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Niche segregation of ammonia-oxidizing archaea
and anammox bacteria in the Arabian Sea oxygen
minimum zone

Angela Pitcher1,3, Laura Villanueva1,3, Ellen C Hopmans1, Stefan Schouten1,2,
Gert-Jan Reichart2 and Jaap S Sinninghe Damsté1,2

1Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research,
Den Burg, The Netherlands and 2Department of Earth Sciences, Faculty of Geosciences, Utrecht University,
Utrecht, The Netherlands

Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have
emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of
ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these
groups exists; however, their distributions are rarely determined in tandem. Here we have examined
the vertical distribution of AOA and anammox bacteria through the Arabian Sea oxygen minimum
zone (OMZ), one of the most intense and vertically exaggerated OMZs in the global ocean, using a
unique combination of intact polar lipid (IPL) and gene-based analyses, at both DNA and RNA levels.
To screen for AOA-specific IPLs, we developed a high-performance liquid chromatography/mass
spectrometry/mass spectrometry method targeting hexose-phosphohexose (HPH) crenarchaeol, a
common IPL of cultivated AOA. HPH-crenarchaeol showed highest abundances in the upper OMZ
transition zone at oxygen concentrations of ca. 5 lM, coincident with peaks in both thaumarchaeotal
16S rDNA and amoA gene abundances and gene expression. In contrast, concentrations of
anammox-specific IPLs peaked within the core of the OMZ at 600 m, where oxygen reached the
lowest concentrations, and coincided with peak anammox 16S rDNA and the hydrazine
oxidoreductase (hzo) gene abundances and their expression. Taken together, the data reveal a
unique depth distribution of abundant AOA and anammox bacteria and the segregation of their
respective niches by 4400 m, suggesting no direct coupling of their metabolisms at the time and
site of sampling in the Arabian Sea OMZ.
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Introduction

The oxygen minimum zone (OMZ) of the Arabian
Sea represents a globally important site for oceanic
fixed nitrogen (N) loss (Bange et al., 2000, 2005 and
references therein). Its vertical distribution extends
from approximately 150 to 1000 m below the sea
surface with oxygen concentrations at times as
low as 0.1 mM (Morrison et al., 1999; Paulmier and
Ruiz-Pino, 2009), rendering it one of the most
expansive and intense OMZs globally. N-cycling in
the Arabian Sea may even impact the earth’s climate
due to OMZ intensity-related fluctuations in N-loss

via heterotrophic denitrification Suthhof et al.,
2001). This process simultaneously liberates the
potent greenhouse gas, nitrous oxide (N2O), as a
metabolic intermediate, while circumventing the
biological pump via respiratory emancipation of
carbon dioxide (CO2).

Anaerobic ammonium oxidation (anammox)
occurs to a great extent in oxygen-limited waters,
where canonical denitrification was conventionally
assumed to dominate N-loss (Arrigo, 2005; Brandes
et al., 2007 and references therein). This autotro-
phic metabolism combines ammonium (NH4

þ ) with
nitrite (NO2

�) to form dinitrogen gas (N2) (Strous
et al., 1999), most of which is then lost from the
system. Their role in oceanic N-cycling is gradually
becoming more clear: anammox may be responsible
for up to 40% of N-loss in some anoxic marine
environments (Dalsgaard et al., 2003; Kuypers et al.,
2003, 2005), although recent evidence suggests
that its contribution to N-loss in the Arabian Sea
OMZ may be considerably less (Ward et al., 2009).
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The questions of when, where and under what
conditions anammox bacteria thrive are receiving
ever-increasing attention as this autotrophic process
liberates neither CO2 nor N2O (Lam et al., 2009; Voss
and Montoya, 2009).

Ammonia-oxidizing archaea (AOA) also use NH4
þ

as an electron donor, which is oxidized aerobically
to NO2

�. The ubiquity and abundance of marine
Thaumarchaeota (formerly known as Marine Group I
Crenarchaeota: Brochier-Armanet et al., 2008; Spang
et al., 2010) and their associated genes coding
for the alpha subunit of ammonia monooxygenase
enzyme (amoA) in marine waters have suggested
their potential importance in oceanic nitrification
(Arrigo, 2005), subsequently stimulating a need to
define the ecological niches in which they are most
likely to persist (Prosser and Nicol, 2008; Erguder
et al., 2009).

