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Abstract

The regulation of complex cellular activities in palmitate treated HepG2 cells, and the ensuing cytotoxic phenotype, involves
cooperative interactions between genes. While previous approaches have largely focused on identifying individual target
genes, elucidating interacting genes has thus far remained elusive. We applied the concept of information synergy to
reconstruct a ‘‘gene-cooperativity’’ network for palmititate-induced cytotoxicity in liver cells. Our approach integrated gene
expression data with metabolic profiles to select a subset of genes for network reconstruction. Subsequent analysis of the
network revealed insulin signaling as the most significantly enriched pathway, and desmoplakin (DSP) as its top neighbor.
We determined that palmitate significantly reduces DSP expression, and treatment with insulin restores the lost expression
of DSP. Insulin resistance is a common pathological feature of fatty liver and related ailments, whereas loss of DSP has been
noted in liver carcinoma. Reduced DSP expression can lead to loss of cell-cell adhesion via desmosomes, and disrupt the
keratin intermediate filament network. Our findings suggest that DSP expression may be perturbed by palmitate and, along
with insulin resistance, may play a role in palmitate induced cytotoxicity, and serve as potential targets for further studies on
non-alcoholic fatty liver disease (NAFLD).
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Introduction

Accumulation of lipids (primarily triglycerides) in hepatocytes is

considered a hallmark and pre-requisite for development of non-

alcoholic fatty liver disease (NAFLD) [1]. With increasing

prevalence of obesity among adults and children, NAFLD has

become the most common form of chronic liver disease in

developed countries [2]. Studies have shown that diets rich in

saturated fats contribute significantly towards increasing the risk of

NAFLD [3,4]. Consequently, a large number of studies have

focused on the effects of free fatty acids (FFA) on hepatocytes to

understand the pathogenesis of NAFLD and related liver diseases

(reviewed in [5]). In recent years, systems biology approaches

utilizing high-throughput (microarray) measurements have been

applied to gain significant insights into the cytotoxic effects of FFAs

on hepatocytes using either static [6,7,8,9] or dynamic gene

expression profiles [10]. While these efforts have focused predom-

inantly on identifying individual target genes, some researchers have

suggested a more complex scenario, whereby genes cooperate in

regulating cellular events in response to FFA treatment [11].

In this study, we analyzed the cytotoxic effects of palmitate

treatment, the most common FFA in the diet, on HepG2 cells.

First, we selected a subset of genes affected by FFA treatment by

mapping their gene expression to metabolite profiles [8,12]. This

allowed the integration of multi-level data and further helped to

alleviate the computational burden associated with the analysis of

a large set of gene expression data. Next, we used an integrative

methodology to reconstruct a gene cooperation network using the

concept of ‘‘Information Synergy’’ [13]. The underlying principle

of information synergy states that if two genes cooperate to affect a

phenotype, then the joint expression of these two genes should

provide more information on the phenotype than the sum of the

information contributed independently by each of the genes. Thus,

the gain in information or information synergy could be used to

quantitatively asses the cooperative effect of any two genes on a

phenotype. To help elucidate the processes that may be altered we

analyzed the pathways that were enriched in the network.

Our search for over-represented pathways in the synergy

network recovered insulin signaling pathway as the most

significantly enriched pathway. This is notable given the fact that

almost all patients diagnosed with NAFLD have concomitant

insulin resistance [14]. Ruddock et al. confirmed that palmitate

treatment induces resistance to insulin signaling in hepatocytes

[15]. We further expanded our search to the neighbor genes of the
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insulin signaling pathway in the synergy network and recovered

desmoplakin (DSP), a junction protein, as the top neighbor. The

DSP protein is an obligate component of functional desmosomes

at intercellular junctions. DSP together with plakoglobin and

plakophilin forms the intracellular desmosomal plaque [16], which

serves as an anchor for keratin intermediate filament attachment

[17]. In general, junction proteins are known to be inhibited

during chronic liver diseases, including cirrhosis and hepatitis [18].

It has also been shown that the loss of expression and abnormal

localization of junction proteins, including DSP, is correlated with

progression of HCC [19]. However, the effects of palmitate on

DSP protein expression have not been previously reported.

Here, we investigated the effects of palmitate treatment on the

expression of DSP in HepG2 cells. Furthermore, since DSP was

recovered as a neighbor of insulin signaling pathway, we analyzed

the effect of insulin treatment on DSP expression. We found that

palmitate treatment leads to the loss of DSP expression and

treatment with insulin enhanced the recovery of DSP expression

following palmitate treatment. Thus, our study indicates that the

junction protein DSP, in synergy with insulin signaling, may be a

novel target in the pathology of fatty liver disease.

