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Abstract

Background: Nitrate is the major source of nitrogen available for many crop plants and is often the limiting factor for plant
growth and agricultural productivity especially for maize. Many studies have been done identifying the transcriptome
changes under low nitrate conditions. However, the microRNAs (miRNAs) varied under nitrate limiting conditions in maize
has not been reported. MiRNAs play important roles in abiotic stress responses and nutrient deprivation.

Methodology/Principal Findings: In this study, we used the SmartArrayTM and GeneChipH microarray systems to perform a
genome-wide search to detect miRNAs responding to the chronic and transient nitrate limiting conditions in maize. Nine
miRNA families (miR164, miR169, miR172, miR397, miR398, miR399, miR408, miR528, and miR827) were identified in leaves,
and nine miRNA families (miR160, miR167, miR168, miR169, miR319, miR395, miR399, miR408, and miR528) identified in
roots. They were verified by real time stem loop RT-PCR, and some with additional time points of nitrate limitation. The
miRNAs identified showed overlapping or unique responses to chronic and transient nitrate limitation, as well as tissue
specificity. The potential target genes of these miRNAs in maize were identified. The expression of some of these was
examined by qRT-PCR. The potential function of these miRNAs in responding to nitrate limitation is described.

Conclusions/Significance: Genome-wide miRNAs responding to nitrate limiting conditions in maize leaves and roots were
identified. This provides an insight into the timing and tissue specificity of the transcriptional regulation to low nitrate
availability in maize. The knowledge gained will help understand the important roles miRNAs play in maize responding to a
nitrogen limiting environment and eventually develop strategies for the improvement of maize genetics.

Citation: Xu Z, Zhong S, Li X, Li W, Rothstein SJ, et al. (2011) Genome-Wide Identification of MicroRNAs in Response to Low Nitrate Availability in Maize Leaves
and Roots. PLoS ONE 6(11): e28009. doi:10.1371/journal.pone.0028009

Editor: Ahmed Moustafa, American University in Cairo, Egypt

Received June 24, 2011; Accepted October 29, 2011; Published November 23, 2011

Copyright: � 2011 Xu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by a Chinese National ‘‘973’’ program from the China Ministry of Science and Technology (Subprogram of Grant #
2009CB118404), by the National Science Foundation of China (Grant # 30871535) to CXX and by funding from the Natural Sciences and Engineering Research
Council of Canada to SJR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: cxxie@caas.net.cn

. These authors contributed equally to this work.

Introduction

Nitrate is one of the major forms of inorganic nitrogen in the

biosphere and its availability is the limiting factor for plant growth

and agricultural productivity for many crops [1]. However,

excessive nitrogen (N) fertilization in intensive agricultural areas

has resulted in serious environmental problems [2] including soil

acidification [3], and the release of reactive nitrogen into the

atmosphere, fresh and marine water ecosystems. A better N

balance or lower N input is very important for sustainable

agricultural production [4]. Therefore, understanding the biolog-

ical basis of the response of cereals to low nitrate is crucial for the

development of crops that utilize N more efficiently.

MicroRNAs (miRNAs) are small, endogenous RNAs that are

regulators of gene expression in plants and animals [5,6,7,8,9].

The identification and study of small RNAs, including miRNAs

and trans-acting small interfering RNAs, have added a layer of

complexity to the many pathways that regulate plant development

[9] and have an important functional role in abiotic stress

responses and nutrient deprivation [10]. And, miRNAs have been

known for years to be important for phosphate, sulphate and

copper deprivation responses in plants [6,11,12,13,14]. In Ara-

bidopsis, small RNA deep sequencing associated with nitrate

response had been analyzed and the miR393/AFB3 has been

defined as a unique N responsive module that controls root system

architecture in response to external and internal N availability [1].

A cell-specific regulation on lateral root outgrowth in response to

nitrogen limitation mediated by microRNA167 had also been

defined in Arabidopsis [15]. Comprehensive real-time polymerase

chain reaction profiling and/or small RNA deep sequencing has

also been used to reveal the existence of complex small RNA-

based regulatory networks mediating plant adaptation to mineral

nutrient availability in Arabidopsis [1,16] and rapeseed [16,17].

Maize is one of the most important crops worldwide and used

for food, animal feed, silage, and industrial products. Furthermore,

maize crops typically give high yields due in major measure to the
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use of large amounts of nitrogen fertilizer, which also contributes

to a large release of active nitrogen to the environment. Studies on

maize have also contributed significantly to our understanding of

plant development and evolution as a genetic model system [18].

