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Abstract

Metagenomic sequence classification is a procedure to assign sequences to their source genomes. It is one of the important
steps for metagenomic sequence data analysis. Although many methods exist, classification of high-throughput
metagenomic sequence data in a limited time is still a challenge. We present here an ultra-fast metagenomic sequence
classification system (MetaBinG) using graphic processing units (GPUs). The accuracy of MetaBinG is comparable to the best
existing systems and it can classify a million of 454 reads within five minutes, which is more than 2 orders of magnitude
faster than existing systems. MetaBinG is publicly available at http://cbb.sjtu.edu.cn/,ccwei/pub/software/MetaBinG/
MetaBinG.php.
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Introduction

The culture-independent metagenomics methods try to se-

quence all genetic materials recovered directly from an environ-

ment. It has the potential to provide a global view of a microbial

community [1]. However, one of the challenging tasks is to assign

these raw reads or assembled contigs into classes according to the

evolutionary distances among their source genomes. This process

is called metagenomic sequence classification.

There are two major types of computational methods for

metagenomic sequence classification: alignment-based and com-

position-based. Alignment-based methods can determine that a

sequence is from an organism only if the source genome or a

genome with similar sequence has been sequenced. When the

source genome is fully sequenced, alignment-based methods are

accurate in general. However, it is difficult for alignment-based

methods to do classification when the sequences of the source

genomes or closely-related genomes are not available. Unfortu-

nately, this is the case for many metagenomes. It is a significant

limitation for alignment-based methods. Composition-based

methods, on the other hand, are less accurate but are able to

assign every read to a source bin, which can be one or more

species, genera or other taxonomy ranks.

Advantages of the next-generation sequencing (NGS) technol-

ogies such as the high throughput and low cost make them more

and more attractive for metagenome sequencing. Among NGS

platforms, the 454 sequencers provide the longest reads (up to

400 bps in average), and they can generate more than half a

million reads in just one run [2]. However, NGS technologies

make classification more challenging by providing a large amount

of shorter reads than a traditional sequencing platform does.

These fast growing numbers of metagenomic sequences from NGS

platforms put efficient and reliable classification systems in high

demand.

There are many existing metagenomic sequence classification

systems, such as Phymm and PhymmBL [3]. Phymm uses

interpolated Markov models (IMMs) to classify short reads, and

has obtained pretty good sensitivity and specificity on its own test

dataset. However, the computational cost of Phymm is very

expensive and it can be a problem when the size of a dataset to be

classified is huge. For example, it may take Phymm 100 hours or

more to classify a single run of 454 sequencing data (see Results

part). PhmmBL added alignment-based method to Phymm, and

achieved better accuracy. PhymmBL is about 50% slower than

Phymm (data not shown). Recent updated version of PhymmBL

[4] can run multiple jobs simultaneously in a multi-processor

computer. PhymmBL can also run on multiple machines. But this

parallelization of PhymmBL requires extra splitting and merging

steps for each list of input reads. For other similar systems with

webservers, such as CAMERA [5], MG-RAST [6,7], the time to

classify a run of 454 sequencing data varies from hours to weeks

[8]. This can be a serious problem when the sample size increases.

Graphic processing units (GPUs) were originally designed to

accelerate graphic display only. In the past few years, GPUs have

evolved to GPGPUs (general purpose GPUs), which can do

general purpose scientific and engineering computing. In many

cases, programs implemented on GPUs can run significantly faster

than on multi-core CPU-based systems since a GPU may have
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hundreds of cores. With the success of a parallel programming

model called CUDA for GPUs, programming on GPUs for

general scientific computing becomes much easier than before [9].

Therefore, using GPUs is becoming very attractive for researchers

who need to boost the performance of their applications in a wide

range of scientific areas, including bioinformatics [10]. However, it

is not straightforward to apply GPUs to a new research area. A

GPU-based version of BLAST has been developed, and it is nearly

four times faster than the CPU-based version [11].