Materials and Methods

Datasets
HepG2 cells purchased from American Type Culture Collec-

tion (ATCC) were exposed to different FFA treatments for

48 hours. Gene expressions of these treated cells were then

profiled with cDNA Microarrays at the Van Andel Institute

(Grand Rapids, MI) and pre-processed by GenePix Pro 5.0

(Microarray Acquisition and Analysis Software from Molecular

Devices, LLC). The fluxes of 28 metabolites were measured using

either HPLC or kits, and cytotoxicity was evaluated based upon

LDH levels in the supernatants and in the cell lysates. The

procedures of fatty acid treatments, microarray analysis, cytotox-

icity and metabolic fluxes measurement were described in our

previous works [8,12]. The microarray dataset has been deposited

to GEO website [20], with the query number of GSE26885.

Gene selection based on the trend of the metabolites
profiles

FFAs modulate multiple intracellular metabolic pathways, many

of which are involved in the pathophysiology of fatty liver disease.

The fluxes of various metabolites were used to identify four

representative trends across the treatment conditions: bovine

serum albumin (BSA, control), Palmitate and Oleate, as discussed

in [21] (see Figure S1). The gene expressions were first

logrithmized with base 2, and the expressions for the probes

designed for same genes were averaged out. The genes annotated

with unknown functions (i.e. ‘‘EST/hypothetical proteins’’ or

‘‘ORF of unknown functions’’) were removed from the dataset.

Then, the expression patterns of the remaining genes were

matched to the four representative metabolite trends across BSA,

Palmitate and Oleate. We further removed the genes not

differentially expressed between any two of the three conditions

based on two-sample t-test (p-value cutoff set at 0.05). Finally, 610

genes remained (see Table S1) for further analysis.

Calculation of information synergy
An information-theoretic measure was used to quantify the

synergy between the genes. Given two genes, G1 and G2, and a

phenotype P (toxic or non-toxic in our case), the information

synergy between G1 and G2 with respect to the phenotype P is

defined as:

Syn G1, G2; Pð Þ~ I G1, G2; Pð Þ I G1; Pð Þz I G2; Pð Þ½ �

where I(G1;P) is the mutual information between G1 and P,

I(G2;P) is the mutual information between G2 and P, and

I(G1,G2;P) is the mutual information between (G1,G2) and P.

This equation reflects the definition of synergy, the additional

contribution provided by the ‘‘whole’’ as compared to the sum of

the contributions of the individual ‘‘parts’’. Mutual information (I)

was calculated based on a clustering-based method for continuous

expression data [22], on an information synergy scale of [21 1]. A

positive synergy score indicated that two genes jointly provided

additional information on the phenotype, a negative synergy score

indicated that the two genes provided redundant information

about the phenotype, and a zero score indicated that the two genes

provided no additional information on the phenotype.

A permutation test was performed to assess the statistical

significance of the synergy score of the gene pairs. The phenotypes

were randomly permutated to un-correlate the phenotype with the

gene expression profiles, and then the synergy scores were re-

calculated based on the permutated phenotype for all gene pairs. This

process was repeated 1000 times to calculate the p-values of the

synergy score for each gene pair. A Benjamin-Hochberg false

discovery rate procedure [23] was applied to adjust the p-values for all

the gene pairs and thereby control the expected false discoveries.

Finally, 4376 out of the 185745 pairs from the 610 genes were

identified as significant based on a cutoff of 0.05 for adjusted p-values.

Statistical test for over-represented pathways and
pathway-gene associations

A web platform GENECODIS [24] was used to identify the

KEGG pathways overrepresented in the synergy network. The

hyper-geometric test was used to calculate the p-values of the

KEGG pathways in the network, followed by Benjiamin-Hoch-

berg FDR control procedure to obtain adjusted p-values, and

finally the adjusted p-value cutoff was set at 0.05 to determine the

significantly over-represented pathways.

Likewise, hyper-geometric test was also used to determine the

significant neighboring genes for each over-represented pathway

in the network. Given one pathway and one of its neighboring

genes in synergy network, the p-value of this pathway-gene

association was calculated as below:

P { value ~ 1 { h (x v x; N{1, n, k)

Where x is the number of pathway genes connected to the given

gene in the network; N is the number of genes in the network; n is

the number of pathway genes in the network; k is the number of

genes connected to the given genes in the network. For each

pathway, the p-values of its neighbor were adjusted by Benjiamin-

Hochberg procedure, and the adjusted p-value cutoff was set at

0.05 to determine the significantly associated neighbors.