In contrast to anammox bacteria, which are
anaerobic organisms, AOA are aerobic ammonia
oxidizers (Francis et al., 2005; Coolen et al., 2007),
potentially suggesting that these two groups of
microbes will have different niches. However,
AOA appear to be also remarkably successful under
low-oxygen conditions (Karner et al., 2001; Coolen
et al., 2007; Lam et al., 2007; Beman et al., 2008;
Molina et al., 2010) and can actually be enriched
under such circumstances (Park et al., 2010).
Furthermore, anammox bacteria have also been
detected in OMZs, where low amounts of oxygen
may still be present (Lam et al., 2009). Thus, in
low-oxygen environments, they potentially can
compete for ammonia, or interact with AOA,
providing nitrite to anammox bacteria. Indeed,
anammox bacteria and AOA have been reported to
co-exist in the same water masses in the Black
Sea (Kuypers et al., 2003; Francis et al., 2005;
Coolen et al., 2007), in marine sponges (Hoffmann
et al., 2009) and in suspended particles in the
Namibian upwelling system (Woebken et al., 2007).
In addition, Lam et al. (2007) presented evidence
that AOA together with nitrifying bacteria provide
nitrite for anammox bacteria in the Black Sea.
However, it is unknown how widespread this
potential interaction is.

A few studies have examined the distribution
of AOA and anammox bacteria in the Arabian Sea.
A low-resolution study based on the presence of
crenarchaeol (a glycerol dialkyl glycerol tetraether
membrane lipid thought to be specific to AOA;
de la Torre et al., 2008; Pitcher et al., 2010)
suggested highest concentrations of AOA just below
the photic zone (Sinninghe Damst et al., 2002). In
contrast, anammox-specific ladderane core lipids
were found to be most abundant within the core
of the OMZ at depths of ca. 500 m (Jaeschke
et al., 2007). However, Ward et al. (2009) found
low anammox bacterial gene abundance and
anammox rates up to 250 m depth, around the
nitrite maximum, and anammox activity was found
to be patchy and unpredictable regarding depth

distribution in comparison with denitrification
(Bulow et al., 2010).

To gain a better insight into the niches of these
two groups within the Arabian Sea OMZ, we used a
unique approach based on quantification of both
intact polar lipids (IPLs) and DNA/RNA (functional)
genes. IPLs consist of the core membrane lipids still
covalently bound to polar head groups that are
relatively labile (that is, unstable outside of the
intact cell; White et al., 1979), and thus more
accurately represent lipids synthesized by living or
recently living cells. We developed a novel high-
performance liquid chromatography/mass spectro-
metry/mass spectrometry (HPLC/MS/MS) method to
target AOA-specific IPLs, as well as using a
previously published method targeting a C20-[3]-
monoether ladderane lipid containing a phosphati-
dylcholine (PC) head group (henceforth referred to
as ‘PC-monoether ladderane’) specific for anammox
bacteria (Jaeschke et al., 2009). This study was
complemented with the quantification of 16S rDNA
and functional genes (AOA amoA and hzo genes of
anammox bacteria, which encode for the enzyme
hydrazine oxidoreductase converting hydrazine to
N2) and their expression (that is, RNA abundance) as
an indication of the activity of AOA and anammox
bacteria.

Materials and methods

The complete Materials and methods section is
provided as Supplementary Information.

Physical properties of the water column
A conductivity–temperature–depth (CTD) system
equipped with attached oxygen, turbidity and
fluorescence sensors was deployed to record the
physical properties of the water column at a depth
profile station in the Northern Arabian Sea (lat
21155.60, long 63110.60) (Figure 1).

Suspended particulate matter sampling
A depth profile of 12 suspended particulate matter
(SPM) samples was collected at our sampling sta-
tion by large-volume (ca. 200–1700 l) in situ pump
filtration onto pre-washed 0.7 mm GF/F filters (Pall
Corporation, Port Washington, NY, USA). A total of
six deployments of two McLane WTS-LV in situ
pumps (McLane Laboratories Inc., Falmouth, MA,
USA) were carried out between 14 and 20 January
2009. Upon retrieval of the pumps, GF/F filters
containing SPM were removed and immediately
frozen at �80 1C. A rosette sampler containing
24� 12 l Niskin bottles (OceanTest equipment Inc.,
Fort Lauderdale, FL, USA) was attached to the CTD
deployed during each pump cast to collect water
from the sampler for inorganic nutrient analysis and
onboard filtration of DNA/RNA. For nutrients, ca.
5 ml samples were filtered over 0.45 mm� 25 mm
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Acrodisc HT Tuffryn Membrane syringe filters (Pall
Corporation) into pre-rinsed pony vials. Water
samples from the Niskin bottles were filtered on-
board for DNA/RNA via clean Teflon tubing into pre-
rinsed 20 l Nalgene bottles in a dark climate
chamber maintained at 7 1C over 142 mm� 0.2 mm
PC filters (Millipore, Billerica, MA, USA) and
immediately at �80 1C.

