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Abstract
Purpose—Administration of bisphosphonates has recently been associated with the development
of osteonecrotic lesions of the jaw (ONJ). To elucidate the potential contributions of osteogenic
cells to the development and regeneration of ONJ, we have isolated primary cells from human
alveolar and long/iliac bones, and examined the effects of pamidronate on cell viability,
proliferation, osteogenesis and wound healing.

Materials and Methods—Primary human osteoblasts and bone marrow stromal cells were
isolated from alveolar and iliac/long bone and marrow tissue. Cellular proliferation, alkaline
phosphatase activity, apoptosis (TUNEL, Caspase-3, and DAPI assays) and wound healing in an
in vitro scratch assay were assessed after exposure to pamidronate at a range of clinically relevant
doses.

Results—Primary alveolar osteoblasts proliferated at significantly higher rates than long/iliac
bone osteoblasts in vitro. Upon exposure of alveolar osteoblasts and long/iliac bone marrow
stromal cells to pamidronate for more than 72h, we have observed significantly decreased cell
viability, proliferation, osteogenesis and in vitro wound healing at ≥6 × 10−5 M pamidronate, with
the induction of apoptosis in ~20% of cell population.

Conclusions—The remodeling activity of alveolar bone, indicated by higher proliferation of
alveolar osteoblasts, could be negatively affected by exposure to high concentrations of
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pamidronate over extended periods of time. The absence of anabolic effects of pamidronate on
alveolar osteoblasts, and induction of apoptosis in osteogenic cells could negatively affect bone
balance at this site, and contribute to osteonecrosis of the jaw.
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INTRODUCTION
Bisphosphonates (BPs), potent inhibitors of osteoclastic bone resorption, are widely used in
the treatment of osteoporosis, Paget's disease, hypercalcemia of malignancy, multiple
myeloma, and bone metastases associated with breast, prostate, lung, and other soft tissue
tumors. Recently, the occurrence of exposed necrotic bone lesions in the jaw (osteonecrosis
of the jaw, ONJ) has been associated with the use of nitrogen-containing BPs1, 2.
Osteonecrosis of the jaw is defined by several professional societies as an area of exposed
bone in the maxillofacial region that does not heal within 6–8 weeks after identification, in a
patient who is receiving or has been exposed to a BP and has not had radiation therapy to the
craniofacial region2–8.

At the present time the natural history and pathophysiology of ONJ development is not
clear. In the majority of cases, ONJ has been diagnosed in the oncologic population, where
patients are receiving high doses of BPs with concommitant chemotherapeutic agents and
are often immunosuppressed. Oversuppression of bone turnover due to increased
sequestration of BPs in the jaws, and compromised blood supply have been considered the
initiating events in the development of the lesions1. In addition, inhibition of wound healing,
surgically-induced trauma, specific anatomy of the oral cavity, the presence of a diverse
microbial flora and on-going inflammatory processes have been proposed as potential
contributing factors2, 9.

Differences in bone physiology between different sites in the skeleton could be implicated in
the development of ONJ. Craniofacial bones differ from long bones in developmental
lineage, arising from neural crest, and mechanism of formation by intramembranous
ossification. Differences in matrix composition, bone morphogenic protein expression,
osteoclastic bone degradation and bone marrow stromal cell (BMSC) compartment have
been reported, and suggest functional differences in turn-over and mechanical properties of
bone at different anatomic locations10–13. In a recent study, pamidronate treatment of
primary human mandibular and iliac crest BMSCs isolated from the same donors indicated
differences in survival, osteogenesis and osteoclast recruitment between the two sites,
suggesting the possibility of dysregulation of mandibular bone homeostasis after exposure to
BPs14. In previous studies, treatment of osteogenic cells isolated from the long/iliac bone
with lower BPs concentrations (≤10−5 M) resulted in anabolic effects15–18. However
exposure to higher concentrations (≥10−4 M) resulted in decreased cell proliferation,
viability, protein synthesis and mineralizaton17, 19–21. Decreased cell viability and migration
have also been reported for oral mucosal and endothelial cells after BP treatment, suggesting
the possibility that ONJ is a multifactorial disease21–26.

