
RNAi screening reveals requirement for host cell
secretory pathway in infection by diverse families
of negative-strand RNA viruses
Debasis Pandaa,b, Anshuman Dasa,b, Phat X. Dinha,b, Sakthivel Subramaniama,b, Debasis Nayakc, Nicholas J. Barrowsd,
James L. Pearsond, Jesse Thompsonb, David L. Kellye, Istvan Ladungaf, and Asit K. Pattnaika,b,1

aSchool of Veterinary Medicine and Biomedical Sciences and bNebraska Center for Virology, University of Nebraska, Lincoln, NE 68583; cNational Institute of
Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892; dDuke RNAi Screening Facility, Duke University Medical Center,
Durham, NC 27710; eUniversity of Nebraska Medical Center, Omaha, NE 68198; and fDepartment of Statistics, University of Nebraska, Lincoln, NE 68588

Edited by Peter Palese, Mount Sinai School of Medicine, New York, NY, and approved October 17, 2011 (received for review August 19, 2011)

Negative-strand (NS) RNA viruses comprise many pathogens that
cause serious diseases in humans and animals. Despite their clinical
importance, little is known about the host factors required for their
infection. Using vesicular stomatitis virus (VSV), a prototypic NS RNA
virus in the family Rhabdoviridae, we conducted a human genome-
wide siRNA screen and identified 72 host genes required for viral
infection. Many of these identified genes were also required for
infection by two other NS RNA viruses, the lymphocytic choriome-
ningitis virus of the Arenaviridae family and human parainfluenza
virus type 3 of the Paramyxoviridae family. Genes affecting differ-
ent stages of VSV infection, such as entry/uncoating, gene expres-
sion, and assembly/release,were identified.Depletionof the proteins
of the coatomer complex I or its upstream effectors ARF1 or GBF1 led
to detection of reduced levels of VSV RNA. Coatomer complex I was
also required for infection of lymphocytic choriomeningitis virus and
human parainfluenza virus type 3. These results highlight the evolu-
tionarily conserved requirements for gene expression of diverse fam-
ilies of NS RNA viruses and demonstrate the involvement of host cell
secretory pathway in the process.

RNA interference | transcription and replication | host cell factors for
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Negative-strand (NS) RNA viruses include a large group of
human and animal pathogens that cause diseases ranging

from mild flu-like symptoms to fatal hemorrhagic fever. Vesicular
stomatitis virus (VSV), the prototype of the family Rhabdoviridae,
is an enveloped virus with a nonsegmentedNSRNA genome.VSV
infects most vertebrate and many invertebrate cells and has a short
infection cycle. These characteristics have earned appreciation for
VSV as an excellent model for understanding virus entry, genome
uncoating, replication, assembly, and budding processes, as well as
for studying innate and adaptive immune defense mechanisms.
VSV is also used as a viral vaccine vector, as an oncolytic agent,
and for gene therapy (1).
VSV encodes five proteins: the nucleocapsid protein (N), the

phosphoprotein (P), the matrix protein (M), the glycoprotein (G),
and the large polymerase protein (L) (2). The viral RNA exists in
the virion core as N protein-bound nucleocapsid (NC) to which the
viral polymerase is associated. During infection, VSV binds to
susceptible cells, although the receptor(s) mediating virus entry
remains unidentified (3). It enters cells by clathrin-mediated en-
docytosis, requiring endocytic adaptor protein AP-2, actin, and
dynamin (4–6). Once in the cytoplasm, low pH-dependent fusion
of viral envelope with the endosomal membrane leads to the re-
lease of NC in the cytoplasm for transcription and replication to
occur. Progeny NCs are transported toward the cell periphery in a
microtubule-dependent manner (7). Assembly of the viral com-
ponents occurs at the plasma membrane, and nascent virions are
released from the cells.
Viruses use key cellular pathways for their infection and repli-

cation (8, 9). Although much is known about the viral proteins in
the biology of the virus, little is known about the host factors inVSV

and other NS RNA virus infections. Identifying the cellular factors
and studying the mechanisms of their involvement in these viral
infections is important not only for understanding the biology of
these pathogens, but also for development of antiviral therapeutics.
The advent of siRNA technology and the availability of ge-