Extraction and analysis of IPLs
IPLs were extracted from freeze-dried filters using
a modified Bligh and Dyer technique (Bligh and Dyer,
1959) as described by Schouten et al. (2008). Analy-
sis of crenarchaeol-based IPLs (crenarchaeol-hexose,
crenarchaeol-dihexose, crenarchaeol-hexose–phospho-
hexose, crenarchaeol-hexose-‘176’, crenarchaeol-dihex-
ose-‘176’; ‘176’ represents an unknown headgroup
with a mass of 176Da) and crenarchaeol-hexose-‘180’
(representing a major IPL in Nitrosopumilus maritimus
SCM1; Prosser and Nicol, 2008) was achieved by
HPLC/electrospray ionization/MS/MS in selected reac-
tion monitoring (SRM) mode using chromatographic
conditions and source settings as described by

Schouten et al. (2008). SRM transitions were optimized
by direct infusion of an IPL extract from ‘Ca. Nitroso-
sphaera gargensis’ biomass (Pitcher et al., 2010),
resulting in the conditions listed in Supplementary
Table S2. The SRM transition for crenarchaeol-hexose-
‘180’ was based on those for crenarchaeol-hexose-‘176’
as the IPL extract of N. maritimus available for SRM
optimization was insufficient. IPLs were quantified
as peak area response L�1, due to the lack of quantita-
tive standards. For more details on this HPLC/MS-MS
method, see Supplementary methods. The C20-[3]-
monoether ladderane lipid containing a PC headgroup
(PC-monoether ladderane) (Supplementary Figure S1)
was analyzed by HPLC/electrospray ionization/MS/MS
using an SRM method described previously (Jaeschke
et al., 2009).

DNA extraction
DNA was extracted from SPM filtered onto 142-mm�
0.2-mm polycarbonate filters. Filters were cut into
B0.5� 0.5 cm squares. Cells were lysed by bead
beating with 1.5 g of sterile 0.1-mm zirconium beads
(Biospec, Bartlesville, OK, USA) in an extraction buffer
containing 10 mM Tris-HCl pH 8, 25 mM Na2EDTA
pH 8, 1% (v/v) sodium dodecyl sulfate (SDS), 100 mM

NaCl and molecular biology grade water at 70 1C for
30 min and then extracted with phenol-chloroform and
precipitated using ice-cold ethanol.

RNA extraction and reverse transcription
RNA was extracted from a set of 142mm� 0.2mm
polycarbonate filters. Cells were lysed by bead beating
in RLT buffer (Qiagen Inc., Valencia, CA, USA)
supplemented by 1/100 vol b-mercaptoethanol. Lysate
was purified and concentrated twice with RNeasy Mini
kit (Qiagen Inc.). The extracted RNA was treated with
Rnase-free DNase (DNA-free, Ambion Inc., Austin, TX,
USA). RNA quality and concentration were estimated
using the Experion RNA StdSens Analysis Kit (Bio-Rad
Laboratories, Hercules, CA, USA). Reverse transcrip-
tion was performed with an Enhanced Avian First
Strand synthesis kit (Sigma-Aldrich, St Louis, MO,
USA) using random nonamers.