More recently, this knowledge has been employed to elucidate

the regulatory functions of miRNA genes. A genome-wide com-

putational prediction of maize miRNA genes and their character-

ization with respect to expression, putative targets, evolution

following whole genome duplication, and allelic diversity has been

reported [19]. However, information about the way by which

miRNA are regulated by abiotic stresses in general and by low

nitrate in particular is unavailable for maize.

In this work, we used the SmartArrayTM and GeneChipH
microarray systems to detect the regulation of miRNAs in maize

leaves and roots under either chronic N limiting condition or

transient low nitrate availability. The corresponding mature

miRNAs along with some predicted target genes have also been

analyzed for their expression pattern by real time qRT-PCR.

Finally, the analysis and prediction of the miRNAs interaction

with target genes was performed. Together these results denote the

response and role of miRNAs to nitrate-limiting conditions in

maize.

Results

miRNAs responsive to chronic low nitrate availability
identified in maize leaves and roots

Maize plants were grown under optimal and nitrogen-limiting

conditions for 15 days after germination (details in the Methods

section). The total biomass (dry weight) for the plants grown

under the optimum nitrate treatment was approximately 2.5

times of those grown under the low nitrate treatment, de-

monstrating that the low level of nitrate substantively limited

growth (Table 1). Leaves and roots were harvested in liquid

nitrogen and RNA was extracted immediately for microarray

hybridization. The SmartArrayTM system was used initially

to identify miRNAs responsive to stable N stress. Affymetrix

GeneChipH miRNA Arrays system was used later to identify

miRNAs responsive to transient N change (see the Methods

section). Nine miRNA faimlies (miR164, miR169, miR172,

miR397, miR398, miR399, miR408, miR528, and miR827)

were identified to be differentially expressed in leaves in response

to chronic low N condition. Under N-limiting condition, three of

the miRNAs (miR164, miR172, and miR827) were up-regulated

while the others were down-regulated (Table S1). Six miRNAs

(miR167, miR169, miR395, miR399, miR408, and miR528)

were found in roots in response to the chronic low nitrate

condition, all of which were down-regulated (Table S2). All of the

miRNAs identified in leaves and roots were verified by real time

stem loop RT-PCR on mature miRNAs. The probe sets for the

different species from each miRNA family, the sequences of the

mature miRNAs, and the fold change are listed in Tables S1 and

S2. Among these miRNAs, miR169 (169p; 169f,g,h; 169i,j,k),

miR399 (399d,j), miR408, and miR528 (528a,b) were found to be

N-responsive in both leaves and roots (Fig. 1). Some species in

one miRNA family, such as miR169d and miR169e, showed

tissue-specific patterns in leaves and roots under N-limiting

condition, in that they were down-regulated in leaves but not

responsive in roots (Tables S1 and S2; Fig. 1).

Figure 1. The Chronic (,15 days) and transient (2 hr) low nitrate regulated mature miRNA families and species identified in leaves
and roots. Those regulated miRNAs with fold change.2 or ,0.5 and q value,0.001 are shown. Left circle: the responsive miRNAs in leaves; Right
circle: the responsive miRNAs in root tips; Light blue shadow: the chronic responsive miRNAs; Yellow shadow: the transient responsive miRNAs; White
background: both chronic and transient responsive miRNAs. Words in red: up-regulated miRNAs; Words in blue: down-regulated miRNAs. miRNA
families are represented by numbers and their species are represented by the letters.
doi:10.1371/journal.pone.0028009.g001

Table 1. Chronically low nitrate treatment (0.04 mM, 15 days)
reduced the biomass and changed the biomass partition in
maize seedling (per plant).

NO3
2(mM) Weight Tissues

Mean (g)
±STD Root: Shoot

Total
weight (g)

0.04 Fresh Root 0.9460.23 0.45 3.02

Shoot 2.0860.54

Dry Root 0.0760.02 0.42 0.25

Shoot 0.1760.04

4 Fresh Root 1.6060.90 0.23 8.46

Shoot 6.8563.68

Dry Root 0.1260.07 0.23 0.62

Shoot 0.5160.27

Note: The mean of biomass (fresh or dry weight) along with its partition were
determined based on at least 5 biological replicates. The significant level (one
pair t test) of the difference of biomass (dry weight) between 0.04 mM and
4 mM nitrate treatments is 0.00025.
doi:10.1371/journal.pone.0028009.t001

Maize miRNAs Responsive to Nitrate Limitation
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miRNAs responsive to the transient low nitrate
availability in maize leaves and roots

The genome-wide identification of miRNAs responsive to the

transient low N condition was also performed. RNAs were

extracted from plants grown under the optimal condition for 15 D

and then transferred to low N for 2 hrs. Some selected miRNAs

identified from leaf chronic low N experiment were tested for leaf

transient low N experiment by the stem-loop RT-PCR method.

