Common in Caucasians, Africans and
South Asians (Fig. 4), 3DL1*004 represents an extreme case with a very low level of cell-
surface expression (93). Inefficient folding causes most of the protein to be retained within
the cell, but the small amount reaching the surface can deliver inhibitory signals (94) and
educate NK cells (95). Substitution at position 86 in the D0 domain is largely responsible for
poor folding of 3DL1*004, with a minor contribution from position 182 in D1. Mutagenesis
of 3DL1*015 at 40 sites of natural 3DL1/S1 variation showed that the great majority of
substitutions had no affect or caused modest decrease in cell-surface abundance (as detected
by antibodies), suggesting protein stability is not the only variable causing allele-specific
differences in cell-surface expression(64) ; another likely source being transcriptional
variation.

Organization and Variegated Expression of KIR genes
Transcription is controlled at the level of the entire KIR locus, which has an organizing
framework comprising 3DL3 at the centromeric end, 2DL4 and the 3DP1 pseudogene in the
center, and 3DL2 at the telomeric end. Regions of variable gene content lie between 3DL3
and 3DP1, and between 2DL4 and 3DL3. The intergenic regions containing the promoters
are small (~2kb) and highly homologous, except the 13.4 kb region of unique sequence
between 3DP1 and 2DL4(81).

In hematopoietic stem cells the KIR locus is inaccessible with transcription prevented by
dense methylation, particularly of CpG islands in the promoter region (96, 97). The KIR
locus opens up for transcription at a late stage in NK cell development, when it generates a
repertoire of NK cells expressing diverse, combinations of KIR. The expressed KIR genes
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have hypomethylated promoters, whereas the promoters of the silenced genes are
hypermethylated. The characteristic variegated expression of KIR by mature NK cells is thus
determined by diverse patterns of promoter methylation(98, 99).

NK-cells express each KIR gene in one of three ways (100), exemplified by the three
functional framework genes. All NK cells express 2DL4, a subset of NK cells expresses
3DL2, and very few NK cells express 3DL3. These differences correlate with promoter
sequence variation that affects the binding of transcription factors, for which there are many
potential sites (101). In studying the variegated expression of KIR genes, KIR3DL1/S1 has
been the major subject for research (100, 102, 103).

The ~2kb intergenic region upstream of 3DL1/S1 contains two separate promoters. The
proximal promoter (102), between nucleotides −1 and −255, has two non-overlapping sites,
one promoting synthesis of sense mRNA, the other anti-sense mRNA(104, 105). The distal
promoter (106), in the middle of the intergenic region >1kb from exon 1, promotes only
sense mRNA. As transcription of a 3DL1/S1 allele begins, the distal promoter makes sense
mRNA while the proximal promoter can favor either sense or antisense mRNA. If both
promoters make sense mRNA the cell commits to long-term expression of the 3DL1/S1
allele. In contrast, if antisense mRNA is made from the proximal promoter it hybridizes to
sense mRNA made from the distal promoter, which prevents transcription and leads to
silencing of the 3DL1/S1 allele. The hybrid mRNAs give rise to a 28bp PINI-like RNA
detectable only in the subset of 3DL1/S1− NK cells (107). In mature 3DL1/S1-expressing
NK cells most transcripts arise from the proximal promoter but the distal promoter also
contributes (108). Consistent with the distal promoter playing a decisive role in NK cell
development is its activation by IL-15, a cytokine inducing NK cell differentiation (109).

That KIR3DL1/S1 alleles differ in their frequencies of expression in the NK cell population
could arise from differences in the relative strengths of forward and reverse transcription at
the proximal promoter. Stronger forward transcription favoring NK cell commitment to
making the receptor, reverse transcription favoring commitment to not making the receptor.
The 3DL1/S1 alleles expressed at high frequency by NK cells are those also expressed at
high level on the cell surface (78), raising the intriguing possibility that competing dual
activities of the bidirectional promoter also influence the amount of sense mRNA and
protein made in mature NK cells.

Three substitutions in the 3DL1/S1 proximal promoter distinguish four different promoters:
associated with 3DS1, the 015 lineage, 3DL1*005 and the combination of 3DL1*001 and
3DL1*004. In a cell-free system, measurement of the ratio of sense to antisense transcription
distinguished the four promoters, but the values only partially correlated with the 3DL1/S1
phenotypes (105). Notably discordant was 3DS1, which gave the second lowest transcription
ratio but is expressed by up to ~40% of NK cells in heterozygotes and ~80% in
homozygotes (76, 110). Also unexplained by these promoter polymorphisms are the
characteristic low cell-surface expression and cellular expression of 3DL1*007, which has
the same promoter as high expressing 3DL1*015.

Conclusions
Variable NK cell receptors bind to the same complexes of peptide and MHC class I as the
αβ TCR of CD8 T cells, and with sensitivity to the structural nuances of both peptide and
MHC class I allotype. These interactions contribute to the education of NK cells during
development and their effector functions when responding to cells compromised by
infection or malignancy, or cells from somebody else, as occurs in pregnancy and
transplantation. Within the individual, sets of inherited genes encoding polymorphic MHC
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class I and variable NK cell receptor cooperate to produce a diverse repertoire of functional
NK cells, which gives versatility and specificity to the NK cell response. This individual
variability is compounded at the population level where the number of possible KIR-HLA
class I genotypes can exceed the size of the population.