nome-wide siRNA libraries have been useful in identifying host
factors required for influenza virus, an NS RNA virus, and several
positive-strand RNA viruses, as well as HIV (10–19). The lack of
similar studies with other NS RNA viruses has limited the un-
derstanding of the role of host cell factors in replication of these
viruses. Using VSV, we conducted a genome-wide siRNA screen
to identify mammalian genes required for viral infection. Our
studies revealed requirements for several cellular pathways and
proteins in VSV infection. Many of the factors identified in the
screen for VSV are also required for infection by two other NS
RNA viruses: the human parainfluenza virus type 3 (HPIV3), a
nonsegmented NS RNA virus in the family Paramyxoviridae, and
the lymphocytic choriomeningitis virus (LCMV), a segmented
genomeNSRNA virus in the familyArenaviridae. Interestingly, for
these three viruses representing diverse families of NS RNA
viruses, viral gene expression required the function of the coat-
omer complex I (COPI), a coat protein complex involved in ret-
rograde vesicular transport from the Golgi to the endoplasmic
reticulum (ER) (20). Overall, the studies reveal a critical need for
the cellular secretory pathway in gene expression of disparate
families of NS RNA viruses.

Results
Genome-Wide RNAi Screen for Host Factors in VSV Infection. To
identify host proteins required for VSV infection, a genome-wide
siRNA screen was conducted. Four independent siRNAs, grouped
into a 2 × 2 pool format (Fig. 1A), targeting each of 22,909
mammalian genes, were used. VSV-eGFP, a recombinant virus
encoding enhanced green fluorescent protein (eGFP) (7), was
used to infect HeLa cells. Expression of eGFP in the cells would
indicate virus infection and gene expression. AllStars nontargeting
(NT) siRNA and siRNAs targeting the VSV L and N mRNAs
were used as controls. At 52 h post-siRNA transfection (hpt), cells
were infected with VSV-eGFP (hereafter VSV), and at 18 h
postinfection (hpi), they were fixed, stained for nuclei, and pro-
cessed for automated image analysis. Cell number and percent
infection were obtained for each well. Infection of NT siRNA-
transfected cells was optimized to yield, on average, 60% infection
rate. Under these conditions, the rate of infection of cells
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transfected with L and N siRNAs was reproducibly <1% (Fig. 1 B
and C). Wells with low cell number due to combined effects of
siRNA toxicity and VSV cytopathic effects (SI Experimental Pro-
cedures) were excluded from further analyses. Sum rank analysis
(21) was used, and 233 host genes (P < 0.01) were identified as
required for VSV infection.
We found several expected genes, including those of the ca-

nonical ribosomal proteins, key parts of the cellular translational
machinery. We deleted the ribosomal protein genes and narrowed
down the list to 173 genes (Dataset S1). Because our screen design
used a 2 × 2 siRNA pool format, the 173 genes exhibited the same
phenotype with at least two different siRNAs (at least one from
each pool), a recommended criterion for true hit identification
(22). Thus, the 173 genes identifiedmay represent factors required
for VSV infection. The biological process categories of cellular
genes overrepresented in the list based on the Panther classifica-
tion system (23) include genes involved in metabolic processes,
nucleic acid metabolism, intracellular protein transport, vesicle-
mediated transport, and exocytosis, among others (Fig. 1D).
Pathway analysis revealed that protein functions involved in at
least eight major cellular pathways were significantly enriched and
showed possible interconnections between these pathways for
VSV infection (Fig. S1A). Comparison of the mammalian genes
identified from genome-wide siRNA screens for other RNA
viruses (10–13, 15, 16, 24, 25) with those from the VSV screen
revealed that genes in several major biological functions categories
are shared by RNA viruses (Fig. S1B).
We then conducted a validation screen for the 173 identified

genes using siRNAs from another source, Dharmacon ON-
TARGETplus pool of four siRNAs. The validation screen was
performed in four replicates, and analysis of the results (SI Ex-
perimental Procedures) led to identification of 72 out of the 173
genes as required for VSV infection (Fig. 1F and Dataset S2).