Five miRNAs (miR169, miR172, miR397, miR398, and miR827)

were identified as being differentially expressed in leaves in re-

sponse to the transient low N condition, with miR172 up-regulated

but miR397, miR398, and miR827 down-regulated (Table S1).

Interestingly, different species in the miR169 family showed dif-

ferent patterns, as miR169e,f,g,h were down-regulated, but mi-

R169i,j.k,p were up-regulated (Table S1). Six miRNAs (miR160,

miR168, miR169, miR319, miR395, and miR399) were identified

to be differentially expressed in roots in response to the transient

low N condition and all of them were up-regulated (Table S2).

These miRNAs were verified by real time stem loop RT-PCR on

mature miRNAs (Table S1 and S2). Only miR169 (169p; 169i,j,k)

was found to be expressed in both leaves and roots during this

transient response (Fig. 1).

The analysis of the expression of the mature miRNAs showed

the consistency of most of the results between the microarray and

the qRT-PCR, the only exception was for the chronic expression

of miR395 (Fig. 2), with fold-change values of 1.42 and 0.42 for

the qRT-PCR and chip hybridization, respectively (Table S2).

Comparison of the miRNAs responsive to chronic and
transient N limitation and the time-course of miRNAs
expression under the low nitrate availability

The five miRNAs (miR169, miR172, miR397, miR398, and

miR827) identified in leaves in response to transient low N condition

were among the nine miRNAs identified under chronic N-limiting

condition (Table S1, Fig. 1). Three of these five miRNAs (miR172,

miR397, miR398) shared the same expression patterns in their

response to both chronic and transient N-limiting conditions, while

one of them (miRNA827) showed an inverse response to the two

Figure 2. Verification of the low nitrate responsive pattern of the mature miRNAs identified in the roots of maize seedlings and
their predicted target genes by qRT-PCR. The X axis is the time of hours (h) after transfer to low N, and the 15D sample is from plants grown
under chronic low N. The expression level is expressed as the mean of relative fold changes of triplicate biological replicates and the vertical bars
represent standard derivation of the mean (n = 3).
doi:10.1371/journal.pone.0028009.g002

Maize miRNAs Responsive to Nitrate Limitation
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conditions (Table S1, Fig. 1). Within the miR169 family, different

species showed different response patterns. miR169e,f,g,h were

down-regulated under both chronic and transient N-limiting

conditions, while miR169i,j.k,p were up-regulated (Table S1,

Fig. 1). Three miRNAs (miR160, miR168, miR319) were identified

in roots from the transient response in addition to the chronic

response (Table S2). miR169 responded to both chronic and

transient N limitation but in an opposite fashion (Table S2, Fig. 1).

In order to examine how the expression patterns of these

miRNAs would change at different time points under N limitation,

15-day-old plants grown under optimal N condition were tran-

sferred to low N condition for various times ranging from 2 to

48 hrs. The time course expression for some of the miRNAs

identified was examined by qRT-PCR, especially for those mi-

RNAs having an opposite trend in their response to chronic and

transient N limitation. miR169i,j,k,p had an opposite pattern in

both leaves (Table S1, Fig. 1) and roots (Table S2, Fig. 1). The

time course results indicate that although miR169i and miR169p

(Fig. 2, Fig. 3) were up-regulated at early time points, they were

down-regulated after experiencing a longer time of N reduction,

suggesting the existence of a possible feedback regulatory

mechanism. Most of the miRNAs tested matched the regulation

patterns as discovered in the chronic and transient 2 hr array

results including miR172a (Fig. 3), miR397a (Fig. 3), miR408

(Fig. 3) in leaves, and miR168a (Fig. 2) in roots.

