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Microbial ecologists can now start digging into the accumulating mountains of metagenomic data to
uncover the occurrence of functional genes and their correlations to microbial community members.
Limitations and biases in DNA extraction and sequencing technologies impact sequence
distributions, and therefore, have to be considered. However, when comparing metagenomes from
widely differing environments, these fluctuations have a relatively minor role in microbial
community discrimination. As a consequence, any functional gene or species distribution pattern
can be compared among metagenomes originating from various environments and projects. In
particular, global comparisons would help to define ecosystem specificities, such as involvement
and response to climate change (for example, carbon and nitrogen cycle), human health risks
(eg, presence of pathogen species, toxin genes and viruses) and biodegradation capacities.
Although not all scientists have easy access to high-throughput sequencing technologies, they do
have access to the sequences that have been deposited in databases, and therefore, can begin to
intensively mine these metagenomic data to generate hypotheses that can be validated
experimentally. Information about metabolic functions and microbial species compositions can
already be compared among metagenomes from different ecosystems. These comparisons add to
our understanding about microbial adaptation and the role of specific microbes in different
ecosystems. Concurrent with the rapid growth of sequencing technologies, we have entered a new
age of microbial ecology, which will enable researchers to experimentally confirm putative
relationships between microbial functions and community structures.
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Introduction

The explosion of metagenomic projects in an
increasing variety of terrestrial and marine ecosys-
tems (Tyson et al., 2004; Garcı́a Martı́n et al., 2006;
Kurokawa et al., 2007; Nealson and Venter, 2007;
Vogel et al., 2009) and the availability of new high-
throughput sequencing technologies are facilitating
our understanding of the ‘black box’ of environ-
mental microbial communities. This black box
contains a wealth of novel genes that can aid in
drug discovery and in a better understanding of
processes for climate change, agronomy and pollu-
tion degradation. Importantly, this goldmine of
biological information is becoming increasingly
publically accessible through various databases
and annotation platforms (http://metagenomics.anl.
gov/; http://camera.calit2.net/; http://img.jgi.doe.

gov/cgi-bin/m/main.cgi) and mining these data can
aid in both providing answers to and helping to test
and create new hypotheses for microbial ecologists.
However, the demand for competent bioinformati-
cians and statistically valid data treatment methods
often exceeds supply, thus leaving many microbial
ecologists removed from this rush of metagenomic
data. Many of the potential insights will come from
comparing metagenomic data between ecosystems
(Tringe et al., 2005; Dinsdale et al., 2008; Willner
et al., 2009). However, currently accessible data are
underexploited despite their ecological relevance.
Although this lack of data use and the perceived
requirement for trained bioinformaticians could
raise the question of the value of investing heavily
in metagenomics projects (Baveye, 2009), we believe
that benefit will come in the form of inter-ecosystem
comparisons of microbial functions of interest,
intra-ecosystem variations in microbial function,
identification of novel genes and correlations
between functions (and species) that will shed light
on microbial interactions and adaptation.

Global metagenomic comparisons can be used to
probe for answers to (or tickle the curiosity about)
different aspects of microbial ecology by the
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application of new user-friendly bioinformatics and
statistical tools for understanding the strength of
observed differences. As an example, we compared
the diversity and distribution of 77 metagenomes
(most being publically available) corresponding to
various projects and environments by using the
MG-RAST public platform (Meyer et al., 2008).
The relative numbers of sequence reads that were
annotated in the metabolic subsystems provided
were analyzed by principal component analysis
(PCA). In addition, STAMP was used to evaluate
the statistical significance of observed differences
(Parks and Beiko, 2010). The metagenomes from
these different ecosystems (oceans, coral atolls, deep
oceans, Antarctic aquatic environments, Arctic
snows, soils, hypersaline sediments, sludges, micro-
bial fuel cell biofilms, acid mine biofilms, polluted
air and animal microbial populations) are clearly
separated (Figure 1a). Significant variations between
research labs, sample types, DNA extraction and
sequencing techniques for a given ecosystem do not
seem to inhibit cross ecosystem comparisons. As
an example, for the metagenomes from three
ecosystems, ocean, soil and human microbiome,
DNA was extracted by different researchers using
different methods and different sequencing technol-
ogies (three sequential pyrosequencing technologies
and the Sanger technology) were used, yet, these
metagenomes are still grouped as a function of their
original environment (Figure 1a). Thus, although
methodological fluctuations exist between labora-
tories (Leek et al., 2010), these results show a
limited (‘batch’) effect of methodology (for example,
sequencing technology) in high-throughput data
when comparing globally different environments.
In addition, studies focused on 16S rRNA gene
sequencing also clustered animal microbial popula-
tions separately from the marine and terrestrial
ecosystems (Ley et al., 2008). The exploration of
other gene classes responsible for these differences
would provide insight into the overall functioning
of these ecosystems.