Given the specific differences in cell responses to BPs, and physiological differences
between bone at different locations, our aim was to assess the effects of BPs on primary
human alveolar osteoblasts, which to our knowledge have not been reported previously. We
have hypothesized that the osteogenic ability of residing osteoblasts, as well as transplanted
cells, might be directly affected by BPs. We have chosen to study the effects of
pamidronate, a common intravenously-administered bisphosphonate, linked to ONJ, that is
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frequently used as a model compound in studies of BPs actions3, 23, 27–31. We have tested
survival, proliferation, osteogenesis and wound healing of human osteoblasts isolated from
the alveolar bone. In addition, we have extended our experiments to primary human
osteogenic populations from the long/iliac bone and marrow, in order to compare their
response to populations derived from intamembranous bone. We have treated the cells with
a range of pamidronate concentrations (10−10 − 10−4 M), and report for the first time
concentration-dependent inhibitory effects of pamidronate on primary human alveolar bone
osteoblasts including induction of apoptosis.

MATERIALS AND METHODS
Materials

Pamidronate, ascorbic acid 2-phosphate, dexamethasone, β-glycerophosphate,
paraformaldehyde and formalin-free fixative (Accustain) were purchased from Sigma-
Aldrich (St. Louis, MO). Fetal bovine serum (FBS), Dulbecco's modified Eagle medium
(DMEM), basic fibroblast growth factor (bFGF), 4′, 6-diamidino-2-phenylindole
dihydrochloride (DAPI), gentamicin, Fungizone®, Dulbecco's PBS (D-PBS), non-essential
amino acids and trypsin/EDTA were obtained from Invitrogen (Carlsbad, CA). Dulbecco's
modified Eagle's media: nutrient mixture F-12 (DMEM/F-12) was from Lonza (Basel,
Switzerland). All other substances were of analytical or pharmaceutical grade and obtained
from Sigma-Aldrich.

Isolation and Culture of Primary Human Cells
Primary human osteoblast-like cells (“osteoblasts”) were isolated from discarded alveolar
(n=7) and long/iliac bone surgical procedures (n=5). The study was approved by the
Columbia University IRB. The bone tissue was minced, thoroughly washed to remove any
remaining soft tissue, and placed in 6-well plates to initiate explant cultures. The culture
medium consisted of DMEM/F12 supplemented with 20% FBS, 50 μg/mL gentamicin and
0.08% Fungizone®, and was changed twice per week. Long/iliac BMSCs were isolated
from the bone marrow aspirate samples obtained from Lonza (n=2) or by washing and
collecting the marrow fraction from the long bone sample (n=1). Adherent cells were
cultured in DMEM supplemented with 10% FBS, 1% nonessential amino acids, 1 ng/mL
bFGF, 50 μg/ml gentamicin and 0.08% Fungizone® according to the previously established
protocols32. All cultures were incubated at 37°C and 5% CO2. Upon confluence, cells were
dissociated from the plates by trypsinization, counted and subcultured at a density of 5 000
cells/cm2 for three passages. Osteoblast proliferation was compared between different tissue
sources at passage one. Third passage cells were used in all other experiments, and exposed
to a range of pamidronate concentrations, as noted in specific assays.

Proliferation Assay
Two thousand cells were seeded per well of 96-well plates (6,000 cells/cm2) in 100 μL of
DMEM/F12 supplemented with 10% FBS, 50 μg/mL gentamicin and 0.08% Fungizone®,
which was changed every two days. 100 mM pamidronate stock solution was prepared in
deionized water and further diluted to final concentrations in culture media. The effect of
pamidronate (10−10 − 10−4 M) on cell proliferation was evaluated at 24h, 48h, 72h and 168h
after the addition to the cultures. Proliferation was measured by CellTiter96®Assay
according to the manufacturer's instructions (Promega, Madison, WI). Briefly, MTS/PMS
reagent was added directly to the culture media, incubated at 37°C for 1.5h and the
absorbance was measured at 490 nm.
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Alkaline Phosphatase Activity Assay
Alkaline phosphatase (AP) activity of the cells was assessed as an early marker of
osteogenesis33, 34 in control medium (DMEM/F12 supplemented with 10% FBS, 50 μg/mL
gentamicin and 0.08% Fungizone®) and osteogenic medium (control medium supplemented
with 10 mM β-glycerophosphate, 100 nM dexamethasone and 0.05 mM L-ascorbic acid 2-
phosphate) 24h and 168h after the addition of pamidronate (10−10 − 10−4 M) to the media.
For quantitative assays, cells were seeded and cultured in 96-well plates, as described above
for the proliferation assay. The AP activity was determined by following the conversion of
p-nitrophenyl phosphate to p-nitrophenol (Sigma-Aldrich)32. Cells were lysed by adding
100 μL of a buffer containing 2-amino-2-methylpropanol and pnitrophenylphosphate
(Sigma-Aldrich) to each well, and incubated at 37°C until the development of color.
Reaction time was noted for AP activity calculation. Reactions were stopped by adding 50
μL 0.2 M NaOH. Absorbance was measured at 405 nm, and the AP activity was calculated
from the standard curve and normalized to the reaction time and number of cells per well in
each group. Cultures were fixed with Accustain, stained with DAPI (4′, 6-diamidino-2-
phenylindole dihydrochloride), and the number of cells in randomly sampled fields was
counted using fluorescent microscope (IX81, Olympus, Center Valley, PA) and Metamorph
imaging software (Molecular Devices, Sunnyvale, CA). For qualitative assessments, cells
were seeded into 48-well plates (6,000 cells/cm2) and cultured in osteogenic and control
media with pamidronate, as described above. AP activity was detected by histological
staining according to the manufacturer's instructions (Fast Blue RR Salt staining, Sigma-
Aldrich).