Identification of the potential miRNA target genes and
their expression profiles in maize

Potential miRNA target genes were identified in maize

according to Zhang et al [20], and the results presented in Tables

S1 and S2, along with the description of the function of these

genes. In order to find possible miRNA/target gene modules in

response to low nitrate availability in maize leaves and roots, the

expression profiles of some predicted target genes were examined

by qRT-PCR. In leaves, miR164 was down- regulated, while its

predicted targets, GRMZM2G063522 and GRMZM2G009892,

were up-regulated (Fig. 3) as expected, and these code for proteins

that are members of the NAC domain super-family (SCOP:

101941). For miR169i and miR169p, the mature miRNAs were

up-regulated rapidly after transfer to the low N condition, and

then later in the time-course their levels decreased below the level

seen prior to N deprivation. The expression level of the predicted

target, GRMZM2G091964, showed the expected inverse pattern

of expression that would be predicted if it is indeed regulated by

miR169 (Fig. 3). GRMZM2G091964 is one of the DNA-

dependent CCAAT transcription factors. Both predicted targets

of miR397, GRMZM2G072808 and GRMZM2G419994, are

putative multi-copper oxidase. However, the latter showed a more

sensitive response pattern to nitrogen limitation than the former

(Fig. 2). Other multi-copper oxidases that showed a similar pattern

to miR397 include miR408/GRMZM2G066260 (Cupredoxin)

(Fig. 3) and miR528/GRMZM2G367668 (multi-copper

oxidase)(Fig. 3), suggesting that multi-copper oxidase activity

involved in electron transport and in oxidase activity might be an

important aspect of the physiological response to N limitation. In

roots, the expression of miR169f, miR169i and miR169p were up-

regulated until 12 hrs, and then returned to the basal level. The

RNA expression level of the predicted target,

GRMZM2G091964, showed the expected inverse expression

pattern (Fig. 2). A similar pattern was seen for miR408/

cupredoxin in both roots and leaves (Fig. 2). A microRNA

homeostasis module of miR168/ARGONAUT (AGO) (Fig. 2)

might be involved in the stress adaptation process. Similarly, the

module of miR395/ATP-sulfurylase (Fig. 2) involved in sulphur

assimilation showed transient repression at low N.

Discussion

miRNAs identified under chronic and transient N-limiting
conditions in maize leaves and roots

A number of studies have been done on profiling the

transcriptome under various N-limiting conditions in Arabidopsis

thaliana [15,21,22,23,24,25,26,27,28,29,30], tomato [31] and rice

[32]. However, there has been little information available on the

transcriptional regulation to N limitation in maize. Specifically, no

N-responsive miRNAs in maize have been identified and analyzed

for their potential roles in modulating their expression in response

to a N-limiting condition. We used the SmartArrayTM and

GeneChipH microarray systems and identified miRNAs in maize

leaves and roots under both chronic and transient N-limiting

conditions. Under chronic limitation, as expected, there is a

significant decrease in biomass formation as well as a change in the

partitioning of biomass to roots when compared to shoots. The

chronic N-limiting condition decreased biomass production by

60%. The direct use of nitrate as the sole nitrogen source, similar

to Bi et al (2009) [33], eliminated any possibility of a change in the

transcriptome profile triggered by a change in nitrogen source to

others like ammonium. The transient N-limiting conditions

involved growing plants under optimal N for 15 days and then

growing the plants under the low N condition. Based on previous

studies where significant transcriptome changes occurred after

2 hours under the low N condition [32], this time-point was

chosen to do the initial scan of miRNA expression. A time-course

was then done to study the different expression patterns of the

miRNAs identified in the microarray analysis.

The plant miRNA V2.0 SmartArrayTM contains 348 well-

characterized and 78 predicted plant miRNAs from various plant

species including Arabidopsis, maize, rice, and soybean [34,35].

The Affymetrix GeneChipH miRNA Arrays contains 6703

miRNA probes from 70 species [36]. Among them, 1631 were

characterized and designed based on miRNA (including redun-

dant miRNAs ) from 21 plant species. In total, 2057 plant miRNA

probes were presented in the hybridazation. Using these two

miRNA array platforms, 14 miRNAs were identified as being

regulated under chronic or transient treatments as summarized in

Fig. 4, and their expression patterns can be divided into three

groups. First, some miRNAs showed differential expression under

the various treatments in leaves or roots. For example, miR164

was only up-regulated in leaves under chronic nitrogen limitation.

MiR160(a,b,c,d,e,g,h,i,m) was only up-regulated in roots during

transient low nitrate treatment. Second, some miRNA have the

same response trend to chronic and transient nitrogen-limiting

conditions. For example, miR398(b,c), miR172(a,b,c,d) and

miR397(a,b) had the same response under chronic and transient

treatments in leaves, while miR408 and miR169(f,g,h) were down-

regulated in both treatments and both tissues. Third, the majority

of regulated miRNAs had different responses to chronic and

transient treatments. For example miR169(i,j,k), miR395(a,b,c,-

d,e,f,g,h,i) and miR169p were up-regulated in the transient

condition, but down-regulated during chronic nitrogen stress.