In metagenomics, ‘‘metagenomic sequence classification’’ is

sometimes distinguished from ‘‘metagenomic sequence binning, ’’

which refers to the grouping of a dataset into subgroups but the

subgroups remain unlabeled [3]. Obviously, a metagenomic

sequence classification system can also be used as a binning

system by treating all distinct subgroups without considering their

names or labels.

In this paper, we present a fast metagenomic sequence

classification system (MetaBinG) using the power of GPUs.

MetaBinG is able to classify accurately a single run of NGS-based

metagenome shotgun sequence data in minutes instead of hours or

days in a single desktop workstation.

Results and Discussion

In order to compare the performance of MetaBinG and

Phymm, 1212 fully sequenced bacterial genomes were download-

ed from the NCBI FTP site (ftp://ftp.ncbi.nih.gov/genomes/

Bacteria/) on 14 December 2010. With NCBI taxonomy

information, 390 genomes were removed to guarantee that every

genus has at least two genomes. The remaining 822 genomes

belong to 133 genera (534 species). The species in each genus were

assigned to training and test groups. All genomes of one species

were assigned into a same set, either the training set or the test set.

In the end, we generated a training set of 468 genomes (288

species, 133 genera) and a test set of 354 genomes (246 species, 133

genera) (The complete list of training and test genomes is available

as Table S1). This simulated the situation that the source

organisms of short sequences were not present in the reference

database. At least at species level, there was no overlap between

the training and test sets. Ten different sequence lengths were

tested. For each sequence length, 10 sequences were randomly

sampled from every chromosome or plasmids of the 354 test

genomes. Therefore, there were 6,640 reads for each sequence

length. Then the test datasets were classified using MetaBinG

trained from the 468 training genomes with K = 5 (We observed

that 5th-order Markov model was enough to get accurate results).

Although better results could be achieved with higher order of

Markov models, there may be not sufficient data to train the

models when K increases. For example, in a 4-million-bp genome,

4K is larger than 4 million when K is bigger than 11. Therefore,

there must be insufficient training data for models if K is bigger

than 11. In addition, there will be 4 times more computing time

when K increases one since the complexity of MetaBinG is

O(N 0 � 4K ), where N9 is the number of genomes used for training.

Therefore, the best result may be obtained by a relatively low

order of Markov model (Table 1). The speed of classification is also

an important aspect. Considering all these issues, we finally chose

5th-order Markov models for metagenomic sequence classification.

Both MetaBinG and Phymm V3.2 perform well at high ranks

(Table 2). Although the accuracy of MetaBinG is lower than

Phymm in most cases, the differences between MetaBinG and

Phymm decrease when the read length increases. MetaBinG

performs classification at all taxonomy levels. The accuracy results

at the lower ranks (from phylum to genus) were reported in Table

S2 and S3 for Phymm and MetaBinG respectively. The results

show that the MetaBinG is at least 140-fold faster than Phymm

with a comparable or slightly worse accuracy (Table 2). When

applied to real data, the high-order Markov models can be pre-

computed from all the 1212 genomes for both MetaBinG and

Phymm. It took MetaBinG about 3.5 hours to build 5th-order

Markov Models for 1212 genomes with a single thread version

training program, while Phymm spent 30 hours to build IMMs for

the 1212 genomes. Unlike Phymm, MetaBinG package contains

the pre-built 5th-order Markov Models so that users could use

MetaBinG directly without any training steps. In addition, we

provide an interface to add new training genomes to the pre-built

Markov Models.

MetaBinG has been tested on a real dataset, a biogas reactor

dataset containing 616,072 454 reads with an average length of

230 bps [12]. Using all the 1212 training genomes, MetaBinG

spent 248 seconds and Phymm spent 4 days 5 hours 57 minutes

and 56 seconds to classify the biogas reactor dataset, which means

MetaBinG is almost 1500-fold faster than Phymm when dealing

with real high throughput sequencing data. However, the

microbial community recovered by MetaBinG and Phymm is

quite similar (Figure 1). In practice, multiple instances of Phymm

can be run in a computer with multiple cores. Therefore, the

actual speedup may be much lower. For example, the speedup for

the biogas dataset analysis will be 188 ( = 1500/8) if 8 instances of

Phymm are run simultaneously in one computer with 8 cores.