Differential Correlation Network
A differential correlation network was constructed by obtaining

gene-pairs which show significant difference in the correlation

coefficients between phenotypes [25]. Pathway enrichment

analysis and pathway-gene association analysis were performed

as described above for synergy network.

Cell culture and treatment
HepG2 cells were cultured in Dulbecco’s Modified Eagle’s

Medium (DMEM) (Invitrogen) containing 10% fetal bovine serum

Synergy Analysis Reveals DSP in Liver Toxicity
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(Invitrogen) and 2% Penicillin-streptomycin (Invitrogen). Cells

were incubated at 37uC and in 10% CO2 atmosphere. Confluent

cells were treated with 0.7 mM palmitate (Sigma) dissolved in

DMEM culture medium for 48 hours. Cells were treated with

1 nM insulin in culture medium for 24, 48 and 72 hours. DMEM

culture medium was used as control for all treatments.

Immunofluorescence
Cells were fixed in 3.7% formaldehyde for 20 min. Cells were

then washed twice with PBS and treated with 5% Triton-X for

10 min. at room temperature to permeabilize cell membrane. This

was followed by washing twice with PBS and incubation with 1%

BSA to block non-specific protein interactions. The cells were then

incubated with 5 mg/ml anti-rabbit DSP primary antibody

(Abcam ab71690) overnight at 4uC. After washing twice with

PBS, cells were incubated in AlexaFluor-488 (Molecular Probes

A11001) conjugated goat anti-rabbit secondary antibody (green)

for 1 hour at room temperature. Cells were washed with PBS and

cell nuclei were stained (blue) using DAPI (Molecular Probes

D1306) at a concentration of 300 nM for 5 min. Coverslips were

mounted in ProLong Gold (Molecular Probes P36934) and

incubated in the dark for 24 hours.

Confocal imaging was performed on an Olympus FluoView

1000 Inverted IX81 microscope, using a 40X oil objective. Blue

and green images were taken sequentially, using a Kalman

average of 2X. The intensity graph was constructed by

normalizing the total green fluorescence intensity to total blue

fluorescence intensity (to account for the number of cells) in 3

separate fields of view for each sample. Multiple comparisons

between fluorescence levels across different treatment conditions

were performed using one-way ANOVA followed by Tukey’s

HSD post-hoc analysis with p-value cut-off set at 0.05.

Results

1 Information synergy network
Based upon the concept of information synergy, we recon-

structed a gene-cooperation network composed of 570 genes with

4376 connection edges. Topological analysis shows that this

network follows a power-law distribution (see Figure S2) that is

different from the bell-like distribution of a random network. The

reconstructed network suggested potential gene targets and

pathways that may play important roles in the induction of the

cytotoxic phenotype.

Positive information synergy indicates joint association
with phenotype

We interrogated gene pairs in terms of their ability to jointly

distinguish phenotypes. As described above, positive, zero and

negative information synergies represent gene pairs that provide

synergistic, no and redundant information on the phenotype,

respectively. Examples of gene pairs for each level of information

synergy, demonstrating how they jointly provide information on

the phenotypes, are illustrated in Figure 1.

For the gene pairs with significant positive synergy in Figure 1

(top row), neither of the two individual genes was strongly

correlated with the phenotype in the univariate marginal

distribution. On the other hand, the gene pairs were significantly

correlated to the phenotype, i.e. their expressions jointly help to

distinguish the phenotypes. The two phenotypes are clearly

discernible with the existence of a gap, previously denoted as a

‘‘gap’’ pattern [26]. Additional correlation patterns, including

‘‘substitute’’ and ‘‘on/off’’ [26], were also observed in a small

number of positive gene pairs (see Figure S3 for explanations of

these correlation patterns). Thus, both genes in the pair with

positive synergy would have been ignored by a correlation based

one-gene-at-a-time approach which considers only those genes

that are highly correlated to the phenotypes.

2 Enriched pathways related to palmitate induced
cytotoxicity

The pathways enriched in the synergy network were explored

through enrichment analysis. 42 pathways were significantly

enriched in the synergy network (see Table S2), and the top 10

pathways are listed in Table 1.

