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Cancers are thought to arise in tissue stem cells, and similar to
healthy tissue, are thought to be maintained by a small population
of tumor stem or initiating cells, whereas the majority of tumor
cells are more differentiated with limited replicative potential.
Healthy tissue homeostasis is achieved by feedback loops, and
particular importance has been attached to signals secreted from
differentiated cells that inhibit stem-cell division and stem-cell
self-renewal, as documented in the olfactory epithelium and other
tissues. Therefore, a key event in carcinogenesis must be escape
from these feedback loops, which is studied here using evolution-
ary computational models. We find that out of all potential evolu-
tionary pathways, only one unique sequence of phenotypic
transitions can lead to complete escape in stem-cell–driven tumors,
even though the required mutations for these transitions are cer-
tainly tissue specific. This insight, supported by data, facilitates the
search for driver mutations and for therapeutic targets. Different
growth patterns can result from feedback escape, which we call
“inhibited,” “uninhibited,” and “sigmoidal,” and which are found
in published data. The finding of inhibited growth patterns in data
indicates that besides architecture, the regulatory mechanisms of
healthy tissue continue to operate to a degree in tumors.
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Evidence suggests that tumors are maintained by a relatively
small number of tumor stem cells or tumor initiating cells that

have the potential to divide indefinitely (1–3). The rest of the
tumor bulk is assumed to be made up of more differentiated cells
that can only undergo a limited number of divisions (1, 4). This
notion is supported by experiments where tumor cells are trans-
planted into immunodeficient mice, which show that a majority of
cells fail to establish new tumors and only a small, defined subset
of cells is capable of sustained proliferation (4–6). In these experi-
ments, the subset of tumorigenic cells expressed markers that are
also expressed in healthy tissue stem cells. Hence, these cells are
thought to have certain stem characteristics that allow them to
self-renew and regenerate the tumor.

Healthy human tissue is highly regulated to ensure homeosta-
sis, with feedback loops playing a fundamental role in this regard.
In particular, two types of feedback loops have been suggested
to be crucial: Differentiated cells secrete factors that inhibit
the division of stem cells. In addition, differentiated cells secrete
factors that suppress self-renewal of stem cells and instead pro-
mote cell death following terminal differentiation (7–9). Strong
evidence for these feedback mechanisms has been found in the
olfactory epithelium (7, 8), but also in a variety of other tissues,
including striated muscle, liver, bone, central nervous system, and
hematopoietic system, among others (9–13).

Tumor formation occurs through a multistep process where
cells sequentially accumulate random mutations and epigenetic
changes. Different types of cancers (depending on the tissue of
origin) tend to arise through different and specific mutational
pathways of varying complexity (14, 15). Tumor initiation and
progression can involve key events, such as the emergence of
genetic instability that allows mutations to be accumulated faster,
or the acquisition of the angiogenic phenotype that enables the

formation of new blood supply, among other processes (16). De-
spite this great complexity and heterogeneity in the mechanism of
tumor formation, there is ample evidence that escape from feed-
back regulation is a key ingredient in the formation of most, if not
all, stem-cell-driven tumors (reviewed in ref. 14), and the corre-
sponding evolutionary dynamics are the subject of this paper.

In a genetically heterogeneous population, the forces of selec-
tion may favor the outgrowth of individual cells with advanta-
geous traits (notably those traits that favor proliferation) (17, 18).
Within this framework of cancer as a product of somatic evolu-
tion, it is important to understand how mutants that originally
appear in very small numbers are able to invade a cell population
that is initially at dynamic equilibrium (such invasion analysis has
been applied before to the dynamics of stem cells in niches; see
ref. 19). In the context of tissue homeostasis controlled by feed-
back loops, the question becomes how and which phenotypical
mutations that affect feedback control may lead to abnormal cel-
lular growth and eventually cancer.

Using computational models that are applied to experimental
data, we study the evolutionary dynamics of feedback escape as
well as the resulting tumor growth laws. We find that escape from
feedback-regulated tissue homeostasis can only occur via a unique
sequence of phenotypic transitions, which we suggest to be com-
mon among stem-cell-driven tumors, and which is supported by
published data. Different patterns of emerging tumor growth are
predicted to occur, which can be successfully fit to a range of pre-
viously published experimental data that describe tumor growth
dynamics in vitro and in vivo. Of particular interest are nonstan-
dard growth patterns, both predicted by the model and found in
published experimental data, which indicate that feedback regula-
tory mechanisms are still partly at work in growing tumors. This
gives rise to the notion that tumors not only retain some of the
architectural aspects of the underlying healthy tissue, but also some
of the regulatory mechanisms.