For the first and second patterns, the regulation of these miRNAs

required a long-term response. For the third pattern, after a

certain time where the expression was changed, their concentra-

tion returned to or over-shot the basal level. This implies that

maize quickly responded to the change in nitrate concentration

with regards to the expression of these miRNAs followed by a

return to the normal expression level. With regards to tissue

Maize miRNAs Responsive to Nitrate Limitation
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specificity(or tissue dependent), some miRNAs were only regulated

in roots or leaves, such as miR160, miR167, miR168, miR319 and

miR395 in roots, and miR164, miR172, miR397, miR398 and

miR827 in leaves, while some others were regulated in both

tissues, such as miR169, miR399, miR408 and miR528 (Fig. 4).

This is not surprising given that some miRNAs have been shown

to accumulate differentially in tissues in both Arabidopsis and rice

[37,38].

Figure 3. Verification of the low nitrate responsive pattern of the mature miRNAs identified in leaves and their predicted target
genes by qRT-PCR. The X axis is the time in hours (h) after transfer to low N, and the 15D sample is from plants grown under chronic low N. The
expression level is expressed as the mean of relative fold changes of triplicate biological replicates and the vertical bars represent standard derivation
of the mean (n = 3).
doi:10.1371/journal.pone.0028009.g003

Maize miRNAs Responsive to Nitrate Limitation
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Potential roles of the miRNAs identified during nitrogen
limitation

The full list of the predicted target genes of identified miRNAs

had been listed in this study (Table S3). According to the function

of the target genes (Tables S1 and S2), we can divide the identified

miRNAs into three categories. The first includes miR160,

miR164, miR167, miR169, miR172, and miR319, which target

transcription factors involved in further regulation of gene ex-

pression and signal transduction. The eight predicted maize mi-

R160 target genes include seven genes homologous to the

Arabidopopsis ARF10, ARF16 and ARF17 genes. ARF17 has been

found to be essential for embryonic, vegetative, floral and root

development, while the ARF10 and ARF16 knockout mutants do

not show developmental abnormalities [39]. There are 30 miR164

putative target genes in maize which include seven NAC tran-

scription factors and three MYB domain transcription factors

of unknown function, with the rest being involved in diverse

processes. The seven NAC gene family members are all NAM (no

apical meristem) genes which are crucial for meristem develop-

ment [40]. A quantitative trait locus (QTL) encoding a NAC

transcription factor, a putative target of miR164, had been shown

to accelerate senescence and increase nutrient remobilization from

leaves to developing grains in ancient wheat [41]. It implies that

zma-miR164 might play a role in remobilizing the nitrogen from

old to new leaves to deal with the N-limiting condition. The maize

miR167 is predicted to target nine genes including eight ho-

mologous to the Arabidopsis ARF6 and ARF8 genes. ARF6 and

ARF8 are associated with the repression of lateral root develop-

ment during nitrate limitation in Arabidopsis [15]. The targets of

miR169s have several HAP2 transcription factors associated with

nutrient deficiency and drought stress [17]. Our experiments

showed that the expression of miR169 species had been repressed

under low nitrogen and was consistent with the response of the

pri-miR169 under low nitrogen treatment in Arabidopsis [17].

MiR172 has eight potential target genes including five APETALA2

(AP2) like transcription factors. In maize, miR172, also known as

tasselseed4 (ts4), was shown to be involved in the regulation of maize

floral organ identity and meristem acquisition through the target

gene which is the APETALA2 (AP2) transcription factor ids1 [42].

Salvi et al [43] once reported an interesting work on mapping and

cloning a flowering time locus of ZmRap2.7, one of AP2 like

orthologs with the target site for miR172, which was therefore

likely to be also regulated by an miR172-mediated trans-acting

mechanism. MiR319 has eight potential target genes including

two TCP and two MYB transcription factor genes. The TCP genes

are homologous to the Arabidopsis TCP2 genes that have been

shown to be involved in lateral shoot organ morphogenesis [44]

and also help control leaf senescence by regulating jasmonic acid

biosynthesis [45].