As seen in Table 1, cellular activities such as insulin signaling,

adherence junction/cytoskeleton regulation, amino acid metabo-

lism, and ubiquitin-mediated proteolysis are highly enriched in the

synergy network. Indeed, it has been suggested in the literature

that palmitate treatment affects several of these enriched

pathways, including insulin signaling inhibited by palmitate in

hepatomal cells [15], ER stress and the ubiquitin mediated

protease pathways [27,28], as well as adherence junction and

cytoskeleton structure [29,30]. Palmitate has been also shown to

modulate the metabolism of various amino acids [12] which may

be important players in palmitate-related cytotoxicity. For

example, arginine metabolism provides substrate for nitric oxide

synthetase (NOS) and palmitate treatment was found to enhance

cell death by increasing NOS activity and NO production [31].

3 Pathway-gene association analysis
In this section, we investigated the associations between the

enriched pathways and their neighbors in the synergy network.

Neighbors were defined as genes in the network connected to at

least one gene of the enriched pathway. The connections in the

network represent cooperative relationships between the genes.

Therefore, we assumed that the neighbor genes, especially those

connected to multiple members of an enriched pathway may

function cooperatively with the enriched pathway in the associated

phenotype.

Neighbor genes relevant to insulin signaling pathway
We evaluated the biological relevance of insulin signaling, the

most significantly enriched pathway, and its neighbor genes. In the

synergy network, there are a total of 262 neighbor genes (see Table

S3) connected to the insulin signaling pathway (Figure 2 and

Figure S4), and most of these neighbor genes (more than 90%) are

connected to one or two insulin signaling genes. We focused on

only those neighbor genes that are connected to 3 or more insulin

signaling genes in the synergy network. For each of these neighbor

genes, the statistical significance of its association with the insulin

signaling pathway was evaluated by the hyper-geometric test. The

neighbor genes significantly associated with insulin signaling are

listed and ranked according to their p-values in Table 2.

4 DSP: the top neighbor
The junction protein, DSP, was recovered as the top-neighbor

of insulin signaling pathway from the synergy network. Loss of

DSP expression has been reported in more severe forms of liver

disease, i.e. cirrhosis and HCC, but this has not been implicated in

the pathology of fatty liver disease. Hence, we investigated the

effects of palmitate treatment on the expression of DSP in HepG2

cells. Since, DSP was recovered as a neighbor of the insulin

signaling pathway, we also studied the effect of insulin treatment

on DSP expression. HepG2 cells were grown to confluency and

treated with palmitate containing media. We observed cellular

expression of DSP by measuring the fluorescence levels of DSP

Synergy Analysis Reveals DSP in Liver Toxicity
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Figure 1. Joint expression of gene pairs with different information synergy. Blue and red points represent nontoxic and toxic samples,
respectively. From top to bottom: Gene pairs with positive synergy jointly discriminate the phenotypes (indicated by the black dashed lines – joint
information), whereas either of the genes alone provide little information in discriminating the phenotypes (indicated by the data points projected to
the axes – marginal information). In contrast, genes with zero information synergy appear to be independent of the phenotypes, both jointly and
marginally. Gene pairs with negative information synergy are marginally informative on the phenotype, such that either of the genes can provide
information on the phenotype, but the additional information provided by the other gene does not enhance the discrimination of the phenotype, i.e.
information provided by both genes about the phenotype is redundant.
doi:10.1371/journal.pone.0028138.g001

Table 1. Top ten KEGG pathways ranked by their p-values enriched in the synergy network.

Pathway names #genes in network p-value Affected by Palmitate

04910: Insulin signaling pathway 15 6.68E-07 Known [15]

04520: Adherens junction 10 2.10E-05 Known [29,30]

00310: Lysine degradation 7 0.00014 Known [12]

00330: Arginine and proline metabolism 6 0.00053 Known [12]

04916: Melanogenesis 8 0.00556

04120: Ubiquitin mediated proteolysis 9 0.00644 Known [28,65]

04010: MAPK signaling pathway 13 0.00658 Known [66]

05210: Colorectal cancer 7 0.00716

04310: Wnt signaling pathway 9 0.00942 Known [67]

04810: Regulation of actin cytoskeleton 11 0.00981 Known [30,68]

doi:10.1371/journal.pone.0028138.t001

Synergy Analysis Reveals DSP in Liver Toxicity
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with immunostaining and confocal microscopy (Figure 3). Relative

intensity of DSP against nuclear staining was used to quantify and

normalize the amount of DSP under each treatment condition

(Figure 4). Finally, we compared changes in relative DSP

expression between treatment conditions and determined statisti-

cally significant pairs using Tukey’s HSD post-hoc analysis

(Figure 4).