However, it is safe to say that MetaBinG is 2 orders of magnitude

faster than Phymm.

It may seem inefficient for sequences with lengths shorter than

4K bases. However, k-th order Markov model provides a

uniformed representation (4k+1 dimension vectors) for genomes

in the reference database, which makes it very simple to parallelize

the computing in a GPU. In practice, this computing is done by

matrix multiplication. The matrix multiplication functions are

from CUBLAS library, which is a Basic Linear Algebra

Subprograms (BLAS) library ported to CUDA (Compute Unified

Table 1. Impact of the order (K) of Markov models in
MetaBinG.

Sequence
Length (bps) K = 3 K = 4 K = 5 K = 6 K = 7

100 1/47.5 2/49.6 4/50.6 15/50.6 55/50.7

200 2/56.7 2/58.9 5/60.8 16/61.7 55/61.6

300 2/62.2 3/64.9 6/67.7 16/67.6 57/66.9

400 3/66.3 4/69.7 6/71.6 17/71.6 57/71.4

500 3/69.2 4/72.7 8/74.5 18/74.5 59/73.3

600 4/71.9 5/75.3 8/77.2 19/78.0 59/74.9

700 5/74.5 6/77.8 9/79.2 20/79.3 61/76.9

800 6/75.4 7/78.4 10/80.3 22/79.9 62/77.2

900 8/76.6 9/79.2 12/80.8 22/80.6 63/78.4

1000 8/78.5 10/81.5 13/82.4 25/82.7 65/78.9

The impact of the order of Markov models (K) in MetaBinG has been tested. The
K values various from 3 to 7. The sequence data sets are the same as in Table 2.
Ten different sequence lengths from 100 bps to 1000 bps have been used for
testing. Each sequence length contains 6,640 sequences. Each column is for a K
value, which is the order of a Markov model. The total computing time (in
seconds) and accuracy was measured as in Table 2. Each cell contains the total
computing time and the accuracy separated by a ‘‘/’’.
For each sequence length, the best performance is in a bold font. K is set to 5
by default in MetaBinG.
doi:10.1371/journal.pone.0025353.t001
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Device Architecture) [13]. CUBLAS supports high density of

parallelization, and the parallelization is managed by CUDA. In

addition, matrix multiplication functions in CUBLAS are

optimized for parallel computing in GPUs. Compared to a single

threaded CPU version of the same algorithm, the speedup can

even be larger than the actual number of cores in GPUs.

In order to check the impact of GPUs on the speed of MetaBinG,

MetaBinG and its CPU version were compared. A naive single-

threaded version of MetaBinG was implemented without using the

BLAS library. K was set to its default value 5. For the same 6,640

input sequences as in Table 2, MetaBinG was about 200 to 500

times faster than its CPU version for sequences with lengths from

100 bps to 1000 bps when all 1212 genomes were included in the

reference database (data not shown). In the test for the biogas

dataset with more than half million sequences, the speedup could go

up to about 600 times. A parallel CPU version of MetaBinG was

also implemented using BLAS library (http://www.netlib.org, last

updated on Jan. 20th, 2011). For the biogas dataset, the GPU

version was about 25 times faster than the parallel CPU version

(data not shown). Therefore, the speedup of MetaBinG is partially

from BLAS library, and partially from GPUs. Meanwhile, the

speedup of using GPUs is related to the size of inputs including the

number of sequences and the size of reference genome database.

The bigger input data sets, the higher speedup it can achieve.

Table 2. Comparison of Phymm and MetaBinG.