TUNEL Assay
TUNEL assay, the most commonly used in situ test for apoptosis, was selected to probe for
apoptosis induction as in our previous study24. Cells were seeded into Permanox chamber
slides (Nunc, Rochester, NY) as described above for the proliferation assay, and incubated
with pamidronate (0 M, 10−5 M, 6 × 10−5 M and 10−4 M) for 24h and 72h. Positive controls
were obtained by incubating cells with 1 μM staurosporine (Sigma-Aldrich) for 6h. TUNEL
assay was performed according to the manufacturer's instructions (Roche, Indianapolis, IN).
Slides were fixed with 4% paraformaldehyde in PBS for 1 hour at room temperature,
washed and permeabilized with 0.1% sodium citrate, 0.1% Triton X-100 solution for 2
minutes on ice. After washing, slides were incubated with enzyme and labeling solution for
1 hour at 37°C in a humidified chamber. All slides were counterstained with DAPI to detect
pyknotic nuclei in the cells that have undergone apoptosis, and mounted with Vectashield
mounting solution (Vector Labs, Burlingame, CA). TUNEL positive cells, total number of
cells and nuclear condensation were assessed under the fluorescent microscope (IX81,
Olympus, Center Valley, PA).

Caspase-3 Assay
Induction of apoptosis at high concentrations of pamidronate was confirmed by measuring
activity of Caspase-3, a key enzyme in the execution of the apoptotic cascade that mediates
DNA condensation, DNA fragmentation, and cell blebbing35. Alveolar osteoblasts and
BMSCs were grown to 70% confluence in 6-well plates and treated with pamidronate (10−4

M and 3 × 10−4 M) for 24h, 48h, 72h and 96h. Positive controls were generated by
incubation of cells with 1 μM staurosporine for 6h. Cells were collected in the culture
medium and centrifuged at 5,000 × g for 5 minutes. Caspase-3 activity was assayed
according to the manufacturer's instructions (Sigma-Aldrich). Briefly, cell pellets were lysed
in the buffer provided in the kit and stored at −80°C. Upon thawing, samples were
centrifuged at 13,400 × g for 10 minutes at 4°C, and assayed in 96-well plates by adding the
Caspase-3 substrate (Acetyl-Asp-Glu-Val-Asp p-nitroanilide) and incubating overnight at
37°C. Absorbance was read at 405 nm, and the caspase activity was calculated from the
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standard curve and normalized to the total protein content determined using a Bradford
reagent based protein assay (Sigma-Aldrich). A standard curve was generated using known
concentrations of bovine serum albumin (Bio-Rad, Hercules, CA).

Wounding Assay
The in vitro model of wound healing was used to examine the effects of pamidronate
treatment on the ability of alveolar osteoblasts and BMSCs to migrate and proliferate in a
monolayer culture24. Cells were seeded into 6-well plates, grown to confluence and
preincubated with pamidronate (0M, 10−5 M, 3 × 10−5 M, 6 × 10−5 M and 10−4 M) for 24h.
Wounds were created with a standardized protocol using a trimmed comb containing 7 tines
spaced 2.5 mm apart (Goody Products Inc., Peachtree City, GA) that had been washed with
70% ethanol and dried prior to use. Wounded monolayers were briefly washed, and the
culture media were returned to the cells. Migration of the cells into wounded areas of the
monolayer (percentage of overgrown area) was assessed by microscopy over four days.