Palmitate reduces DSP expression
First, we evaluated the effect of palmitate treatment on DSP

expression. We treated HepG2 cells with 0.7 mM palmitate for

48 hours and observed the fluorescence levels of DSP (Figure 3B).

When compared to control (Figure 3A), we found that palmitate treated

cells showed a significant decrease in DSP expression levels (p,0.05).

Insulin enhances recovery of DSP expression
Next, we examined the recovery of DSP expression in palmitate

treated cells by removing palmitate after 48 hours of treatment

and adding regular growth medium. The cells were allowed to

grow for another 72 hours (Figure 3C) and showed some recovery

of DSP expression with time, albeit statistically different from

control (p,0.05). To assess the effect of insulin on the recovery of

DSP expression, we treated HepG2 cells with physiological

concentration of insulin (1 nM) [32] for up to 72 hours, following

the removal of palmitate after 48 hours of treatment. Fluorescence

levels of DSP in the cells were analyzed every 24 hours. As seen in

Figure 3D–E, cells treated with insulin for 24 and 48 hours show

partial recovery of DSP levels compared to palmitate treated cells

(p,0.05), but cells treated with insulin for 72 hours show a

Figure 2. Sub-network for insulin signaling genes and their neighbor genes in the synergy network. Yellow nodes represent insulin
signaling genes, and pink, green, blue and black nodes represent the neighbor genes connecting to one, two, three and more insulin signaling genes,
respectively. The fifteen insulin genes, the top three neighbor genes (in Table 2) and the four genes connecting to more than three genes were
labeled with gene names for reference.
doi:10.1371/journal.pone.0028138.g002

Synergy Analysis Reveals DSP in Liver Toxicity
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prominent increase in DSP levels (p,0.05) (Figure 3F). In fact, the

levels of DSP after 72 hours of insulin treatment are statistically

similar to the levels in the control cells (p.0.05). The results

suggest the expression of DSP that was lost upon palmitate

treatment recovered to basal levels by treating the cells with

insulin. Although, cells did recover some expression of DSP after

removal of palmitate from the medium, the recovery was not

restored to basal levels.

Thus, our experiment supports the association of the palmitate-

induced cytotoxic phenotype with the DSP-insulin signaling

pathway in our network. Namely, that DSP and insulin signaling

act synergistically to ensure the proper function of adherence

junctions and the lost or reduction in DSP expression and insulin

signaling by palmitate treatment contributes to the cytotoxic effect

of palmitate. Thus suggesting that in liver cells DSP may be a

novel target of palmitate-induced cytotoxicity.

5 Differential correlation analysis fails to identify DSP
Extant methods based on differential correlation have been used

to uncover phenotype-specific gene interactions [33]. However,

the quality of the data (i.e. sample size or noise level) would affect

the results obtained, i.e. in the correlation coefficients calculated,

Table 2. Neighbors significantly associated with insulin signaling pathway.

Gene
Connections to insulin
signaling Degree (overall network) p-value

Association with insulin
signaling

DSP 3 12 4.18E-03 Unknown

ACADSB 3 12 4.18E-03 Unknown1

PANK3 3 15 7.50E-03 Known, [69]

SLC39A3 3 18 9.60E-03 Known, [70,71,72]

ICA1 3 20 1.24E-02 Known, [73]

TTYH1 3 30 2.94E-02 Known, [74]

EP400NL 3 31 2.94E-02 Unknown

EGFR 3 36 3.59E-02 Known, [75,76]

C6orf150 3 37 3.59E-02 Unknown

FAM69B 3 37 3.59E-02 Unknown

HOMER2 8 180 4.84E-02 Known, [77,78]

1ACADSB is involved in the metabolism of fatty acids and branch chained amino acids [79]. Prolonged treatment with long chain FFAs, including palmitate, increases
FA oxidation [12,80], which has been proposed to serve as a protective mechanism against the potential toxic effects of long chain fatty acids [80,81]. Insulin, on the
other hand, down-regulates FA oxidation in various cell types [82,83]. Since palmitate can impair the insulin signaling pathway [84], it is reasonable that ACADSB
emerges as a top neighbor of the insulin signaling pathway.