Sequence Length (bps) Phymm MetaBinG Speedup

Accuracy (%) Time (s) Accuracy (%) Time (s)

100 53.62 573 50.61 4 143

200 64.21 880 60.82 5 176

300 70.71 1262 67.66 6 210

400 73.36 1652 71.56 6 275

500 76.02 1949 74.48 8 244

600 78.47 2330 77.24 8 291

700 79.89 2632 79.21 9 292

800 81.86 3006 80.25 10 301

900 82.40 3403 80.77 12 284

1000 84.18 3795 82.35 13 292

Ten different sequence lengths from 100 bps to 1000 bps have been used for testing. Each sequence length contains 6,640 sequences. The accuracy and total
computing time (in seconds) for 6,640 sequences is listed in the table. Accuracy is measured at phylum level. The last column in the table shows the speedup of
MetaBinG compared to Phymm. Both Phymm and MetaBinG were tested in the same Linux machine with 2 Intel Xeon E5520 processors (8 cores in total), 16 GB RAM
and one NVDIA Tesla C1060 GPU card (240 cores). Default parameters were used for Phymm. The same input sequences and reference databases were used for both
MetaBinG and Phymm. The accuracy is defined by dividing the number of correctly predicted sequences by the total number of test sequences since both methods
assign every sequence to a source genome. The time measured here included all overhead except the creating of reference databases.
doi:10.1371/journal.pone.0025353.t002

Figure 1. Biogas metagenome recovered by MetaBinG and Phymm. The 616,072 454 reads contained in the biogas metagenome dataset
have been classified using MetaBinG and Phymm. The classification accuracy was measured at phylum level. The histogram shows only the top 15
phylum from the metagenomes recovered by Phymm. In general, the results recovered from MetaBinG and Phymm are similar except some small
differences in Euryarchaeota and Actinobacteria. Among the top 15 phyla generated by Phymm, 14 was in the list of top 15 produced by MetaBinG.
The relative ranks for these phyla generated by different methods varies at most by a value of two. MetaBinG is almost 1500-fold faster than Phymm.
doi:10.1371/journal.pone.0025353.g001
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In general, MetaBinG is an ultra-fast metagenomic sequence

classification system for high-throughput sequence data. We

demonstrated that MetaBinG could provide competitive results

for sequences with long lengths in a speed 2 orders of magnitude

faster. Due to the progress of sequencing technologies, the

throughput gets higher and the reads get longer. The demand

for a fast tool to analyze a huge amount of metagenomic sequences

is constantly increasing. Therefore, MetaBinG can be a useful tool

for the metagenomic classification.

Latest version of PhymmBL can produce a confidence score for

an input sequence at each taxonomy rank, which is very

convenient for users to assess the reliability of the classification.

MetaBinG has not implemented this though it will be a welcome

feature to come in the near future.

MetaBinG is publicly available at http://cbb.sjtu.edu.cn/

,ccwei/pub/software/MetaBinG/MetaBinG.php. MetaBinG con-

tains a pre-built 5th-order Markov Model for each of the existing

1212 genomes, so users do not need to train the models any more.

The file size of current version of the full package is about 17 MB.

MetaBinG has been tested on 64-bit Linux OS. One CUDA device

is needed and it should be installed appropriately before running

MetaBinG. In addition, users can add new Markov models (or

genomes to the training set) using the addref.pl script in the package.

In the near future, MetaBinG may become more accurate with more

genomes available. This ultra-fast tool can be useful for a wide range

of related research communities.

Methods

A kth-order Markov models is used in MetaBinG. A state in the

Markov model is defined as an oligonucleotide of length k, and

each state connects to 4 other states. The previous state shares k-1

bases with the next state. Therefore, there are 4k+1 transitions in

total. A genomic sequence under the kth-order Markov model can

be viewed as a sequence of state-transitions. The transition

probabilities can be calculated for each genome in the training

data set according to its Markov model as following:

kMMi,mn~Pi(OmjOn)~
Fi(OmjOn)

Fi(Om)
ð1Þ

where Om and On are oligonucleotides of length k, P(Om | On)

represents the transition probability from Om to On, F(Om | On)

represents observed count of transitions from Om to On in a

genomic sequence i and F(Om) is the observed count of Om. A

4k+1diemension vector is created to represent each genome in the

training set. In practice, the minus logarithm value of each

transition probability is saved.