The second category includes miR395, miR397, miR398, mi-

R399, miR408, miR528, and miR827, whose potential target

genes are predominantly involved in energy metabolism and

scavenging of the oxidative species produced during stress. Mi-

R395 targets five genes in maize with two being the ATP

sulfurylase genes, which catalyze the first step in the sulphur

assimilation pathway and are involved in the response to sulphate

starvation in Arabidopsis [12]. In addition, miR395 was found to

be important for S and P homeostasis in Arabidopsis [46]. It

remains to be investigated how miR395 is involved in the crosstalk

between N, S, and P nutrient availability. MiR397b has been

predicted to target a laccase gene which when mutated was shown

to reduce root growth under dehydration [47]. MiR398 and

miR408 were down-regulated by Cu/Fe induced oxidative stress

to increase CSD1 (Cu-Zn superoxide dismutase1) and CSD2 level

in Arabidopsis [48]. The down-regulation of the copper proteins

COX5b and the copper superoxide dismutase, CSD1, was found

Figure 4. The potential regulatory network for low nitrate responsive miRNAs in maize leaves and roots.
doi:10.1371/journal.pone.0028009.g004

Maize miRNAs Responsive to Nitrate Limitation
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under water deficit conditions in Medicago [49]. In our case,

miR398a/b was up-regulated in both shoots and roots, indicating

that miR398 responded differently to different stress conditions.

The function of the sole miR398 target gene in maize is unknown.

MiR399 is up-regulated by Pi starvation and the target gene

UBC24 (ubiquitin-conjugationg E2 enzyme) is down-regulated in

Arabidopsis [50]. The target genes of miR399 in maize, however,

are not homologous to UBC24. Instead, six out of the 12 potential

maize target genes are in the Major Facilitator super-family which

are membrane transporters [51]. The module of miR399/PHO2

had been defined as being involved in Pi signalling and regulating

pathways [13]. Given our results, it can be suggested that miR399

might play a role in reducing Pi transport to keep a balance

between N and P. MiR528 was found to be repressed in response

to drought stress in leaves in T. dicoccoides and there are no verified

target genes [52]. Rice miR528 had been shown to be down-

regulated during the early submergence phase and induced after

24 h of submergence in maize roots [53]. In our case, the stable

strong repression of miR528 was found in both roots and shoots

under the low N condition. The distinct role of miR528 in multiple

stresses needs further investigation. The Arabidopsis miR827 is

specifically up-regulated by phosphate deficiency [16], where the

expression level of miR827 didn’t show significant change to N

limitation [37]. Unlike the Arabidopsis and rice miRNA827, we

found that miR827 in maize (zma-miR827) showed a significant

change in response to both chronic and transient N limitation.

This result was confirmed by additional tests (data not shown). In

Arabidopsis, the target of miR827 is the Nitrogen Limitation

Adaptation gene AtNLA involved in the regulation of N limitation

adaptation response [54]. It had been demonstrate that AtNLA and

miR827 have pivotal roles in regulating Pi homeostasis in a

nitrate-dependent fashion in Arabidopsis [55]. In maize, there are

three potential target genes including a SPX domain protein

(GRMZM2G166976), tropomysin and an NADP binding protein.

None of these is the AtNLA ortholog gene in maize. The

characterization of rice osa-miR827 and its two target genes,

OsSPX-MFS1 and OsSPX-MFS2, provided evidence that they may

target different genes compared with Arabidopsis and play a

role in phosphate (Pi) metabolism [37]. In Arabidopsis, an SPX

domain protein is the AtNLA paralog gene although it can’t

complement the nla mutant phenotype [54].

The third category consists of miRNA168 which has been

shown to target the ARGONAUTE1 (AGO1) gene, which encodes

the RNA slicer enzyme in the miRNA pathway [56]. miR168 and

AGO1 maintain the balance between miRNAs and their targets.

Maize miR168 has also been found to be salt stress related and is

up-regulated in the salt-tolerant maize inbred line, but down-

regulated in the salt-sensitive line [19].

Methods

Plant materials, culture, and sampling
The maize inbred line Ye478 was used in this study as it is an

important breeding line known to be very sensitive to nitrogen

treatment. Seeds of Ye478 were sterilized with 10% (v/v) H2O2

for 30 min, washed with distilled water, soaked in saturated

CaSO4 for 6 h, and then germinated at 28uC for 2 d in the dark

between two layers of filter paper moistened with saturated

CaSO4. Seeds 1–2 cm germ were transferred to coarse silica sand

to grow at 28uC/22uC during the 14/10 h light/dark cycle.