HPIV3 and LCMV Infection Share Many Factors Required for VSV
Infection. To identify genes and pathways used by diverse families
of NS RNA viruses, the involvement of the 72 genes identified for
VSV was examined in HPIV3 and LCMV infection. These viruses
belong to distinct families of NSRNA viruses and have common as

well as unique strategies for entry, uncoating, replication, and virus
assembly. GFPs expressing LCMV and HPIV3 (26, 27) were used,
and the screen was conducted as described for VSV in duplicate.
By using this strategy, 54 and 27 genes were identified as required
for LCMV and HPIV3 infection, respectively, whereas 25 genes
were required for infection by all three viruses (Fig. 1E). The genes
identified for infection by the three viruses along with their known
and putative functions, can be found in Datasets S2 and S3, re-
spectively. The normalized percent infection for the 72 genes
identified as required for VSV are shown in the heat map (Fig. 1F)
and are compared with those found for LCMV and HPIV3.

Identification of Genes Involved in Various Stages of VSV Infection.
The screen used a multicycle VSV infection assay that included all
stages of the virus infection cycle, such as entry and uncoating,
transcription and replication, and assembly and release. Our
screen identified several subunits of vATPase as necessary for
VSV infection (Fig. 1F and Fig. S2), confirming the known role of
vATPase in endocytosis and virus uncoating (28).
The screen identified several solute carriers localized to the

plasmamembrane, including the solute carrier family 46member 1
[SLC46A1; proton-coupled folate transporter (PCFT)]. We ex-
amined the role of SLC46A1 in VSV infection. Results showed
that in siRNA-treated cells infected with VSV or VSVΔG [a virus
that lacks the G gene and cannot produce infectious virus, so the
infection with this virus is limited to single cycle only (29)], VSV
gene expression (levels of M protein) was reduced (Fig. 2A). We
then transfected VSV NC to cells treated with siRNAs for
SLC46A1 to bypass the endosome-mediated entry and uncoating
and examined the effects of depletion of the protein on gene ex-
pression. VSV NCs are not infectious per se when added to cells
but can initiate the viral genome transcription and replication
when delivered into the cytoplasm by transfection. Results show
that virus gene expression from transfected NCs remained un-
affected (Fig. 2A). Multiple siRNAs from two different sources
also led to reduced viral gene expression as well as depletion of the
SLC46A1 protein (Fig. S3A), indicating that the inhibitory effect
is specific. Together, these results suggest that SLC46A1 may be
required for VSV entry and/or uncoating.
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To identify genes involved in virus assembly and release, we
screened the 72 genes using both multicycle (with VSV) and sin-
gle-cycle (with VSVΔG) infection assays. We found that in ADAL
(Adenosine Deaminase Like) siRNA-treated cells infected with
VSV, the percent infection was ~threefold less compared with the
NT siRNA-treated cells, whereas the percent infection of cells
with VSVΔG was similar in both ADAL and NT siRNA-treated
cells (Fig. 2B). We found no differences in the level of viral gene
expression in cells treated with either siRNAs and infected with
either VSVΔG or VSV (Fig. 2C). However, infectious virus pro-
duction was reduced in VSV-infected cells treated separately with
two different sources of ADAL siRNA (Fig. 2D). These results
suggest that ADAL may facilitate VSV assembly and/or release.
Further, we found that methionine adenosyltransferase 2A

(MAT2A) siRNA treatment reduced VSV gene expression sig-
nificantly (Fig. 2E). MAT2A is involved in L-methionine metabo-
lism and catalyzes formation of S-adenosylmethionine (30).MAT2A
siRNA treatment also reduced gene expression in cells infected with
VSVΔG or in cells transfected with NCs (Fig. 2E). Multiple siRNAs
for MAT2A led to depletion of the MAT2A protein and corre-
sponding reduction in VSV gene expression (Fig. 2F). Viral mRNA
and anti-genome levels were reduced in cells treated with MAT2A
siRNA (Fig. S3B). These results indicate that MAT2A may have a
role in viral gene expression.