A considerable limit of MG-RAST and other
annotation platforms is the use of ‘annotated’
sequences, that is, those that have been classified
as belonging (with a fixed probability of similarity,
in our case here we used an E-value limit of 10�5)
to some established functional subsystems (for
example, carbohydrate metabolism) or other data-
bases, and the exclusion of non-annotated se-
quences, which might provide both novel
functions and important differences between eco-
systems. These non-annotated sequences provide a
tremendous resource for future functional experi-
ments and protein modeling. Some novel and
potentially ecologically important functional groups
are not being identified because of the dependence
of current platforms on the already sequenced
(and hopefully well annotated) genomes of mostly
cultivated microorganisms. An added caveat to
the discovery and exploitation of non-annotated

sequences (including possible gene assembly) is the
dependence of sequence length on the percentage of
annotated sequences (Figure 1b). In panel 1b, a clear
correlation between the percentage of annotated
sequences and sequence length is shown; however,
there seems to be a confounding effect, which is the
proportion of Eukarya- or virus-related sequences in
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Figure 1 (a) PCA based on the relative distribution of annotated
sequences (E-valueo10�5) categorized in 838 different functional
subsystems detected in the 77 metagenomes. Distributions were
normalized as a function of the number of annotated sequences
for each metagenome. The percentages of the illustrated two
major axes correspond to the fraction of the total variance that
they represent (see insert showing all of the axes and their
percentage of the overall variance). (b) Relationship between
average sequence length and the percentage of annotated func-
tions (E-valueo10�5) for the metagenomes used here. The
different average sequence sizes are due in part to variations in
sequencing technology. In addition, ocean and Antarctic meta-
genomes have annotations varying considerably for the same
average sequence length. This fluctuation is due in part to the
presence of sequences related to eukaryotic and virus sequences
for oceans and Antarctic aquatic environments.
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the metagenomic data set. For example, the percen-
tage of annotated sequences in some ocean meta-
genomes (sequence length of about 1000 nt) is
negatively correlated to the proportion of eukaryotic
sequences (R240.86, when using 59 metagenomes
from the global ocean survey). Due to important
annotation fluctuations independent of microbial
community structure (Figure 1b), both functional
and taxonomical distributions were normalized as a
function of the number of annotated sequences as was
carried out for Figure 1a and not the entire data set.

Although comparing ecosystems based on their
relative sequence (‘reads’) frequencies in different
metabolic subsystems can provide insight into
functional differences, specific functions (or
species) can be and should be individually exam-
ined in order to answer specific questions or to test
hypotheses. Comparing large numbers of meta-
genomes can highlight unusual functional and
phylogenetic distributions either between or within
ecosystems. We provide a few examples of this
approach to emphasize its significance (Figure 2).
Oceans possess the highest relative number of

metagenomic sequences related to dimethylsulfo-
niopropionate (DMSP) breakdown (Figure 2). DMSP
occurs in considerable amounts in marine algae, for
which this molecule and its breakdown products
probably serve as an antioxidant system (Sunda
et al., 2002). But more importantly, its degradation
can release dimethyl sulfide molecules (DMS) into
the atmosphere, where they might improve cloud
formation and limit solar radiation at the planet
surface (Charlson et al., 1987). This functional
subsystem is distinctly more abundant in the ocean
ecosystem than in any of the 14 other environments.
In ocean-related metagenomes and within this
subsystem (‘DMSP’), sequences corresponding to
DmdA (DMSP demethylase) and to DmdB2 (DMSP
breakdown hydrolase) were found. On the other
hand, inorganic sulfur assimilation-associated
sequences are not particularly higher in the oceans
than in other ecosystems and are on the same order
as that for DMSP degradation in the ocean (about
0.1% of annotated sequences). Inorganic sulfur
assimilation is more highly represented in the two
activated sludge metagenomes, corresponding to
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Figure 2 Comparison of the relative distribution in percentage (based on the annotated sequences (E-valueo10�5)) of five functional
classes and one genus (SEED annotation) among the 77 metagenomes deposited in MG-RAST. The horizontal line corresponds to the
average of the relative distribution for each of the 15 environments.
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B0.5% of the annotated sequences (Figure 2).
The sulfur in sewage sludge can form gaseous
SO2 and cause associated acid-rain problems, if
incorporated in sludge co-combustion processes.
Therefore, biological mechanisms involved in sulfur
cycling have immediate impacts on environmental
processes.