Results and Discussion
The dynamics of tissue regulation through feedback loops has
been studied in several cell lineages including the hematopoietic
system, the lymphocytic system, the olfactory epithelium, and the
colon crypt (7, 20–22). To study the escape from feedback, we
introduce a basic computational model of feedback-regulated
tissue homeostasis that is based on previously published and
experimentally validated work (7) (Fig. 1 A and B). This model,
described by Eq. 1, takes into account two populations: stem cells,
S, which have unlimited reproductive potential, and differentiated
cells, D, that eventually die (this includes all cell populations with
limited reproductive potential, such as transit cells):
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_S ¼ ð2pðDÞ − 1ÞvðDÞS _D ¼ 2ð1 − pðDÞÞvðDÞS − dD: [1]

Stem cells divide at a rate v; this results in either two daughter stem
cells with probability p or two differentiated cells with probability
1 − p. Differentiated cells die at rate d. In accordance with data, we
assume that differentiated cells secrete two types of feedback sig-
nals: One inhibits the rate of cell division, and the other reduces
the probability of stem-cell self-renewal, leading to cell death via
terminal differentiation. The rate of cell division and the probabil-
ity of self-renewal are treated as general functions of the number of
differentiated cells, vðDÞ and pðDÞ, respectively. That is, we do not
assume specific mathematical terms for these processes. This en-
sures that results are robust and are not dependent on particular
and arbitrary mathematical expressions. We require, however, that
both feedbacks be decreasing functions of the number of differen-
tiated cells, D, and go to zero if D grows without bound. Also,
0.5 < pð0Þ ≤ 1, otherwise the only outcome is population extinc-
tion. Although asymmetric stem-cell divisions (giving rise to one
stem and one differentiated cell) is a possibility, its introduction
does not change any of our results. This issue, basic model proper-
ties, and the mathematical proofs are discussed in the SI Appendix.

In this model, only loss of the differentiation feedback can
lead to uncontrolled growth, two types of which are observed: If
the division feedback is still intact, we observe relatively slow, sub-
exponential, growth, which we call “inhibited growth” (Fig. 1 C
and D). If the division feedback is also lost, we observe faster ex-
ponential growth, which we call “uninhibited growth.”We further
observe that with uninhibited growth, the ratio of stem cells to
differentiated cells always converges to a fixed percentage. With
inhibited growth, however, stem cells make up an ever increasing
fraction over time. The predicted importance of losing the differ-
entiation feedback for carcinogenesis is in line with previous
modeling approaches (20).

To study the evolutionary dynamics of feedback escape, we
assume that the healthy cell population is near equilibrium,
and investigate the growth of mutational phenotypes from low
numbers. We denote mutations that lack production of feedback
signals by differentiated cells with the prefixD and those that lack
response by stem cells to these signals with the prefix S. Muta-
tions that affect cell differentiation carry the suffix diff- and those
affecting the division rate the suffix div-. The phenotypes consid-
ered are described as follows: (i) Type Ddiff- lacks production of
differentiation-regulating signals by differentiated cells, (ii) type
Sdiff- lacks the stem-cell response to the differentiation-regulat-
ing signals, (iii) type Ddiv- lacks production of division inhibiting
signals by differentiated cells, and (iv) type Sdiv- lacks the stem-
cell response to division inhibiting signals. The corresponding
equations are given in the SI Appendix. The mutational steps, the

nature and number of which are likely tissue dependent, are not
modeled.

In a background of healthy tissue, types Ddiv-,Ddiff-, and Sdiv-
, are not selected for; they are selectively neutral with respect to
healthy cells, and are thus likely to go extinct in a stochastic
setting (Fig. 2A). Only Sdiff- types, lacking a stem-cell response
to the differentiation-regulating signals, can have a growth advan-
tage in a background of healthy tissue, eventually taking over the
entire population and growing uncontrolled according to the “in-
hibited” growth pattern (Fig. 2 B and D). Hence, this must be the
first significant step toward malignancy. Only in these Sdiff- type
mutants can the acquisition of the phenotype Sdiv- confer a
selective advantage to the cells, which will grow exponentially
according to the “uninhibited” growth pattern and eventually
dominate the population. None of the other phenotypes enjoys
a selective advantage in any setting. Hence, loss of feedback con-
trol in this system requires that mutants lose the ability to respond
to, rather than produce, the signals. Importantly, this can only
occur via a unique sequence of events, where first the response
to differentiation, then to division feedback is lost (Fig. 2F). We
suggest this to be a universal pathway of feedback escape among
stem-cell–driven cancers, although the nature and number of
mutation events to achieve this is certainly tissue specific.