COPI Is Necessary for VSV Infection at the Level of Viral Gene
Expression. Network analysis revealed vesicle trafficking as one of
the top scoring pathways required for infection. COPI is involved
in retrograde vesicular transport of luminal and membrane pro-
teins from the Golgi to the ER and intra-Golgi transport (20). We
focused on COPI because multiple proteins in this pathway were
identified and siRNAs for COPI subunits (except COPE) exhibi-
ted strong inhibition of VSV infection (Fig. 1F). Fig. 3A shows
inhibition in VSV infection in cells treated with COPZ1 or
COPB1 siRNAs.
Because the early secretory pathway is necessary for VSV G

protein processing (31), it is possible that the COPI depletion

might have affectedG protein processing and, consequently, virion
assembly and release. To determine whether COPI plays any role
in other steps of theVSV infection cycle, we examined the effect of
COPI subunit siRNAs on VSV gene expression at 4 hpi, a time at
which viral gene expression is readily detectable. At this time, VSV
gene expression was inhibited by all COPI siRNAs (except COPE)
(Fig. 3B). Furthermore, VSVΔGvirus infection of cells depleted of
COPZ1 and COPB1 showed a significant reduction of viral gene
expression (Fig. 3C), indicating that COPI plays a role in facilitating
viral entry, uncoating, and/or gene expression. The degree of in-
hibition of VSV gene expression correlated with the level of de-
pletion ofCOPZ1 (Fig. 3D) andCOPB1 (Fig. S4A).Multiple siRNA
for each of the COPI subunits (except COPE) reduced VSV gene
expression (Fig. S4B).We then used 1,3-cyclohexanebismethylamine
(CBM), an inhibitor of COPI function (32, 33), to examine in-
volvement of COPI in VSV gene expression. Treatment of cells with
CBM 1 h before infection reduced VSVM protein levels in a dose-
dependent manner (Fig. 3E) without adversely affecting the cell vi-
ability (Fig. S5). These studies suggest that COPI is necessary for
VSV infection.
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Since COPI is involved in endosomal transport (34), it is pos-
sible that the inhibition of VSV gene expression could be due to
disruption of endosomal transport required for VSV entry and
uncoating. However, inhibition of viral gene expressionwas observed
in NC-transfected cells depleted of COPI subunits (Fig. 3F), sug-
gesting that COPI is required for viral gene expression, independent
of entry anduncoating steps.Additionally, we found reduced levels of
mRNA (transcription product) and anti-genome (replication prod-
uct) in COPZ1-depleted cells (Fig. 3G). Furthermore, when cells
were treatedwithCBM1hafterVSVinfection, a time-frame inwhich
themajority of the viruswouldhaveuncoated theirNCs (35), reduced
levels of mRNA and anti-genome were also observed (Fig. 3H),
suggesting that COPI is required for VSV gene expression.
We then examined whether COPI is also required for gene

expression of LCMV and HPIV3. Cells treated with siRNA for
COPI subunits were infected with GFP-encoding LCMV or
HPIV3. The level of GFP protein was examined in cell extracts
collected at the earliest time point when GFP expression was seen
in infected cells (7 hpi for LCMV or 14 hpi for HPIV3) (26).
Depletion of the COPI subunits (except COPE) significantly
inhibited LCMV and HPIV3 gene expression (Fig. 3I), suggesting
that these viruses also require COPI functions.

Viral Gene Expression Requires ARF1 and GBF1, the Upstream Effectors
of COPI. Activation of ADP ribosylation factor 1 (ARF1) is re-
quired for the recruitment of COPI complex onto the Golgi
membranes (36). In ARF1 siRNA-treated cells infected with
VSV, the viral gene expression was reduced by twofold with
concomitant similar reduction in the levels of ARF1 protein (Fig.
4A and Fig. S6A), suggesting that moderate inhibition of viral gene
expression may be due to insufficient depletion of ARF1. In cells
transfected with a plasmid encoding a dominant-negative mutant,
ARF1-T31N (37), viral gene expression was inhibited (Fig. 4B).
ARF1 depletion also inhibited LCMV gene expression but sur-
prisingly had no effect on HPIV3 gene expression (Fig. 4C). It is
possible that moderate level of ARF1 depletion might not have
shown measurable inhibitory effect on HPIV3 gene expression.
The Golgi-associated brefeldin A resistant factor 1 (GBF1) is

the guanine nucleotide exchange factor, which catalyzes GDP–
GTP exchange to activate ARF1 for COPI recruitment onto the
Golgi membranes (38). GBF1 siRNA reduced endogenous
GBF1 protein levels by >90% and led to significant reduction in
VSV M protein (Fig. 4D). Reduction in VSV mRNA and anti-
genome levels was observed after GBF1 depletion (Fig. S6B),
suggesting that VSV gene expression requires GBF1.