Another example focuses on multidrug resistance
efflux pumps involved in antibiotic resistance that
have been extensively studied in pathogens (Li and
Nikaido, 2004). However, these pumps are present
in all living organisms and are not restricted to
antibiotic compounds (Martinez et al., 2009). They
are also capable of extruding heavy metals, solvents
and antiseptics (Pumbwe et al., 2007). They are
thought to be largely present in soil and in
association with plants (Konstantinidis and Tiedje,
2004). However, we found that they appear to be
more represented in human feces and chicken and
mouse cecum (Figure 2), where they could have an
important role in pathogen antibiotic resistance.
These pumps are present in all the environments
studied, confirming their multifunction role, but are
relatively limited in oceans, deep oceans, polluted
airs and acid mine drainage biofilms, where they are
apparently less dominant. Although correlations
can be calculated between functions that are
relatively dominant in the same ecosystem (for
example, beta-glucosides for animal-associated
microbial communities), these correlations do not
necessarily have any mechanistic value, but could
be simply co-correlated to other phenomena. To
provide more clear relationships, the presence of
these two targeted subsystems on the same sequence
(whether on a read or a contig) is required. The
cAMP signaling is another example where we find
more sequences related to bacterial cAMP signaling
in soil than elsewhere (Figure 2).

The cAMP is an important secondary messenger
in all three domains of life. Interestingly, as a cAMP
subversion mechanism, some bacterial pathogens
inject adenylate cyclase protein toxins into plants
(Agarwal and Bishai, 2009). Thus, soil microbial
communities appear to possess a considerable
potential for deceiving plant signaling mechanisms,
if cAMP is involved in pathogenicity; however, its
role in other metabolic functions cannot be dis-
regarded.

Metagenomic sequence data can also be used to
evaluate the microbial community structure. In
metagenomes without targeted gene amplification,
the number of housekeeping genes present that can
be used to assess which species are present is rather
limited. On the other hand, all annotated sequences
could be assigned to a closest related species and
used to define the community structure with the
caveat that only known species will be defined. An
example is the apparent distribution of the genus
Nitrobacter (known to oxidize nitrite to nitrate;
Schmidt, 1978) in different ecosystems and its
relative dominance in soil (Figure 2).

Another approach for comparing ecosystem me-
tagenomes could be the combination of results from
annotation platforms and the number of sequences
determined by using BLAST for specific genes
(Altschul et al., 1990). This BLAST approach can
be applied by tagging metagenomes and developing
‘in house’ annotation systems that researchers can
create for specific questions. For example, a sample
from the Gulf of Mexico is among the ocean
metagenomes, therefore, these metagenomes could
be screened for their relative petroleum hydrocarbon
degrading abilities. Using BLAST, pooled and tagged
metagenomes were screened for sequences similar to
those associated with the degradation of oil com-
pounds. For example, we looked at genes that code
for the AlkB and AlkM enzymes, which are capable
of degrading aliphatic oil compounds. Other genes
including those associated with cytochrome P450
(CYP153 family), which has also been implicated in
aliphatic hydrocarbon degradation, were included
in our metagenomic screening. The relative distribu-
tion of these genes was used to predict variations in
hydrocarbon degradation potential among ecosys-
tems. These distributions were normalized as a
function of the number of annotated sequences on
annotation platforms as carried out for the MG-RAST
subsystems. We simultaneously compared meta-
genomes from some of these ecosystems using both
functional subsystems associated with hydrocarbon
degradation and the specific hydrocarbon degrada-
tion genes cited above using a PCA approach.
Antarctic aquatic environments, human feces and
hypersaline sediments were similar in their general
lack of sequences (other than the presence of those
associated with anaerobic aromatic compound meta-
bolism) associated with hydrocarbon degradation
(Figure 3). The presence of anaerobic aromatic
compound metabolism sequences was, however,
observed in all ecosystems, but this type of metabo-
lism is not limited to petroleum hydrocarbons. The
location of the different functional genes can be
projected on the same PCA plot in order to provide a
visual clue as to which functional genes are
associated with which ecosystems (Figure 3). For
example, the majority of deeper ocean samples (from
at least 500 m depth) have relatively more aliphatic
oil-degrading genes than the surface ocean and soil,
which contain more aromatic oil-degrading genes.
The important fluctuations observed for deep oceans
are due to the limited number of functions compared
in this PCA. In addition, based on these selected
hydrocarbon degradation functions, oceans and soil
are relatively similar.