Q-PCR analysis
All Q-PCR analyses were performed on a Biorad
CFX96 Real-Time System/C1000 Thermal cycler
equipped with CFX Manager Software. The copy
numbers of archaeal 16S rDNA were estimated
by using the 16S rDNA specific primers Parch519F
and ARC915R (Coolen et al., 2004); Thaumarchaeota
(MCG1) 16S rDNA with MCGI-391F and MCGI-
554R primers as described by Coolen et al. (2007);
archaeal amoA with primers CrenAmoAQ-F and
CrenAmoAModR (Mincer et al., 2007); and 16S
rDNA anammox with Brod541F and Amx820R as
described by Li et al. (2010). For the quantification
of the hzo gene, hzo primers hzo_LV2F and

Figure 1 (a) Location of Arabian Sea sampling station (indicated
by the star; lat 21155’, long 631100), just outside the region
containing a quasi-permanent secondary nitrite (NO2

�) maximum
(Revsbech et al., 2009). Persian Gulf Water (PGW) and to a much
lesser extent, Red Sea Water (RSW), influence the OMZ at our
study site. (b) Hydrographic characteristics of the water column
at our sampling station as recorded from the CTD sensors, and
depths where SPM sampling was performed using an in situ
pump.
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hzo_LV1R (this study) were designed by aligning
n¼ 50 sequences obtained from the cloning of
the PCR product hzo1F-hzo1R (Lam et al., 2007).
For more details on the DNA, RNA extraction,
Q-PCR standard preparation and Q-PCR procedure
(including efficiencies and correlation coefficients),
see Supplementary methods.

Results

Hydrographic setting and water column chemistry
In January 2009, the water column of the Arabian
Sea at the southeast slope of the Murray Ridge,
where the water depth reaches 3010 m, was inves-
tigated by a range of oceanographic and microbial
ecology methods. Dissolved oxygen concentration,
as measured by the CTD oxygen sensor, decreased
from fully saturated at the surface to o2.5 mM (that
is, at the detection limit of the CTD oxygen sensor
real oxygen concentrations are likely to be substan-
tially lower; see Revsbech et al., 2009; Stolper et al.,
2010) within the core of the OMZ and increased
again with depth starting at 1050 m (Figure 1b).
Sulfide was not detected, indicating the absence of
euxinic conditions. Salinity increased at 95 and
325–400 m, corresponding to the influx of Arabian
Sea high salinity water and the Persian Gulf outflow
water masses, respectively (Shetye et al., 1994).
Particulate matter, as indicated by turbidity, was
concentrated towards the sea surface where fluores-
cence was also high, but also showed increased
amounts between 170–300 and 450–750 m (Supple-
mentary Table S1). Ammonium (NH4

þ ) concentra-
tions values ranged between 0–0.14mM with a
maximum value at 170 m depth (0.14 mM). Elevated
concentrations were also found from 900 to 1200 m
depth (0.08–0.1 mM). Nitrite (NO2

�) concentrations
showed slight peaks at 170 m (0.62 mM) and 600 m
(0.50 mM) (Supplementary Table S1). SPM was
sampled for IPL and DNA/RNA analyses at 12
depths in the water column (Figure 1b).

Distribution and abundance of lipids and genes
We developed a new Selective Monitoring Reaction
method for the main crenarchaeol-based IPLs
synthesized by ‘Ca. N. gargensis’ (Pitcher et al.,
2011) with six different head groups (Figure 2a,
Supplementary Table S1). Of these IPLs, three were
detected at high levels in the Arabian Sea SPM: the
monohexose, dihexose and hexose-phosphohexose
(HPH)-crenarchaeol (Figure 2b), each of which was
present at all depths (for example, Figure 3b). Trace
amounts of the hexoseþ ’180’ crenarchaeol IPL
found in N. maritimus SCM1 (Schouten et al.,
2008) were also sometimes observed. For compar-
ison with archaeal genes, we focused on HPH-
crenarchaeol as opposed to the hexose-based
IPLs because it is an abundant IPL in all screened
AOA thus far (Schouten et al., 2008; Pitcher et al.,

2010, 2011) and is likely to be the best biomarker
for putative AOA due to the labile nature of
the phosphate-ester bond compared with the
glycosidic ether bond (Harvey et al., 1986; Schouten
et al., 2010).

HPH-crenarchaeol showed a substantial increase
from the surface waters to 170 m, where its relative
abundance reached the highest detected levels and
then decreased rapidly to 450 m (Figure 3c). HPH-
crenarchaeol abundance was somewhat higher
again between 600 and 1200 m. Copy numbers and
expression (that is, RNA abundance) of thaumarch-
aeotal 16S rDNA and amoA genes followed HPH-
crenarchaeol concentration, also peaking at 170 m
water depth, and a subtle increase was observed
at greater depth (Figure 3d). However, 16S rDNA
and amoA DNA copy numbers showed a more
pronounced peak at 1050 m water depth than both
HPH-crenarchaeol and RNA concentrations.