We also consider mutations that confer only a partial loss of
response to feedback signals. A mutation that only partially
compromises the response to differentiation-regulating factors
(denoted by Sdiff-/partial) will eventually take over the entire
population, producing a third type of bounded “sigmoidal”
growth pattern (Fig. 2 C and D). A mutation that produces a
partial loss in the response to division rate factors (Sdiv-/partial)
cannot invade a healthy cell population, but it will produce an
acceleration in the growth rate of a tumor exhibiting inhibited
growth (Fig. 2E).

Next, we consider these dynamics in the context of a stochastic,
three-dimensional rectangular lattice model corresponding to
solid tumor growth with spatial structure. A lattice point can host
at most one cell at any time. For a cell to divide, there must be
a free lattice point adjacent to it to place the offspring. A stochas-
tic simulation algorithm is used, where the probabilities of cell
division, differentiation and death correspond to our previous
nonspatial model. Our main results remain unchanged (Fig. 3).
Again, we observe uninhibited tumor growth if both feedback
loops are broken, and inhibited growth when only the differen-
tiation feedback loop is broken. The percentage of stem cells
increases progressively with inhibited growth, whereas it con-
verges to a fixed percentage for uninhibited growth. However, in
contrast to the nonspatial situation, the tumor growth rates are
slower. Uninhibited growth is not characterized by exponential,
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Fig. 1. Feedback-regulated tissue homeostasis and cell growth properties in the ordinary differential equations model. (A) Stem cells divide at a rate v produ-
cing either two stem cells with probability p or two differentiated cells with probability (1 − p). Differentiated cells die at a rate d and produce factors that
inhibit self-renewal and division in stem cells. (B) Inhibited growth. If only differentiation feedback is lost, the population of stem cells and differentiated cells
grows without bound at a slower than exponential rate. (B) Uninhibited growth. If both feedbacks are lost, stem cells and differentiated cells grow at a rate
dominated by the same exponential. Time is expressed in units of ln2∕vðD̂Þ, the expect duration of one cell cycle at equilibrium.
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but by cubic growth. Inhibited growth is characterized by subcubic
growth. This difference is partly caused by surface growth
dynamics in the three-dimensional model, a behavior observed
in several types of solid tumors (23–25). Looking at the evolution-
ary dynamics, we find that feedback inactivation occurs via the
same unique pathway as in the nonspatial model. More details
are given in Materials and Methods.

Performing extensive literature searches, we found that most
growth patterns belong to one of the categories resulting from our
models: the uninhibited pattern, which is exponential in the non-
spatial system and cubic in the spatial system; the inhibited pat-
tern, which is subexponential in the nonspatial system and
subcubic in the spatial system; and the sigmoidal growth pattern.
In the following examples, specific forms of the models were
fitted to different types of published tumor growth data using
least-squares procedures (for details see Materials and Methods
and SI Appendix, Table S1). Among the estimated parameters,
we focus on the relative magnitude of the differentiation (g) and
division feedback (h). (i) Inhibited nonspatial growth is found in
Ehrlich’s ascites tumor (26), where cells grow subexponentially
and the best model fit yields parameters g ¼ 0 and h > 0 (Fig. 4A).
(ii) Inhibited spatial growth is found in A2780 human ovarian car-
cinoma growth in mice (27) (Fig. 4B). The data shows subcubic
kinetics with a power law of 2.17 and no saturation, and is again
well fitted with parameters g ¼ 0 and h > 0. (iii) Uninhibited non-
spatial growth is found in data from L1210 cells (28), a mouse
lymphocytic leukemia, where cells grow exponentially and the
best fit is characterized by g ¼ 0 and h ¼ 0 (Fig. 4C). (iv) Unin-
hibited spatial growth is found in data from spatial multicellular

tumor spheroids of EMT6/Ro cells (29), derived from a mouse
mammary tumor, which show cubic growth and are best fit with
model parameters g ¼ 0 and h ¼ 0 (Fig. 4D). (v) A sigmoidal
growth pattern, found in Jurkat cells (30) originating from a T
cell human leukemia (Fig. 4E), is best fit if the differentiation
feedback is only partially lost (g > 0).