This rapidly growing metagenomic sequence
data from different environments can also help
researchers target microbial communities that might
have roles in a range of important functions.
Although gene presence per se is not indicative of
enzymatic activity, and the ecosystems compared
here are not equal in amount of sequence data,
understanding the relative proportions of these
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genes in specific ecosystems might provide better
insight into their relative importance. Perhaps
metatranscriptomic and metaproteomic approaches
will help to understand the temporal nature of the
specific activities and functions that are expressed.
After such primary analysis, clone libraries could be
constructed (and are being constructed in some
cases) and probed for the sequences of interest, after
which the genetic environment of these functional
genes could be elucidated.

We have shown only a very limited analysis of
existing metagenomic data here in order to illustrate
existing resources available to microbial ecologists
today. These resources are being constantly replen-
ished by increasing data sets and sequenced eco-
systems. The distribution of every defined function
and species can already be evaluated at different
taxonomical levels in hundreds of metagenomes
using both annotation platforms and local BLAST
for specific questions. Differences in functional gene
families and specific functions (or target sequences)
between metagenomes from different environments
can aid our understanding of how microbial com-
munities function. The beauty of this influx of
metagenomic data is that so much remains to be
discovered. As an example, estimations established

that between 104 (Torsvik et al., 2002) and 107 (Gans
et al., 2005) different species can be present in 1 g of
soil. In addition, we have emphasized the consider-
able difficulties in accessing soil genetic richness
that limit the number of detected species when
using only one DNA extraction approach (Delmont
et al., 2011). As a consequence, currently available
metagenomes related to soil and other ecosystems
represent only a fraction of their existing genetic
potential.

In the future, continuous advances in sequencing
technologies (and sequenced genomes) will generate
not only more, but also longer sequences, thus
increasing significantly metagenomic sensitivity
and possibly the percentage of annotated sequences
(Figure 1b). The re-annotation of metagenomes
when additional reference genomes become avail-
able will also stimulate and improve annotations, if
those sequenced genomes are accurately annotated
themselves. Increased number and length of meta-
genomic sequences will also lead to genome assem-
bly and possible improved cultivation techniques.
In addition to this revolution, the continuous
increase in metagenome sequencing projects (for
example, TARA, Earth Microbiome Project, Terragen-
ome and Microbial Earth project; Gilbert et al. 2011)
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Figure 3 PCA of six selected ecosystems based on their number of sequences associated with petroleum hydrocarbon degradation
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and new global metagenomic comparison tools are
aiding researchers enter a new age of microbial
ecology. However, experiments (including metatran-
scriptomic and metaproteomic analyses) are becoming
essential to confirm the biological roles of annotated
functions (and microorganisms) in situ and to increase
our knowledge concerning the vast quantity of non-
annotated sequences.
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Appendix
Oceans
4441573.3, 4441574.3, 4441576.3, 4441577.3,
4441591.3, 4443688.3, 4443697.3, 4443713.3,
4443714.3, 4443716.3, 4443725.3, 4443729.3.

Coral attols
4440279.3, 4440037.3, 4440039.3, 4440041.3.

Deep oceans
4441619.3, 4441656.4, 4441620.3, 4442503.3,
4441663.3, 4442500.4.

Antarctic aquatic environments
4443683.3, 4443680.3, 4443682.3, 4443684.3,
4443679.3, 4443686.3, 4443685.3, 4443687.3, 4443681.3.
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Arctic snows
4443128.3, 4443127.3.

Soils
4441091.3, 4446153.3, http://metasoil.univ-lyon1.fr/
for metagenomes corresponding to Rothamsted Park
Grass soil experiment.

Sediments
4440964.3, 4440963.3, 4440965.3, 4440966.3,
4440967.3, 4440969.3, 4440970.3, 4440968.3,
4440971.3, 4440972.3.

Phosphorus removing sludges
4441092.3, 4441093.3.
Microbial fuel cells
4447261.3, 4447259.3.

Acid Mine Drainage Biofilms
4441137.3, 4441138.3.

Singapore indoor polluted airs
4447940.3, 4447941.3.

Human feces
4440825.3, 4440460.5, 4440614.3, 4440611.3,
4440613.3, 4440616.3, 4440595.4, 4440452.7,
4440939.3, 4440942.3, 4440943.3.

Chicken Cecum
4440283.3, 4440284.3.

Mouse cecum
4440463.3, 4440464.3.

Cow rumen
4441679.3, 4441680.3.

These accession numbers correspond to metagenomes
available on MG-RASTv2 server (http://metagenomics.
anl.gov/v2/).
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