Anammox bacterial markers, that is, the PC-
monoether ladderane, anammox 16S rRNA and
hzo genes (both DNA and RNA quantification), co-
varied well throughout the water column (Figures
3f–g). Full-scan MS analysis showed that additional
lipids in the water column (for example, PC-
lysolipids) contributed significantly to the SRM
signal of the PC monoether assay at 170 m depth,
resulting in an overestimation of its abundance. In
contrast to AOA, maximum abundances of ana-
mmox markers were observed in the core of the
OMZ between 450 and 750 m. Both PC-monoether
ladderanes and anammox genes were low at con-
centrations outside this depth range.

Discussion

Depth distributions of AOA
The results of our IPL and gene-based analyses
show that AOA are abundant in the OMZ of the
Arabian Sea and confirm previous evidence for the

Figure 2 SRM of crenarchaeol-based IPLs with headgroups
(labeled peaks; see Supplementary Table S1 for specific mon-
itored transitions). Total ion current of the SRM traces of
(a) ‘Ca. N. gargensis’ biomass and (b) total ion current of the
SRM trace of suspended particulate matter collected at 170 m
from the Arabian Sea.
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occurrence of planktonic Thaumarchaeota in the
Arabian Sea based on the recovery of fossil cre-
narchaeol (Schouten et al., 2010). The specificity of
crenarchaeol to AOA (de la Torre et al., 2008; Pitcher
et al., 2010), coupled with the occurrence of HPH-
crenarchaeol in all screened AOA to date (Schouten
et al., 2008; Pitcher et al., 2010, 2011), renders
HPH-crenarchaeol as the most fitting biomarker
lipid for tracking AOA. Similarities between AOA
genes and IPL profiles (Figure 3) indicate that
our AOA-specific crenarchaeol-based IPL SRM is a
suitable tool for tracking active AOA occurrence in
the marine water column. Previous studies have
observed that the degradation rate of IPLs is
different according to the environmental conditions
and the polar head group, for example, glycosidic
ether lipids degrading much slower than phospho-
ester lipids (Harvey et al., 1986; Schouten et al.,
2010). Therefore, HPH-crenarchaeol is likely the
best marker for living AOA. Phosphoester lipids
have been shown to degrade substantially within
2–4 days, though small percentages remain even
after several weeks (White et al., 1979; Harvey et al.,
1986). Thus, IPL turnover occurs likely on a scale of
days to weeks (that is, similar to DNA), whereas
RNA (especially mRNA) will have a much shorter
half-life on the order of minutes to hours (Takayama
and Kjelleberg, 2000).

Thaumarchaeotal amoA and 16S rDNA gene
abundances were positively correlated, suggesting
that the majority of the Thaumarchaeota are ammo-
nia oxidizers. The archaeal amoA:16S rDNA ratio
(average 2–3) is comparable to the values obser-
ved in other environmental studies (for example,
Wuchter et al., 2006; Beman et al., 2008; Galand
et al., 2009; Molina et al., 2010). The detection of a

putative AOA community deep in the Arabian Sea
is in agreement with recent studies implicating
AOA in deep-sea nitrification (Mincer et al., 2007;
Konstantinidis et al., 2009; Church et al., 2010;
Santoro et al., 2010). The coincidence of peak HPH-
crenarchaeol and AOA 16S rRNA and amoA DNA
gene abundances and expression, predominantly at
170 m and, to a lesser extent, around 1050 m, points
to the OMZ transition zones as possible preferred
niches for Arabian Sea Thaumarchaeota and indi-
cates that they are adapted to cope with low oxygen
concentrations, as at both depths oxygen concentra-
tion was B5mM (Figure 3a; Supplementary Table S1).
Other water column studies have revealed similar
subsurface peaks in putative AOA abundance at or
near the onset of low oxygen concentrations (Coolen
et al., 2007; Beman et al., 2008; Lam et al., 2009,
2011; Molina et al., 2010). Although AOA have also
been recovered in high abundance from oxygenated
marine waters (for example, Karner et al., 2001;
Wuchter et al., 2006; Herfort et al., 2007) including
the 20-m SPM sample at our station, and have been
grown successfully under fully oxic culture condi-
tions (Könneke et al., 2005; de la Torre et al., 2008;
Hatzenpichler et al., 2008), their abundance and
gene expression was much higher at 170 m relative
to the fully oxygenated surface water and ventilated
bottom waters (Figure 3). This is in agreement with
recent enrichment studies that showed preferential
growth of Thaumarchaeota at low oxygen concen-
trations (Park et al., 2010). Furthermore, a recent
study by Stolper et al. (2010) showed that aerobic
metabolisms, such as ammonia oxidation, can
potentially proceed at very low oxygen concentra-
tions. It should be noticed that AOA 16S rDNA and
amoA DNA copy abundances showed a much
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Figure 3 Depth profile at sampling station: (a) oxygen (O2); (b) ammonium (NH4
þ ) and nitrite (NO2