Despite this diversity and versatility, comparative studies have uncovered an unprecedented
degree of species specificity showing that individual receptors and entire systems of variable
NK cell receptors have limited lifespans. Thus Ly49, KIR3DL, KIR3DX, and CD94:NKG2
are all seen as highly variable NK cell receptors, but in different species of placental
mammals. Such evolutionary transience in NK cell receptors could arise from the competing
demands of immunity and reproduction, botched compromise between the need for MHC
class I to serve both NK-cell and T-cell receptors, or from obsolescence, being too
specialized at fighting past infection and unable to adapt to current threats. The KIR system
of variable antigen receptors is restricted to humans and other simian primates, species in
which the co-evolution of KIR with MHC class I can be reconstructed. The effects of
balancing selection are everywhere evident, particularly in humans with their distinctive A
and B KIR haplotypes, and functionally disparate KIR3DL1 and KIR3DS1 alleles. Such
striking qualitative differences are consistent with KIR-HLA class I interactions contributing
to two essential functions in human biology: immune defense and reproduction.
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Figure 1.
Evolution and variability of KIR and Ly49 NK cell receptors in mammalian species. A. On
the right is shown the number of KIR and Ly49 genes in modern species. Emerging by gene
duplication in an ancestral placental mammal, KIR3DL expanded in primates (red arrow)
and KIR3DX expanded in cattle (blue arrow). The tree is adapted from that of Murphy et al
(111). Ψ, pseudogene and the primate branches are yellow. MYA, million years ago. B. KIR
diversification in primates. The primate KIR3DL progenitor (black) became a pseudogene in
prosimians (empty box) but flourished in simian primates to form five hominoid lineages:
IA (dark blue), IB (light blue), II (red), III (green) and V (yellow), and a unique New World
monkey lineage (brown). Modern KIR haplotypes evolved through species-specific gene
duplications (lineage II in Old World monkeys and lineage III in hominids) and deletions
(lineages I–III in gibbons).
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Figure 2. KIR3DL1/S1, like HLA-A, B, C and HLA-DRB1, is one of the most highly polymorphic
human genes
Shows comparison of coding-sequence diversity in the genomes of two Asian individuals.
For the four alleles of each gene the number of single nucleotide polymorphisms (SNP)
normalized to the number of codons in the gene. These values are presented in a histogram
(yellow bars) and a continuous distribution (blue line). The genes form a normal
distribution, with KIR3DL1/S1, HLA-A, B, and C, and HLA-DRB1 being outliers. For the
named genes, the number of allotypes described worldwide is in parentheses (112, 53).
Although KIR3DL2 and KIR3DL3 have many alleles, they differ by one or a few
substitutions. Per-gene summary statistics were from Wang et al. 2008 (113) and Kim et al.
2009 (114), and analyzed using ‘Statistica software version 8’.
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Figure 3. Distribution of HLA-A and B epitopes recognized by KIR in human populations
Each pie represents the HLA-A or HLA-B allotypes in a population. Subdivisions within
each pie are colored according to the epitope recognized by KIR, or shaded grey if they do
not engage KIR. The A3/11 epitope is subdivided into A3 and A11, the Bw4 epitope is
subdivided according to polymorphisms at positions 80, within the Bw4 sequence, and 152
that influence the avidity of Bw4 for KIR (115). HLA frequencies for representative Asian
[n=24], African [n=13] and European [n=10] populations were obtained from
http://www.allelefrequencies.net (116)
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Figure 4. Three divergent 3DL1/S1 allelic lineages are maintained in all human populations
The minimum-spanning network shows the phylogenetic relationships and geographic
distribution of 3DL1/S1 alleles. The distance between two nodes corresponds to one
nucleotide change in the coding region. ( ) denotes substitutions altering surface
abundance, (▶) denotes substitutions in the ligand binding site (66). Nodes with colored
circles are the alleles present in the modern human population, the area representing the
frequency worldwide and the different colors the distribution between major population
groups. Allelic lineages are denoted by the background shading: 015, magenta; 005, cyan;
and 3DS1, green. 3DL1*001, a recombinant of the 015 and 005 lineages, has a purple
background. Dashed lines indicate four other recombination events: R1, acquisition of
activating signaling function to form 3DS1 from 3DL1 (The 22 unique substitutions in the
3DS1 signaling domain are not shown as nodes, because they were acquired en bloc.); R2,
causing 3DL1*007 and 3DL1*004-like alleles to have the same cytoplasmic tail; R3,
forming a chimera of 3DL1 and 3DL2; and R4, representing two independent events when
3DL1 acquired the D0 domain of 3DS1 to give the 3DL1*007 and 3DL1*042 alleles. The
network was generated using the program TCS 1.21 (117) set to 99% confidence (by
parsimony) that alleles formed by mutation not recombination.
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Table I
KIR3DL1 polymorphism affects specificity for HLA class I

A summary of the binding interactions of four KIR3DL1 allotypes with nine complexes of HLA class I and a
viral peptide, as determined by Thananchai et al 2007 (90). Boxes shaded green denote significant binding.
Under peptide the amino acid sequence of the peptide is given and the viral pathogen from which it derives:
Human immunodeficiency virus (HIV), cytomegalovirus (CMV), Epstein-Barr virus (EBV). The relationship
of the D0, D1, and D2 domains for each 3DL1 allotype is shown below; blue identical to 3DL1*005 and red
identical to 3DL1*015
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