We then used inhibitors of GBF1 to probe its requirement in
VSV gene expression. Brefeldin A (BFA) inhibits GBF1, BIG1
(brefeldin-inhibited guanine nucleotide exchange factor 1), and
BIG2, whereas Golgicide A (GCA) and Tyrphostin AG1478 are
specific inhibitors of GBF1 (39, 40). In the presence of these drugs,
VSV gene expression was inhibited (Fig. 4E and F). The drugs had
no significant adverse effects on viability of uninfected cells (Fig.
S5). We then examined VSV gene expression in Madin Darby
canine kidney (MDCK) cells, which contain a natural mutation
(M832L) in GBF1, rendering the cells resistant to BFA, GCA, and
AG1478 (39–41). However, in these cells, BIG1 and BIG2 are
sensitive to BFA (40). In MDCK cells infected with VSV, viral
gene expression was not adversely affected, even at higher con-
centrations of the drugs (Fig. S6C). Studies with VSVΔG virus
infection (Fig. S6D) and NC transfection (Fig. S6E) showed that
GBF1 is required for VSV gene expression. In LCMV and HPIV3
infected cells, viral gene expression was reduced after depletion of
GBF1 (Fig. 4G) and was sensitive toGBF1 inhibitors (Fig. 4H and
I), indicating that GBF1 is also required for these viruses.

Discussion
In the present study, using a genome-wide siRNA screen, we have
identified host cell factors required for VSV infection. Because of
our screen design (2 × 2 pool of siRNA format) and validation
using a different source of siRNAs, the possibility of false positives
in the list is likely to be low, but it may have compromised our
ability to identify additional genes required for VSV infection. An
integrated model (Fig. 5) revealing the host factors required for
VSV infection demonstrates many previously undescribed func-
tions and pathways used not only by VSV but also by other RNA
viruses such as LCMV and HPIV3. This study provides a com-
parative analysis of cellular factors involved in replication of three
disparate NS RNA viruses. Functions such as RNA processing,
vesicular transport, transcription, and translation regulations, among
others, are shared by all three viruses, which would suggest utiliza-
tion of common cellular functions for their replication. It should be
noted that the factors identified for LCMV and HPIV3 are only
a subset of those identified forVSV and do not represent a complete
set of factors required for either LCMV or HPIV3. However, it is
evident that several of the cellular pathways and factors are shared
by all three viruses, illustrating commonalities in the requirements
for replication of these NS RNA viruses.
Although VSV is phylogenetically more closely related to

HPIV3 than LCMV (42), only 27 of the 72 factors identified for
VSV were required for HPIV3, whereas 54 of those were required
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for LCMV.We noted an enrichment of proteins involved inGPCR
signaling, indicating that signaling through some of these GPCR
components may be required for infection. The observations that
SLC46A1 (PCFT) is specifically required in entry/uncoating,
ADAL is required for assembly/budding, and MAT2A is required
for gene expression of VSV are unique findings of this study.
ADAL was recently discovered as a putative plasma membrane
protein closely related to adenosine deaminase with unknown
function. Further studies are required for understanding the mo-
lecular mechanisms of its involvement in VSV infection. Identifi-
cation of MAT2A, in VSV RNA synthesis, suggests its possible
involvement in VSV mRNA cap formation during transcription.
Whether these identified proteins are directly involved in various
steps in VSV infection or whether they mediate their activities
through other cellular interacting partners (Fig. S7) is of interest
for a mechanistic understanding of their role in VSV infection.
The subunits of COPI complex emerged strongly as factors re-