We also sought to address model predictions about the order
of phenotypic transitions and the central importance of the Sdiff-
type with previously published data. A transgenic mouse model
of hepatocellular carcinoma was developed, in which it is possible
to regulate the expression of the human MYC oncogene in
murine liver cells, suppressing it through doxycycline treatment
(31–33). Although transgenic mice treated with doxycycline re-
mained disease free, those with active MYC from the disconti-
nuation of treatment developed malignant tumors that were
locally invasive and able to metastasize. When MYC was subse-
quently inactivated, rapid tumor regression was observed that was
associated with terminal differentiation into normal liver cells
and apoptosis. Moreover, reactivation of MYC resulted in signif-
icant tumor regrowth and dedifferentiation. These observations
validate key model predictions. MYC expression influences
self-renewal and differentiation of cells, and thus influences the
function pðDÞ in our model. Activation of MYC corresponds to
corrupted differentiation feedback (i.e., to the Sdiff- phenotype in
the model), whereas inhibition of MYC reverses this phenotype.
The model predicts Sdiff- to be the initial and most crucial event
in the evolution of feedback loss and uncontrolled growth. Even
if cells have acquired other mutations that can also contribute to
tumor progression, these mutations are predicted to only contri-
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Fig. 2. Evolutionary dynamics of feedback loss in the ordinary differential equations model. The simulations begin at equilibrium with two stem cells carrying
the specified mutation. (A) For populations near equilibrium mutations Sdiv-, Ddiv-, and Ddiff- do not confer any competitive advantages over their wild-type
counterparts. If the mutation arises in a small number of cells, the steady-state number of mutant stem cells will be negligible. (B) Mutation Sdiff- results in
inhibited growth in the number of mutant stem cells and differentiated cells. (C) Mutation Sdiff-/partial produces a finite increase in both the number of
mutant stem cells and differentiated cells. (D) Mutations Sdiff- and Sdiff-/partial result in the extinction of the wild-type stem-cell population. (E) In a healthy
population at equilibrium, a stem cell acquires mutation Sdiff- at the time indicated by the arrow (solid line); the subsequent appearance of mutation Sdiv-/
partial in a Sdiff- cell produces an acceleration in the growth of the tumor (dashed line). (F) Tumor progression toward uninhibited growth follows a unique
sequence of feedback inactivations: First, mutation Sdiff- must occur, followed by mutation Sdiv-.
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bute to growth in cells that already have corrupted differentiation
feedback. Hence, restoration of the differentiation feedback loop
even in cells with further complex genetic alterations is predicted
by the model to result in tumor regression and tissue dynamics
that are characteristic of a healthy state. This same behavior is
observed in the experiments where the macroscopic and malig-
nant nature of the tumors indicate the presence of additional mu-
tations, which are incapable of promoting growth in the absence
of MYC (31). Fig. 4F shows a computer simulation that success-
fully recapitulates the dynamics observed in the MYC regulation
experiments. Similar dynamics have been observed in the context
of other tumors and/or oncogenes (e.g., Myc-induced hemato-
poietic tumors, breast cancers and osteogenic sarcoma, or Ras-
induced melanomas), although details of the results can differ
in various ways (e.g., treatment leading to complete extinction
of the tumor) (31–33). Understanding the mechanisms that lead
to differences in outcome will be important future work that can
be aided by computational models, but is beyond the scope of the
current paper.

In general, many key mutations in carcinogenesis disrupt ne-
gative feedback regulation of cell division patterns. Consider the
protein transforming growth factor beta (TGF-β). This protein
plays a key role in tissue homeostasis by inhibiting mitosis and
promoting cell differentiation (16). Many types of cancers must
circumvent TGF-β growth inhibition to be able to thrive. In these
cancers, feedback escape is accomplished by inactivating the
genes for the TGF-β receptors or through downstream alterations
that disable the tumor-suppressive arm of the pathway (34–36).
Half of all pancreatic carcinomas and more than a quarter of co-
lon cancers carry mutations that make cells irresponsive to TGF-β
signals that inhibit cell division and promote differentiation (37,
38). Mutations that affect TGF-β receptors also occur in gastric,
biliary, pulmonary, ovarian, esophageal, and head and neck car-
cinomas (35). Another specific example of feedback escape in