Statistical Analyses
Statistical analyses were done by one-way and two-way ANOVA, followed by Tukey-
Kramer HSD post-hoc test using Statistica software (StatSoft, Tulsa, OK). Significance level
was set at 0.05.

RESULTS
Effects of Pamidronate on Cell Proliferation

Primary human osteoblasts were isolated from samples of alveolar and long/iliac bone tissue
by preparation of explant cultures. Proliferation of primary cells at passage 1 was markedly
higher in alveolar osteoblasts (5-fold increase in cell number, n=4) than the long/iliac bone
osteoblasts (<2-fold increase in cell number, n=3) (Fig. 1). Alveolar osteoblasts continued to
proliferate over three passages, whereas osteoblasts from the long/iliac bones demonstrated
only limited growth, which arrested before the second passage in all tested samples (n=5).
Bone marrow stromal cells (n=3) were isolated from the marrow aspirates obtained from the
long/iliac bones, and cultured in medium supplemented with 1 ng/ml bFGF. Under these
conditions, BMSCs exhibited slightly lower growth rate than alveolar osteoblasts (Fig. 1),
and were used in subsequent studies.

Addition of 10−4 M pamidronate to culture medium significantly decreased alveolar
osteoblast viability after 72h and 168h (7 days) of treatment compared to all other
concentrations (Fig. 2A, p<0.05), and induced cell detachment in 3 of 4 tested samples. Cell
proliferation was significantly inhibited in this group after 72h and 168h compared to all
other concentrations (Fig. 2C, p<0.001). Similarly, treatment of BMSCs with 10−4 M
pamidronate for 48h, 72h and 168h, as well as treatment with 6 × 10−5 M pamidronate for
168h significantly decreased cell viability (Fig. 2B, p<0.001) compared to the lower
concentrations. BMSCs proliferation was significantly inhibited with 10−4 M pamidronate
after 72h and 168h, and with 6 × 10−5 M pamidronate after 168h (Fig. 2D, p<0.001)
compared to the lower concentrations. We have not observed any significant anabolic effects
at any of the pamidronate concentrations tested. Slightly increased BMSCs viability, noted
in the lower pamidronate concentration groups (10−7 − 3 × 10−5 M) at 48h and 72h, was
transient and declined by 168h of treatment.

Effects of Pamidronate on Alkaline Phosphatase Activity
The effect of pamidronate supplementation on alkaline phosphatase (AP) activity, an early
marker of osteogenic cell phenotype was assessed quantitatively at 24 and 168h. Alkaline
phosphatase activity values of alveolar osteoblasts in control medium supplemented with 3 ×
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10−5 M, 6 × 10−5 M and 10−4 M pamidronate were 45%, 39% and 27% of the
unsupplemented group, and differed significantly from all lower concentration groups after
168h (Fig. 3A, p<0.001). Alveolar osteoblasts cultured in osteogenic medium exhibited
significantly lower AP activities with 6 × 10−5 M and 10−4 M pamidronate (39% and 16%
of the unsupplemented group) as compared to all lower concentration groups after 168h
(Fig. 3A, p<0.001). We have not detected anabolic effects of pamidronate supplementation
on alveolar osteoblast AP activity in any of the concentration groups. AP activity per
number of cells in the wells (Fig. 3B) and histological stains of AP activity (Fig. 3C)
indicated that the total decrease per well resulted from the lower cell numbers, as well as
from lower amounts of AP activity expressed per cell.

Pamidronate and Cell Apoptosis
In order to examine pamidronate toxicity further, we have evaluated apoptosis by TUNEL
assay, DAPI staining (Fig. 4A–E, G–K), and quantitation of caspase-3 activity (Fig. 4F, L).
A significant increase in TUNEL positive apoptotic alveolar osteoblasts (16%) was seen in
cultures supplemented with 10−4 M pamidronate after 72h when compared to other
concentrations and incubation times (Fig. 4A, B, E, p<0.001). Similarly, BMSCs cultures
exhibited a significant increase in apoptotic cells (12%) with 10−4 M pamidronate at 72h,
compared to other concentrations and incubation times (Fig. 4G, H, K, p<0.001). In both
cell types, counterstaining with DAPI showed nuclear condensation, the cells exhibited
stressed morphology and started detaching from the culture surface at 72h (Fig. 4C, D, I, J).