quired for infection by all three viruses. The heptameric COPI
complex associates with the Golgi membranes, resulting in the
budding of COPI-containing vesicles, whose major function is to
mediate transport of cellular proteins and cargo from the Golgi to
the ER as well as the intra-Golgi transport (20). Depletion of
COPI also perturbs the steady-state distribution of the Golgi
enzymes (43) and thus inhibits processing of the VSV G protein
and its transport to the plasma membrane (44, 45). Further, we
have found that depletion of COPZ1 subunit had no adverse effect
on VSV G protein-mediated entry of pseudotyped HIV (Fig. S8),
consistent with recent studies that BFA has no significant effect on
VSV G-mediated entry of retrovirus (46). The following obser-
vations suggest that COPI is involved in VSV gene expression: (i)
VSV gene expression is inhibited in COPI-depleted cells that are
independent of the viral G protein processing, (ii) pharmacologic

inhibitor of COPI inhibits VSV gene expression as well as viral
RNA levels, and (iii) VSV gene expression is reduced in NC
transfected cells that have been depleted of COPI.
Multiple siRNA screens for influenza virus, an NS RNA virus

that replicates in the nucleus, have identified COPI, but not
COPII, as required for infection (11, 12, 24). Although COPI is
required for influenza as well as VSV G-mediated virus entry (12),
our results for VSV are in contrast to these studies. It is possible
that the assay conditions, cell type used, and other unknown fac-
tors may have contributed to these disparate results. In this report
and also in earlier reports (11, 15, 47), the siRNA for COPE did
not inhibit VSV and other virus infections, indicating that this
protein may not have been depleted sufficiently to observe the
effect or that COPEmay be dispensable for COPI function in viral
infection (11, 15, 47). Transfection of siRNAs for COPII subunits
resulted in statistically nonsignificant reduction of VSV infection
(Fig. S9), indicating that COPII may not be required for VSV,
consistent with the result that it was also not identified in the in-
fluenza virus screens (11, 12, 24). Our results point toward a spe-
cific role of COPI in VSV gene expression. The requirement for
ARF1 and GBF1, the upstream activators of COPI assembly in
modulating VSV RNA levels, suggests a role for the host cell se-
cretory pathway in the process. Whether the COPI complex is
directly involved in regulating the viral polymerase functions or
whether it may signal through downstream effectors required for
viral gene expression is of further interest.
The requirement of COPI for genome replication has been well

documented for positive-strand RNA viruses, which replicate in
association with cytoplasmic membranous structures (9, 15, 47).
Viruses such as polio, hepatitis C, and coxsackie modulate the
activities of ARF1, GBF1, and COPI for formation of intracellular
organelles for replication (48, 49). Vaccinia virus, a DNA virus,
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requires COPI for its biogenesis, whereasHIV lacks a requirement
for COPI (33). The studies presented here reveal a requirement
for COPI in gene expression of VSV, and possibly other NS RNA
viruses, suggesting a critical role of this secretory pathway in RNA
virus infection. Most NS RNA viruses including VSV, LCMV, and
HPIV3, replicate in the cytoplasm. The replication organelles, if
any, for the cytoplasmically replicating NS RNA viruses are un-
known. VSV replicates throughout the cytoplasm of infected cells
(7, 50), although studies do not rule out the existence of specific
replication organelles in the cytoplasm. Further biochemical and
ultrastructural studies in cells infected with VSV and other NS
RNA viruses will likely illuminate the nature of the replication
organelles for these viruses.
In conclusion, this study has identified several previously

undescribed candidates and pathways regulating infection of cells

by VSV and two other NS RNA viruses. The requirement for host
cell secretory pathway in infection by VSV, LCMV, and HPIV3
argues for a common mechanism by which this cellular pathway
modulates NS RNA virus replication.

Experimental Procedures
The high-throughput primary siRNA screenwas performed by using the Qiagen
genome-wide siRNA library (Version 1.0). The validation screen was conducted
by using Dharmacon ON-TARGETplus pool of four siRNAs. Details of the screen
design, statistical analysis, hit identification, and other experimental procedures
can be found in SI Experimental Procedures.
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