doi:10.1371/journal.pone.0028138.t002

Figure 3. Immuno-fluorescence images of HepG2 cells stained for DSP (green) and cell nuclei (blue) obtained using confocal
microscopy (see methods). Scale bars represent 50 mm. A) Untreated, control cells grown in regular growth media. B) Cells treated with palmitate
for 48 hours show decrease in DSP levels C) Cells treated with palmitate for 48 hours and recovered in normal growth media for 72 hours show
partial recovery of DSP expression. Cells treated with palmitate for 48 hours and recovered in growth media with insulin for D) 24 hours and
E) 48 hours show partial recovery, whereas for F) 72 hours show complete recovery of DSP expression.
doi:10.1371/journal.pone.0028138.g003

Synergy Analysis Reveals DSP in Liver Toxicity
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making it difficult to determine whether the difference in the

correlation across the phenotypes are real changes or simply an

artifact due to the size or noise level. In contrast, the information

synergy approach takes the phenotype data directly into account,

thus the influence of the difference in the data quality across

phenotypes is less of a concern than in the correlation-based

methods. We compared the performance of information synergy

approach to a standard differential correlation approach [25] for

reconstructing phenotype-specific networks. The statistics for this

comparison are shown in Table 3. As seen in Table 3, the insulin

signaling pathway was recovered as the top pathway in the

differential correlation network. But, DSP was not found to be

significantly associated with the insulin signaling pathway.

We further investigated the ability of genes paired with DSP to

distinguish the two phenotypes. The joint expressions of these gene

pairs are shown in Figure 5. One gene (ACACA) was identified by

both synergy analysis and differential correlation. From Figure 5, it

is evident that the two phenotypes are distinctly separated in the

synergy analysis plots whereas the phenotypes in the correlation

analysis plots do not separate distinctly. Thus, the synergy analysis

was more effective in identifying gene pairs that can distinguish

between phenotypes.

Discussion

We presented an integrative methodology to reconstruct a gene

network that demonstrates cooperativity plays an important role in

complex diseases. There are three major contributions from this

analysis. First, we presented the idea of information synergy and

applied this method to microarray data from palmitate treated

HepG2 cells: a condition relevant to fatty liver disease. Second, we

showed that DSP is a novel target of palmitate treatment. Third,

we showed that insulin impacts DSP expression, and palmitate,

known to antagonize insulin signaling, also negatively impacts

DSP, contributing to the cytotoxic effect of palmitate. Overall, we

suggest that a synergy network-based gene and pathway

association analysis has the potential to reveal novel targets or

mechanisms underlying biological processes, exemplified by the

uncovering of DSP as a novel player in palmitate-induced

cytoxicity.

The concept of synergy is intuitive and relevant to biological

systems. For example, two transcription factors may play a

cooperative role in determining the expression of a common gene.

Similarly, interactions may occur between signaling proteins, i.e.

cross-talk, and such associations may also be seen in receptor

Figure 4. Quantitative effects of palmitate and insulin treatment on DSP expression (see methods). Bars indicate relative expression of
DSP under various treatment conditions. Palmitate treatment significantly decreases DSP expression where as subsequent treatment with insulin
restores DSP expression. Lines represent pairs of condition where changes in DSP level are significant. * indicates significant difference (p,0.05) from
control cells. ** indicates significant difference (p,0.05) from palmitate (48 hours) treated cells.
doi:10.1371/journal.pone.0028138.g004

Table 3. The statistics of the two networks and association b/w DSP and insulin signaling.

Synergy
network

Differential
correlation network

Statistics for whole network # genes in the network 570 610

# connections in the network 4376 87054

# insulin signaling genes in the network 15 15

Rank of insulin signaling in term of statistical significance in the network 1st 1st

Statistics for DSP Degree of DSP in the network 12 210

# insulin signaling genes connecting to DSP 3 3

FDR adjusted p-value of the association b/w DSP and insulin signaling 4.18E-3 0.882

Rank of DSP among the genes connected to at least three insulin signaling genes
based on statistical significance

1st 549th

doi:10.1371/journal.pone.0028138.t003
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mediated transduction. Information synergy aims to capture

cooperative effects, and in this study, on the impact of these

effects on the induction a particular phenotype. There are several

examples of synergistic interactions implicated in the pathology of

fatty liver disease. For example, Smith J.J et al. showed that two

groups of transcription factors worked in a combinatorial manner

to control the transcriptional responses to fatty acids [34], thus

supporting that cooperativity is important in regulating cellular

processes. Similarly, co-expression of HNF4 and GATA tran-

scription factor could synergistically activate the expressions of two

genes involved in cholesterol homeostasis, and their binding sites

are essential for maximal synergism [35]. Peroxisome proliferator

activated receptors (PPARs), one of the best characterized nuclear

receptors that mediate transcriptional activities of long-chain

unsaturated fatty acids, was found to selectively cooperate with

fatty acid binding proteins (FABPs) to regulate transcription [36].