A short sequence of length l can be considered as l-k transitions

and a score Si, which represents the distance between the short

sequence and a genome i, can be computed as following:

Si~{
Xl{k{1

j~0

ln(pi(Oj jOjz1)) ð2Þ

where Oj and Oj+1 are two oligonucleotides of length k, and

P(Oj|Oj+1) is the transition probability from Oj to Oj+1 observed in

the i-th genome. When the transition from Oj to Oj+1 does not exist

in the i-th genome, the logarithm value of the transition probability

will be set to a constant (default is 10). The high-order Markov

models can be pre-computed from genomes in the training

dataset. For each sequence, a genome in the database with the

minimum score is selected as the source genome. At the end, each

test sequence will be annotated with the taxonomy information of

its source genome.

The algorithm complexity is determined by the number of

genomes in the database and the order of Markov Models. It can

be defined as follows

T(k,N 0)~O(N 0 � 4k) ð3Þ

where k represents the length of oligonucleotides and N9 stands for

the number of genomes used for training.

In practice, the score Si in equation (2) is calculated by matrix

multiplication. First, the transitions generated from each genome

in the reference database are converted into a 4k+1diemension

vector. Then, a matrix can be created from all vectors generated

from genomes in the reference database. These can be prebuilt.

For each short metagenomic sequence, the transitions generated

from it are converted into a 4k+1dimension vector as well. Then,

the scores are computed by matrix multiplication, which is done

by calling the SGEMM() function of CUBLAS library. At the

end, the best score is picked and the associated genome is

selected as its source genome. These are done by GPUs and the

taxonomy information about the source genomes is printed out

by CPUs.

MetaBinG is implemented in C with CUBLAS library. The

system design of MetaBinG is shown in Figure 2. It has been tested

in a Linux machine with 2 Intel Xeon E5520 CPUs (8 CPU cores),

16 GB memory and one NVDIA Tesla C1060 GPU card (240

cores). NVIDIA CUDA compiler driver nvcc release 3.0,

V0.2.1221 with options ‘‘-L/usr/local/cuda/lib64 -lcudart –

lcublas’’ was used to compile the GPU version source code.

Supporting Information

Table S1 The Complete list of training and test
genomes. We downloaded 1212 fully sequenced bacterial

genomes from the NCBI FTP site (ftp://ftp.ncbi.nih.gov/

Figure 2. The system design of MetaBinG. First, the pre-built kth-
order Markov Models (kMMs) are loaded to the GPU memory. Second, a
CPU transforms input FASTA sequences into vectors of k-mer
frequencies, which are then transferred to the GPU memory.
Comparison of vectors against pre-built Markov models is done in the
GPUs. The minimum scores are then output to the CPU, and the input
sequence will be annotated with the NCBI taxonomy information in the
CPU.
doi:10.1371/journal.pone.0025353.g002
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genomes/Bacteria/) on 14 Dec 2010. Using the NCBI taxonomy,

390 genomes were removed to guarantee that every genus has at

least two genomes. The remaining 822 genomes were assigned to

training and test groups. Genomes from a species were assigned to

one and only one set, either the training set or the test set. In the

end, we generated 468 training genomes and 354 test genomes.

(DOC)

Table S2 Accuracy of Phymm at different ranks. The

accuracy of Phymm was reported at different ranks. The data sets,

the software and parameters are all the same as in Table 2.

(DOC)

Table S3 Accuracy of MetaBinG at different ranks. The

accuracy of MetaBinG was reported at different ranks. The data

sets, the software and parameters are all the same as in Table 2.

(DOC)
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