cancers is observed in glioblastomas that inactivate the bone mor-
phogenetic protein 4 pathway (BMP4). There is strong evidence
that glioblastomas are maintained by a small population of tumor
initiating cells that have stem-cell characteristics (39). In humans,
naturally occuring BMP4 induces glia stem cells to differentiate,
inhibiting cell proliferation (40). The relationship between BMP4
and cancer is supported by evidence of epigenetic silencing of
BMP4 receptors in glioblastomas (41), and by in vitro experi-
ments that show that the addition of BMP4 causes a colony of
glioblastoma multiforme cells to increase the fraction of differ-
entiated cells and lose their tumorigenic capabilities (42). Finally,
in colorecal cancer the initial mutational events are defined re-
latively well. They are the loss of the APC tumor suppressor gene
and the concomitant activation of the Wnt cascade, followed by
the activation of the K-Ras oncogene. Although both alterations
lead to complex phenotypic changes, a common effect of both is
that the cell division pattern is shifted away from differentiation
and toward self-renewal, consistent with our model.

Conclusions
Using evolutionary computational models, we found that escape
from feedback-regulated tissue homeostasis can only occur via
a unique sequence of phenotypic transitions that we propose
to be common among stem-cell–driven tumors, even if the nature
and number of mutational events required to achieve this are
certainly tissue specific. The resulting growth dynamics predicted
by the model fall into three categories: uninhibited, sigmoidal,
and inhibited. These can describe many experimental growth
patterns found in the literature, which we demonstrated by fitting
the model to five sets of published data. The finding of inhibited
tumor growth patterns in the literature is of particular interest.
Such a growth pattern, especially in the form of subcubic growth,
could only be explained if the growing tumor is still partially sub-
ject to feedback regulation that has remained from the underlying
tissue. This gives support to the notion that not only the tissue
architecture, but also the regulatory mechanisms of the corre-
sponding healthy tissue continue to operate to a certain degree
in tumors, especially at early stages. A direct experimental test of
this notion would be to identify and knock out the appropriate
feedback loop in tumors characterized by inhibited growth, which
should then result in uninhibited growth. The ability of our mod-
els to accurately describe the majority of tumor growth patterns
found in the literature, and consistency of key model predictions
with in vivo experimental data, provide confidence in the notion
that feedback loss is a general requirement for cells to grow
uncontrolled and develop into malignancies. This has practical
implications for the search of mutations that give rise to specific
cancers and provide targets for therapy.

Materials and Methods
Fitting Procedures. Our modeling approach assumes general functions de-
scribing the feedbacks pðDÞ and vðDÞ; however, data fitting algorithms re-
quire us to chose specific functional forms. In Fig. 4, we use Hill functions
(2) to model feedback; these functions are good choices for the actions of
secreted feedback factors, because they have been widely and successfully
used to describe ligand-receptor interactions (43):

pðDÞ ¼ p0∕ð1þ gDnÞ; vðDÞ ¼ v0∕ð1þ hDmÞ: [2]

As a first step, we explored the possible values for the hill coefficients m and
n. Using Matlab’s nonlinear optimization algorithm, the best fit for Fig. 4E
resulted in no feedback on the replication rate (h ¼ 0) and a hill coefficient
on differentiation n ¼ 0.5598. In Fig. 4A, the data was fitted assuming an
inhibited growth pattern (g ¼ 0), and the best fit resulted in m ¼ 0.5348.
In Fig. 4C, the best fit resulted in g ¼ 0 and h ¼ 0, making it impossible to
extract any insights about m or n. Based on these results for the coefficients,
and in an effort to reduce the number of free parameters, a value ofm ¼ n ¼
0.5 was used to produce all the fits in Fig. 4.