Sterol receptor element-binding protein (SREBP-1c), a gatekeeper

of lipotoxicity [37], functions together with BETA2, LXRs and

SP1, to regulate various cellular processes, such as insulin signaling

[38], lipid synthesis [39], and cholesterol biosynthesis [40]. It is

evident from these examples that identifying genes with cooper-

ative effects [13], instead of limiting efforts to individual genes, has

the potential to reveal novel genes or interactions, and ultimately

help elucidate the mechanism of progression of complex diseases

such as NAFLD. Along this line, differential correlation based

approaches have been applied to identify linear relationships

between genes and phenotype. However, information synergy has

the distinct advantage in their ability to capture gene pairs with

different types of dependency (not limited to linear correlation), as

long as the gene pairs provide additional information on the

phenotype. This makes it particularly appealing for complex

scenarios such as uncovering gene cooperation in the induction of

a phenotype or disease, where the interactions may not be linear.

Thus, information synergy is a promising approach for construct-

ing phenotype-specific networks, and provides a complementary

approach to correlation-based methods.

Although synergistic gene pairs have been shown valuable in

discriminating phenotypes, interpreting the roles of the individual

gene pairs remains a challenge due to the lack of sufficient

functional or structural annotations for many of the genes, thereby

formulating plausible hypotheses of the gene pairs more difficult.

In contrast, organizing the individual gene pairs into a network

(synergy network) and then performing gene module level analysis

[41], i.e. identifying the pathways over-represented in network or

pathway-gene associations, could help to hint at potential

mechanisms as shown in our study. Nevertheless, investigating

individual gene pairs would still be valuable in the future. Since the

gene pairs identified from the microarray data do not necessarily

interact directly with each other, future investigation of individual

gene pairs coupled with physical interaction data (i.e. protein-

protein and protein-DNA interaction) should further improve the

analysis.

Figure 5. The expressions of gene pairs, namely of insulin signaling genes and DSP. Shown are three pairs of insulin signaling genes
connected to DSP in the synergy analysis (top) and three pairs obtained from the differential correlation analysis (bottom). Red and blue points
represent toxic (treated with palmitate) and nontoxic samples, respectively.
doi:10.1371/journal.pone.0028138.g005
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The application of information synergy methodology to

microarray data obtained from FFA-treated HepG2 cells revealed

insulin signaling as the most significantly enriched biological

pathway. Thus, our analysis successfully recovered insulin

signaling as a hallmark characteristic pathway involved in fatty

liver disease [42]. We further examined and confirmed the effects

of palmitate treatment on DSP, the top synergistic neighbor of

insulin signaling pathway.

Through synergy analysis we found that expression of DSP is

reduced by palmitate treatment in HepG2 cells. DSP is a

desmosomal protein essential for intercellular attachment by

desmosomes. In a study of adhesion molecules in HCC, Cao et

al. found that moderately differentiated hepatocytes tend to show a

reduction in DSP protein expression, whereas poorly differentiated

hepatocytes show complete loss of DSP protein expression [43]. It

has been suggested that DSP expression levels are inversely

correlated with cell growth and division. As shown in a study with

squamous cell carcinoma, inhibition of EGF (epidermal growth

factor) using antagonists led to an increase in DSP protein levels

[44]. Another study has suggested that DSP may play a role in

tumor-matrix interaction as it was found to be a major component

of exosomes secreted by mesothelioma cells [45]. Other studies

have also suggested that loss of desmosomes may be associated

with epithelial to mesenchymal transition (EMT) by means which

hepatocytes may acquire malignant characteristics [46]. Although,

such associations were reported in HCC, our results suggest that

the impact on DSP may be an early event in the pathogenesis of

fatty liver disease. In other words, reduced expression of DSP may

contribute to the progression to more severe forms of liver diseases.

From Table 1 adherens junction was identified as a highly

enriched category in our synergy network. Treatment with

palmitate has been shown to affect cellular adherence and

cytoskeletal structure in hepatocytes [29,30], although the exact

mechanism and whether DSP is involved in mediating these

processes is unknown. Since, keratins require DSP at the

desmosomal plaque for anchoring to the cell membrane [17],

our results open up the possibility that loss of cytoskeletal structure

may be associated with the loss of DSP.