�); (c) HPH-crenarchaeol;
(d) thaumarchaeotal 16S rDNA and amoA gene abundances; (e) thaumarchaeotal 16S rRNA and amoA mRNA abundances;
(f) PC-monoether ladderane abundance; (g) anammox bacteria 16S rDNA and hydrazine oxidoreductase (hzo) gene abundances; and
(h) anammox bacteria 16S rRNA and hydrazine hzo mRNA abundances.
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stronger peak at 1050 m depth, in contrast to AOA
IPLs and RNA copy numbers. This might indicate
that AOA are less metabolically active at this depth
in comparison with the population occupying the
niche at 170 m.

Within the core OMZ, between 600–750 m, AOA
reach their lowest values where oxygen concentra-
tions are minimal. This, together with low levels of
amoA mRNA, could be an indication that oxygen
levels are perhaps too low within the core of the
OMZ to support a strong aerobic AOA activity.
If so, then the AOA in the Arabian Sea exhibit
an especially narrow range of preferred oxygen
conditions (that is, 5 mM4O242.5 mM). Indeed,
low oxygen concentration has been shown to
inhibit growth of N. maritimus SCM1 in culture
(Km¼ 0.13 mM), suggesting a limited activity
under very low-oxygen/anoxic conditions in nature
(Martens-Habbena et al., 2009). Although high copy
numbers of AOA 16S rDNA have been previously
detected in suboxic areas of the Black Sea (O2

concentrations below detection limit; Coolen et al.,
2007; Lam et al., 2007), low amoA expression was
also observed. These observations indicate that
under low-oxygen conditions (o2.5 mM) AOA might
survive, but metabolic activity is reduced. Further-
more, the presence of AOA in the mid-OMZ
may also be restricted by competition for NH4

þ

(and/or O2) with other microbes, such as anammox
bacteria. NH4

þ concentrations throughout the OMZ
were lower but near the Km values reported for
N. maritimus SCM1 (Martens-Habbena et al., 2009),
indicating that AOA should not be limited by
NH4

þ concentrations at mid-OMZ depths (assuming
environmental AOA are also adapted to low-sub-
strate conditions). Thus, the pointed decrease in
AOA abundance towards the core OMZ suggests
that oxygen may be a more important factor in
determining their depth distribution at this time
and location.

Depth distributions of anammox bacteria
Anammox 16S rRNA and hzo gene abundances, the
expression of these genes and PC-monoether ladder-
ane profiles co-vary well (Figures 3f–h) and the
maximum abundance of anammox genes and IPLs
occurred between 450 and 750 m, evidencing a
prominent community of active anammox bacteria
over this depth range. The substantially lower
abundance of IPLs and genes, and their expression,
at other depths suggests that mid-OMZ depths are
optimal for anammox bacteria. Anammox bacteria
have been closely associated with NO2

� maxima
previously in the Black Sea (Kuypers et al., 2005;
Lam et al., 2007) and in the Arabian Sea (Ward et al.,
2009; Bulow et al., 2010). Therefore, we did not
expect to find such high abundances of anammox
bacteria in the absence of a strong secondary nitrite
maximum (SNM) at our sampling station; within the
OMZ NO2

� was only slightly elevated (0.5 mM) at a

single depth (600 m) (Figure 3b). This observation
suggests that significant anammox communities
may also exist elsewhere where NO2

� is present in
lower concentrations, particularly because in situ
concentration may not be representative of the
actual flux or turnover. Interestingly, previous core
ladderane analyses from Arabian Sea SPM also
showed maximum lipid abundances at ca. 600 m,
at multiple stations off the Omani coast (Jaeschke
et al., 2007). Although core lipids were used in this
case (as opposed to IPLs) and the sampling resolu-
tion was much lower, this nevertheless substantiates
our findings and the likelihood of anammox com-
munities existing outside/below the SNM of the
Arabian Sea (and potentially other low-NO2

� marine
environments). If so, the presence of a nitrite
maximum should not necessarily be taken as a
likely spot for the presence and activity of anammox
bacteria (cf. Ward et al., 2009). Indeed, Lam et al.
(2011) have recently observed that the strong SNM
can be a signature of an aged water mass with
nitrate-reducing conditions that has experienced
past nitrogen loss but can no longer support in situ
N-loss activity.