For data corresponding to the nonspatial model (Fig. 4 A, C, and E) least-
squares solutions were calculated using Matlab’s nonlinear optimization al-
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Fig. 3. Spatial model. (A) Spatial arrangement of the cell population at two
different times. The simulation begins with a tissue at near equilibrium with
two stem cells randomly selected to carry mutation Sdiff- at time t ¼ 0.
(B) The appearance of mutation Sdiff- results in the unlimited growth of
the mutant stem cell and differentiated cell populations. (C) The number
of wild-type stem cells decreases. Note that a small number of stem cells that
are trapped—and thus unable to divide—lingers in the population for a long
time. The number of wild-type stem cells, however, becomes a negligible
percentage of the entire cell population. (D) Cell population with stem cells
carrying mutations Sdiff- and Sdiv- (simulations start with a small number of
stem cells carrying both mutations). Cell growth is much faster than if only
mutation Sdiff- is present (note different scales in B and D); but, unlike the
nonspatial model, the growth is not exponential. In B–D, results represent the
average of 24 runs.
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gorithm. In the spatial model, computational constraints did not permit the
use of search optimization algorithms based on the gradient of the target
function. Thus, the strategy used was to first determine a search region in
the parameter space and then generate random samples from this region.
In Fig. 4B, the search region was found by creating a rectangular partition
of the parameter space and computing the differences between the data
and themodel’s predictions evaluated at the vertices of the lattice; the region
with the best agreement was then selected. In Fig. 4D, the nonspatial model
was used as an approximation tool to establish the search region. In each
case, once this search region was chosen, one hundred random parameter
samples were generated, the average of 24 runs per sample was computed,
and the best fit was selected.

Note that only under special circumstances does the Hill equation reflect a
physically possible reaction scheme (44); hence, the values of the coefficients
should not be used as an indication of the number of ligand biding sites.
Moreover, the emphasis of this study is in the use of general feedback func-
tions pðDÞ and vðDÞ. This generality is one of its strengths, as more experi-
mental work is still necessary to establish the details and thus the precise
functional forms of the feedback mechanisms in specific tissues.

Algorithm for the Spatial Model. In the spatial model, at any given time t, the
system is described by a set of cells CðtÞ, where each cell has two attributes: a
position, given by a three-dimensional coordinate indicating its position in

the lattice, and a type (the cell can be either a stem cell or a differentiated
cell). Using Eq. 1 as the basis for the algorithm, the probability per unit of
time that a particular differentiated cell dies in the next infinitesimal time
interval δt is d; and the probability per unit of time that a particular stem
cell with a free adjacent lattice point divides in the same time interval is
vðDÞ. Let F ≤ S be the number of stem cells that are able to divide and α,
β, and γ be defined by: α ¼ dD, β ¼ FvðDÞ, and γ ¼ αþ β.

To implement the algorithm, first choose τ from the probability density
function fðsÞ ¼ γ expð−sγÞ, and set the time of the next reaction to t þ τ. Then,
choose the type of reaction that occurs. The next reaction is either cell death
with a probability α∕γ, or cell division with a probability β∕γ. If the next reac-
tion is cell death, every differentiated cell has the same probability of being
chosen; if it is cell division; every stem-cell that is able to define has the same
probability of being selected. Finally, if cell division occurs, the probability
that the cell divides into two stem cells is pðDÞ, and the probability that it
divides into two differentiated cells is 1 − pðDÞ; the place where one of
the offspring will reside is chosen at random, with each available adjacent
position having an equal probability of hosting one of the daughter cells.
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Fig. 4. Experimentally observed growth patterns and model fits. (A) Inhibited growth in the nonspatial model. Ehrlich’s ascites tumor (26) (three experiments
shown: •, ▵, ○). (B) Inhibited growth in the spatial model. Main frame: (□) A2780 human ovarian carcinoma (27) and projection of the model using the
function y ¼ axb (solid line). (Inset) Simulation results (•) and projection of the model (simulations were not carried further in time do to computational
constraints). (C) Uninhibited growth in the nonspatial model. (*) L1210 a mouse lymphocytic leukemia (28). (D) Uninhibited growth in the spatial model.
Multicellular tumor spheroids of EMT6/Ro cells (29), a mouse mammary tumor (two experiments shown: ○, •). (E) Sigmoidal growth in the nonspatial model.
(•) Jurkat T cell human leukemia (30). InA–E, the simulations are shown in solid lines; those corresponding to the stochastic spatial model represent the average
of 24 runs. (F) Simulation of MYC regulation experiments (31–33). Upon activation of MYC (represented in the model by the Sdiff- phenotype) the cell popula-
tion (solid line) exhibits sustained growth characterized by a reduction in the fraction of differentiated cells (dashed line). When MYC is subsequently inacti-
vated (Sdiff+ phenotype) the fraction of differentiated cells increases while the cell population decreases to a lower-valued steady state; when MYC is
reactivated the cell population rises again. See Results and Discussion.
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