Previous studies have shown that inherited mutations in DSP

are a characteristic feature of a number diseases of the skin and

heart including, skin fragility or wooly hair syndrome [47],

arrhythmogenic right ventricular dysplasia [17,48], lethal acantho-

lytic epidermolysis bullosa [49], and dilated cardiomyopathy with

wooly hair and keratoderma [50]. It is notable that in recent years

some research groups have suggested the risk of cardiovascular

disease (CVD) may be elevated in NAFLD patients [51,52,53].

Given that alterations in DSP expression are associated with heart

disease and since DSP levels are reduced by palmitate treatment, it

raises the possibility that DSP may serve as a potential link

between fatty liver disease and heart disease.

We also explored the relationship between DSP and insulin

signaling and found that insulin treatment enhances the recovery

of DSP expression lost due to palmitate treatment. It is known that

palmitate can induce resistance to insulin signaling in hepatocytes

[15] and several mechanisms have been proposed to explain this

observation. Studies have suggested that PKCA (Protein Kinase C,

alpha isoform), known to be activated by lipids (diacylglycerols)

[54], shares an antagonistic relationship with insulin signaling, and

that knock-out of PKCA enhances insulin signaling [55].

Interestingly, the activation of PKCA also affects the dynamics

of desmosomal complex at plasma membrane [56,57]. Junction

plakoglobin co-localizes with DSP at the desmosomal plaque. It

has been shown in a study with mice cardiomyocytes that

inhibition of DSP expression leads to change in localization of

plakoglobins from cytoplasm to nucleus. This was shown to

antagonize Wnt/b-catenin signaling pathway, and trigger the

accumulation of fat droplets [58]. It is noteworthy that Wnt

signaling is a significantly enriched pathway in the synergy

network (See Table 1). Wnt signaling is frequently attenuated in

HCC patients and is associated with poor prognosis [59].

Furthermore, recent studies have confirmed that activation of

Wnt signaling enhances insulin sensitivity [60,61]. This suggests

that palmitate induced loss of DSP protein can further enhance

insulin resistance through the Wnt/b-catenin signaling pathway.

Thus, it may not be a coincidence that DSP was recovered as a

synergistic pair to the insulin signaling pathway in the network.

According to one estimate, about one-third of the general

population in the United States suffers from NAFLD [62]. Follow

up studies of patients suffering from this burgeoning disease have

shown that their survival is significantly lower than that of the

general population [63]. Furthermore, NAFLD can progress to the

more severe steatohepatitis (NASH) in a number of patients, which

may further develop into cirrhosis and eventually into liver

carcinoma (HCC) [64]. Unfortunately, the factors responsible for

the pathology and progression of liver disease in these patients

remain poorly understood. Our studies confirmed a potential link

between palmitate, insulin signaling and DSP, and are currently

further investigating the mechanisms contributing towards pro-

gression to more severe forms of liver disease.

Supporting Information

Figure S1 Four Representative Trends of the Metabolites.

Eleven metabolites differed significantly across the three conditions

(treated by BSA, Palmitate and Oleate), and four representative

trends were extracted from these metabolites. Trend I: BSA ,

Palm and Palm . Ole; Trend II: BSA . Palm and Palm , Ole;

Trend III: BSA , Palm , Ole; Trend IV: BSA . Palm . Ole.

(TIFF)

Figure S2 Degree distribution of synergy network and Random

network. The random network was generated based on Erdös-

Rényi model, with same number of nodes and edges as synergy

network. The degree distribution in synergy network is clearly

different with that in random network.

(TIF)

Figure S3 Different types of correlation patterns captured by

synergy analysis. Blue and red points represent nontoxic and toxic

samples, respectively. These patterns were specified in [30], and

their definitions were given below: (1) Gap: gene positively

correlated; phenotype associated with the difference of gene

expression; Substitute: gene negatively correlated; phenotype

associated with the sum of gene expression; (3)On/off: turning

on or off both genes lead to same phenotype.

(TIF)

Figure S4 Subnetwork for insulin signaling pathway (all nodes

labeled with gene symbols).

(TIF)

Table S1 The list of 610 genes selected for synergy analysis.

(DOC)

Table S2 All KEGG pathways significantly enriched in the

synergy network.

(DOC)

Table S3 All neighbor genes significantly associated with insulin

signaling.

(DOC)
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