The anammox 16S rRNA gene abundances ob-
served between 450 and 750 m (1.7–4.1� 108 16S
rDNA anammox copies l�1) are comparable to those
observed by Ward et al. (2009) at shallower depths
(80–250 m) where NO2

� was ca. 5–10 mM. As Ward
et al. (2009) did not report results of samples deeper
than the SNM for genes and anammox activity, it is
not possible to say whether a significant community
of anammox bacteria was present from 450 to
700 m at the stations they studied. Nevertheless,
our findings indicate that the distribution of
anammox bacteria is not patchy as previously
suggested (Bulow et al., 2010) and they may be
important in removing nitrogen from core OMZ
depths in the Arabian Sea in addition to any
denitrification, which may also be occurring. Possi-
bly, the low oxygen concentrations at these depths
might promote a cryptic sulfur cycle that in turn
stimulates the activity of anammox bacteria, as has
been suggested for the Peruvian OMZ (Canfield
et al., 2010).

The Arabian Sea SNM has been attributed to
denitrification activity in the Arabian Sea (that is,
accumulated NO2

� from NO3
� reduction). The

absence of a strong SNM at our site suggests the
possibility that denitrification may not have been
intense, resulting in only scant amounts of deni-
trification-derived NO2

� as a substrate for anammox.
However, depending on the activity level of local
anammox bacteria, rapid conversion of NO2

� could
also mask intensely high denitrification. Water
between 250 and 400 m at our sampling station did
show an increase in salinity characteristic of Persian
Gulf Water (Figure 2). From the present data, it is not
possible to determine whether the Persian Gulf
Water and/or local denitrification were influencing
the anammox community at our site. Nevertheless,
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the identification of abundant biomarker lipids,
specific genes and their gene expression pointing
to a substantial active community of anammox
bacteria in the Arabian Sea at the core of the OMZ
in the absence of a prominent SNM is an intriguing
observation that could imply a much larger potential
contribution of anammox bacteria to N-loss than is
currently estimated.

Implications for potential metabolic coupling of
archaeal ammonia-oxidation and anammox
AOA could theoretically provide substrates for
anammox in the form of NO2

�. NH4
þ , however, is

required by both and, therefore, direct coupling
of these metabolisms would require competition,
and/or alternate sources of this substrate. Despite
the fact that NH4

þ oxidation requires oxygen, and
anammox bacteria are inhibited by as little as 1mM

of oxygen in culture (Strous et al., 1997), anammox
bacteria have been recovered from water with an
oxygen concentration of 9mM (Kuypers et al., 2005),
and putative AOA are commonly recovered from
near-suboxic waters. Recent work suggested that
indeed AOA and ammonia oxidizing bacteria may
contribute up to 40% of the NO2

� required by
anammox in the Black Sea (Lam et al., 2007).
Although AOA and anammox bacteria could theo-
retically occupy similar niches in the Arabian Sea,
our results indicate that this is not the case, as
evidenced mainly by the large vertical segregation
(4400 m) of their respective niches. Ward et al.
(2009) also hypothesized a non-existent relation-
ship between aerobic ammonium oxidation and
anammox activity at shallower depths, although
this study was based on another sampling time and
stations. However, if AOA at the time of their
sampling campaign would have exhibited the same
distribution as we observed, it is possible that the
anammox bacteria observed at 200 m by Ward et al.
(2009) could have indeed been coupled to archaeal
ammonia oxidation as we clearly find a maximum
in abundance and activity of AOA at the top of
the OMZ.

Our results thus indicate that, despite the poten-
tially suitable conditions, AOA and anammox
bacteria do not necessarily occupy similar niches,
at least not at our site in the Arabian Sea, and the
cooperation/competition between these two groups
may not be widespread in anoxic basins or OMZs.
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