Induction of apoptosis was further indicated in both cell types by significant increases in
caspase-3 activity. Alveolar osteoblasts cultured with 10−4 M pamidronate exhibited
significantly higher caspase-3 activity at 72h and 96h compared to 24h and 48h (Fig. 4F,
p<0.001). Similarly, 3 × 10−4 M pamidronate induced a gradual increase in caspase-3
activity in alveolar osteoblasts, which was significantly higher at 72h and 96h compared to
24h (Fig. 4F, p<0.001). Caspase-3 activity levels measured in BMSCs were more variable,
but exhibited a similar gradually-increasing trend over 72h as seen in the alveolar
osteoblasts. Significantly increased caspase-3 activity was detected in BMSCs cultures
treated with 3× 10−4 M pamidronate for 72h compared to 24h (Fig.4L, p<0.01).

Pamidronate and Wound Healing
An in vitro model of wound healing was used to examine the ability of alveolar osteoblasts
and BMSCs to migrate and proliferate during pamidronate treatment (Fig. 5). Confluent cell
monolayers were preincubated with pamidronate (3 × 10−5, 6 × 10−5 and 10−4 M) for 24h,
wounded by scratching, and the healing was observed daily. For both cell types, cell
migration was noted 24h after wounding and continued until 72h, when the wound was
closed in the control (unsupplemented) groups (Fig. 5) and the groups with 3 × 10−5M
pamidronate. Alveolar osteoblasts exposed to 6 × 10−5 M pamidronate behaved similarly to
control cultures (Fig. 5A), whereas BMSCs exhibited only ~20% wound closure at this
concentration (maintained upon longer incubation) (Fig. 5B). Both cell types failed to heal
the wound at 10−4 M pamidronate, and the monolayers completely detached 48h after
wounding (72h days of pamidronate treatment, similar to our observations in proliferation
studies) (Fig.5).

DISCUSSION
Our work was motivated by the increasing frequency of ONJ, a clinical condition associated
with the use of nitrogen-containing BPs, previous traumatic injury, and several other risk
factors. To date, the majority of knowledge regarding ONJ is based on case report
studies1, 2, 36, and the true incidence, etiology, pathogenesis, and natural history of this
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condition have yet to be elucidated. In addition, restoration of oral tissues is challenging37,
and in order to develop effective treatments, a fundamental understanding of cellular
responses in the environment of diseased tissue is needed. Our group and others have
previously reported the effects of BPs on oral mucosa cells, fibroblasts, vascular cells and
bone cells isolated from non-oral sites21–26. Given the developmental and physiological
differences between bone at different locations, the present study was aimed at assessing the
specific effects of pamidronate on primary human alveolar and long/illiac bone osteoblasts.
Our results show for the first time that pamidronate treatment inhibited cell viability,
proliferation, osteogenesis and in vitro wound healing, and induced apoptosis in primary
human alveolar osteoblasts. The exposure to ≥10−4 M threshold concentration for more than
three days was shown to be neccessary for the inhibitory actions to take effect in vitro.
Similar responses were found with primary human BMSCs from long/iliac bone marrow.

We have studied a wide range of pamidronate concentrations, which was based on reported
maximum concentrations in the serum immediately after a 4h 90 mg pamidronate infusion
(~10−5 M)38 and previous reports14, 17, 20, 21, 29, 39. As noted in previous work and
supported by animal experiments24, 27, 40, 41, a range of 50 to 500 ng/mg (or 214 to 2 140
nmol/g) seems a reasonable estimate of the mean pamidronate concentration in bone tissue
in humans that were treated for a period of 4 years with monthly infusions totaling 90 mg of
the drug. Assuming a volume of 1 mL per g of bone, this amount corresponds to a
concentration of 0.2 – 2 mM. Local concentrations of bisphosphonates in bone vary
widely42, 43, and it has been speculated that due to the high rate of remodeling, alveolar bone
could accumulate increased amounts of BPs. Recent studies indicate that cells in the bone
microenvironment other than osteoclasts could be affected by bisphosphonates, when they
are released from the mineralized surface39, 43, 44.