Uniform seedlings with two visible leaves were selected. After

discarding the residual endosperms, seedlings were planted in a

glass beaker containing 2 L half-strength concentrated solution

and changed to full-strength solution the next day. The outside of

the glass beakers were covered with a black sheet to ensure that

the roots were kept in complete darkness. Glass beakers each

containing ten seedlings were maintained in an illumination cham-

ber. Two nitrate concentrations were tested: 4 mM, which repre-

sented an optimal nitrate condition (+N) and 0.04 mM, which

represented low-nitrate availability (2N) with Ca (NO3)2?4H2O

used as the nitrate source. Ca was compensated to 2 mM at 2N

with CaCl2. The other nutrients in solution were (in mmol L21):

0.75 K2SO4, 0.1 KCl, 0.25 KH2PO4, 0.65 MgSO4.7H2O, and 0.2

EDTA-Fe, and in mmol L21, 1.0 MnSO4.H2O, 1.0 ZnSO4.7H2O,

0.1 CuSO4.5H2O, and 0.005 (NH4)6Mo7O24.4H2O. Air was con-

tinuously pumped through the solution (pH 6.0) that was changed

every 2 days. For identification of chronic nitrate regulated mi-

RNAs, seedlings were sampled at 15 days for RNA extraction. For

transient expression pattern of miRNAs from high to low N, the

15-day-old seedlings were transferred from +N to 2N conditions.

Then seedlings were sampled at 2, 4, 8, 12, 24, and 48 h after the

transfer. The seedlings in +N were sampled as a control. Fresh

leaves and root tissues were sampled separately and immediately

frozen in liquid nitrogen.

RNA extraction
Leaf and root tissues harvested in liquid nitrogen were used to

extract the RNA immediately. Total RNAs without genome DNA

were isolated with Trizol reagent (Invitrogen, Carlsbad, CA,

USA). RNA concentration was quantified by using a NANO Drop

2000 spectrophotometer (Thermo Scientific, Wilmington, DE,

USA). Each RNA sample was then diluted to 5 ng/ml for miRNA

analysis and to 200 ng/ml for target gene and 18S rRNA analyses.

RNA samples were stored at 280uC.

Microarray hybridization
Microarry hybridization system of SmartArrayTM was done

with the service from CapitalBio Company (Beijing, China). Three

replicates and three corresponding dye swap replicates each for

leaf and for root using a total of 12 arrays were applied to compare

between the high nitrate and chronic low nitrate conditions. The

plant miRNA microarrays V2.0 for SmartArrayTM from Capi-

talBio Company were used in this study, and contained 348 well-

characterized plant miRNAs from Arabidopsis (Arabidopsis thaliana),

maize (Zea mays), rice (Oryza sativa), soybean (Glycine max), and other

species as noted in the miRBase release 9.1 (http://www.mirbase.

org/) [36], 78 predicted miRNAs [34,35] and various controls (see

Table S4). For microarray hybridization, each probe was printed

in triplicate using a SmartArray microarrayer (CapitalBio). The

labelled RNA was resuspended in 16 ml hybridization solution

containing 15% formamide, 0.2% SDS, 36SSC and 506Den-

hardt’s. The hybridization was performed at 42uC overnight, and

then washed in a solution containing 26SSC and 0.2% SDS at

42uC for 4 min. After the last washing with 0.26SSC solution at

room temperature for 4 min and spin-drying, slides were scanned

using the LuxScan 10K/A scanner (CapitalBio) and raw pixel

intensities were extracted with the Lux- Scan 3.0 software. The

levels of significance of differentially expressed miRNAs were

analyzed using Significance Analysis of Microarrays software

(SAM, version 3.02, http://www-stat.stanford.edu/,tibs/SAM/)

(Stanford University, USA). The miRNAs with q,0.001 and

Ratio .2 or ,0.5 were defined as differentially expressed.

The miRNA Arrays system based on Affymetrix GeneChipH
was done with the service from ShanghaiBio Company (Shanghai,

China). Each sample for root has three biological replications to

compare between 15 days high (4 mM) nitrate culture and 2 hr

after transient from high (4 mM) to low (0.04 mM) nitrate

condition.The Affymetrix GeneChipH miRNA Arrays used in this
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study contained 6703 miRNA probes from 70 species (redundant

miRNAs were included) as described in the miRBase Release 11

(http://www.mirbase.org/) [36]. Procedures were performed

following the manufacturer’s instructions. About 1 mg total RNA

containing low molecular weight (LMW) RNA was pol (A)-tailed

and labeled with biotin using FlashTag Biotin for Affymetrix

miRNA arrays (Genisphere, Hatfield, PA, USA). 206Eukaryotic

Hybridization Controls (GeneChipH Eukaryotic Hybridization

Control Kit, Affymetrix) were incubated at 65uC for 5 min.