We have noted significant differences in the proliferative potential of alveolar and long/iliac
bone osteoblasts (Fig.1), which corresponded with previous reports of rat calvarial
osteoblasts45 and human maxillofacial BMSCs10 exhibiting higher proliferation than the
same cell types isolated from the iliac/long bones. Even though our observations were
limited by the relatively small number of samples originating from different donors, the
observed differences were consistent. Due to the limited cell growth, we were unable to
evaluate the effects of pamidronate on long bone osteoblasts. We have extended our studies
to BMSCs from the long/iliac bone, a cell population commonly studied as a model for bone
repair, in order to evaluate their healing potential in the presence of pamidronate.

Upon exposure of alveolar osteoblasts and BMSCs to pamidronate, we have noted
considerable cell toxicity at ≥6 × 10−5 M pamidronate concentrations, which was
accompanied by complete cell detachment in most cultures by 168h of treatment (Fig.2).
The inhibitory effects on cell viability were highly consistent between different donors, and
were in agreement with previous reports of human long bone17, 19, 21 and mouse calvarial
osteoblasts29. Specific differences in cell sensitivity between the studies could possibly
result from different subpopulations that are present in the primary cell preparations,
including osteocytic cells. We have noted a somewhat higher sensitivity of BMSCs to
pamidronate in comparison to alveolar osteoblasts, and a slight transitory increase in BMSC
viability at 48h and 72h of treatment with lower pamidronate concentrations (Fig.2).

We have not been able to observe significant anabolic effects of pamidronate on either cell
type during 168h treatment, in contrast to previous work reporting anabolic effects of BPs
on long/iliac osteoblasts and BMSCs15, 16, 18. Our findings with long/iliac BMSCs are in
agreement with a recent study, where a decrease in mandibular BMSCs viability was found
with increasing pamidronate concentrations, whereas iliac bone BMSCs exhibited an
increased cell viability at low concentrations, and a dose-dependent decrease at higher
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concentrations14. Interestingly, osteogenic populations tested in the current study were more
sensitive than oral mucosa cells in our previous work, which did not proliferate but remained
viable in the presence of 10−4 M pamidronate24.

In addition to decreased cell proliferation and viability, pamidronate treatment also
decreased alkaline phosphatase activity of alveolar osteoblasts (Fig. 3). Alkaline
phosphatase activity is an early marker of the osteogenic phenotype, which increases at the
onset of bone matrix maturation phase during in vitro and in vivo osteogenesis. We have
detected a slightly higher threshold of pamidronate inhibition (6 × 10−5 M) with the cells
cultured in osteogenic medium as compared to the cells in control medium (3 − 10−5 M).
This difference could possibly be attributed to L-ascorbic acid supplementation, which has
been shown to promote bone matrix deposition and continuous proliferation of human
osteoblasts during osteogenesis in vitro34, and might partially rescue the effects of
pamidronate. The absence of anabolic effects on alkaline phosphatase activity with lower
pamidronate concentrations corresponds to previous studies with mice calvarial
osteoblasts29 and human mandibular BMSCs14. In order to understand the broader effects of
pamidronate on osteogenesis of alveolar osteoblasts, further studies should be aimed at
testing an array of early and late markers of osteoblastic phenotype, such as collagen type I
synthesis, expression of bone matrix proteins (i.e. bone sialoprotein, osteocalcin) and
potential for matrix mineralization.

One of the main mechanisms of BPs actions is the induction of osteoclast apoptosis46.
Recent reports suggested apoptosis of mice calvarial osteoblasts and human long bone
osteoblasts after treatment with pamidronate25, 29, and led us to explore if considerably
decreased cell survival observed in our cultures could result from the induction of apoptosis.
We used three complementary methods to evaluate the cells undergoing apoptosis: TUNEL
assay to evaluate nuclear fragmentation, DAPI staining to visualize chromatin condensation,
and caspase-3 assay to detect activation of apoptotic cascade. We observed significant
increases in the number of apoptotic cells after 72h pamidronate treatment both in alveolar
osteoblasts and in BMSCs (Fig.4). Notably, levels of apoptosis detected by TUNEL and
caspase-3 assays were corresponding (15–20%) and suggested that only a part of cell
population undergoes programmed cell death. In previous studies, 80% of mice calvarial
osteoblasts and 40% of human long bone osteoblasts underwent apoptosis when exposed to
pamidronate for 48h and 72h25, 29.