21.5 ml biotin-labeled RNA was suspended in 78.5 ml hybridiza-

tion solution containing 26Hybridization Mix, deionized form-

amide, DMSO, 206Eukaryotic Hybridization Controls, 3 nM

Control Oligonucleotide B2 and nuclease-free water, which

was incubated at 99uC for 5 min, followed by 45uC for 5 min.

The hybridization was performed at 48uC for 16 h. The arrays

were then washed and stained with GeneChipH Hybridization

Wash and Stain Kit (Affymetrix, Inc.)and then scanned with

the GeneChipH Scanner 3000. The Affymetrix� miRNA

QC Tool software (Affymetrix, Inc.) was used for data summa-

rization, normalization, and quality control. The miRNAs with

P,0.05(q,0.001) and fold changes .2.0 or ,0.5 were defined as

differentially expressed. Three biological replicates were used in all

chip hybridization experiments.

Microarray data formatting and deposition
All microarray data discussed in this publication had been

processed into MIAME compliant data and deposited in NCBI’s

Gene Expression Omnibus [57] and are accessible through GEO

Series accession number SuperSeries GSE31492 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31492), which was

composed of and linked to two SubSeries (accessions: GSE31231

and GSE31373).

Real-time quantitative RT-PCR for mature miRNAs and
their target genes

Real-time quantitative RT-PCR for mature miRNAs was

performed with stem-loop RT primers specific for mature miRNAs

as described [58,59]. Briefly, 6 nt of the RT primer’s 59 end pairing

with the mature miRNA 39 end was linked to a self-looped 44 bp

sequence (59-GTCGTATCCAGTGCAGGGTCCGAGGTATT-

CGCACTGGATACGAC-39) to make up the stem–loop RT-PCR

primers, which initiated reverse transcription of the mature miRNA.

The reverse transcription product was amplified using a miRNA-

specific forward primer and a universal reverse primer, which were

designed according to criteria as described [58] with Primer Express

3.0 (Applied Biosystems, Foster City, CA, USA)( Table S5). miRNA

target genes in maize were identified according to Zhang et al

[20] and also searched in the database maizesequence.org

B73 RefGen_v2 released on November, 23 2010 (http://www.

maizesequence.org/). The specific primers for real-time RT-PCR

on the predicted target genes were designed with the software

primer premier 5.0 (PREMIER Biosoft Int., Palo Alto, CA, USA)

(Table S6). Maize 18S ribosome RNA (rRNA) was selected as an

internal control in real-time quantitative RT-PCR.

For mature miRNAs and their target genes, real time

quantitative PCR with SYBR Green I was performed on an

Applied Biosystem’s 7300 Sequence Detection System (Applied

Biosystems, Foster City, CA, USA). Briefly, 20 ml PCR reaction

contained about 100 ng cDNA, 9 ml 2.56RealMasterMix/

206SYBR solution (TianGen, Beijing, China), 250 nM each

primer. The reactions were mixed gently and incubated at 94uC
for 2 min, followed by 40 cycles of 94uC for 20 s, 60uC for 30 s

and 68uC for 30 s. All samples were performed in 3 biological

replicates with 2 technical replicates. 18S rRNA was used for each

sample as an internal control. The mean and SD are determined

from the triplicate samples. The DDCt method [60] was used to

determine the expression level differences among samples. For a

given time x at low nitrate treatment, DDCT = (CT, miRNA or target,

2N,timex2CT, 18srRNA, 2N, timex )2(CT, miRNA or target, +N,timex 2CT,

18srRNA, +N, timex ) based on equation 9 of DDCt method [60].
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nitrate regulated mature miRNA families and species
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PCR.

(DOC)
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nitrate regulated mature miRNA families and species
identified in maize roots by using the microarray
platforms and verified by stem-loop real time reverse
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Table S3 The full list of the predicted target genes of
identified miRNAs.
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Table S4 A miRNA micoarray genelist containing 426
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Table S5 Primers used for mature miRNAs stem-loop
RT-PCR.
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Table S6 The real time RT-PCR primers for predicted
target genes.
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