The large decrease in cell viability after 72h pamidronate treatment (Fig.2), suggests that
apoptosis may not be the only mechanism of pamidronate toxicity in human alveolar
osteoblasts and BMSCs. It has previously been suggested that pamidronate could affect cells
by mechanisms other than mevalonate pathway inhibition, possibly by forming toxic
complexes on the cell surface30, 31, 47. For example, treatment of cells with three times
higher pamidronate concentration did not significantly increase or accelerate apoptosis
induction in either alveolar osteoblasts or BMSCs (Fig.4 F,L). (deleted text)

Finally, we aimed to assess whether pamidronate treatment would affect wound healing
responses of alveolar osteoblasts and iliac/long bone BMSCs in an in vitro model, since
traumatic injury has been associated with the development of ONJ. We observed an absence
of wound healing by alveolar osteoblasts and BMSCs at 10−4 M pamidronate, accompanied
by complete cell detachment from the culture plates (Fig.5). Additionally, BMSCs exhibited
incomplete wound closure at 6 × 10−5 M pamidronate, presumably due to limited cell
proliferation at this concentration (Fig.2).

Notably, results from the current study differ significantly from our previous observations
with mouse oral mucosa cells24, where apoptosis was not noted in oral mucosa cells after
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treatment with the same concentrations of pamidronate. Additionally, both intramembranous
and endochondral derived osteogenic cells exhibited higher sensitivity to pamidronate than
oral mucosa cells, which exhibited inhibited healing responses, but reached complete wound
closure after 5 days of incubation24. In recent studies with human cells, treatment with 5 ×
10−5 M pamidronate resulted in apoptosis of human oral fibroblasts; however the same
concentration did not cause apoptosis but resulted in senescence of human oral
keratinocytes22, 23.

At the present time it is unclear whether the ONJ lesion initiates in the bone or the soft
tissue. Our data indicating a high proliferation activity and sensitivity of alveolar osteoblasts
to pamidronate is in line with the previous work suggesting dysregulation of mandible bone
homeostasis14, and development of ONJ from within the bone (“inside-out” theory).
However, taken together with the growing amount of work indicating potential adverse
effects of BPs on the soft tissues21–25, it seems likely that ONJ is a multifactorial disease,
initiated and/or negatively affected by surgically-induced trauma.

CONCLUSIONS
Pamidronate inhibited cell viability, proliferation and wound healing, and induced apoptosis
in primary human alveolar osteoblasts and iliac/long bone BMSC. In light of the high
remodeling rates of alveolar bone, our data suggest that pamidronate treatment could excert
negative effects if high concentrations (10−4 M or above) were reached in vivo for
prolongued periods of time. Significant differences in proliferation of primary osteoblasts
were observed during early passages in vitro, possibly reflecting higher remodeling activity
of alveolar bone compared to iliac/long bone. The absence of anabolic effects of
pamidronate, and induction of apoptosis in osteogenic cell populations could negatively
affect bone balance, with implications to ONJ development and treatment. Future work is
needed to further assess the molecular mechanisms of pamidronate toxicity in human
alveolar osteoblasts, and to develop strategies for counteracting the inhibitory effects of
pamidronate.
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Figure 1. Primary alveolar bone osteoblasts, long bone osteoblasts and BMSCs proliferation
Data represent averages ± SD of measurements (n=4) obtained from four alveolar bone
(AB), three iliac/long bone (LB) and three BMSCs samples.
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Figure 2. Effects of pamidronate on osteogenic cell viability (A, B) and proliferation (C, D)
High concentrations (≥6 × 10−5 M) of pamidronate significantly affected survival and
decreased cell proliferation of alveolar osteoblasts (A, C) and BMSCs (B, D) in comparison
to lower concentration groups (#, p<0.05) (*, p<0.001). Data represent averages ± SD of
measurements (n=4) obtained from four alveolar bone and three BMSCs samples.
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Figure 3. Effects of pamidronate on alveolar osteoblast osteogenesis
(A, B) Quantitative assessments of AP activity indicated significant decrease at higher
pamidronate concentrations (#, p<0.01) (*, p< 0.001). The cells were cultured 168h in
unsupplemented medium (CM) and in medium with osteogenic supplements (OM). Data
represent averages ± SD of measurements (n=4) obtained from two alveolar bone samples.
(C) Histological stains (Fast Blue RR Salt) indicated a decrease in the number of cells
strongly expressing AP activity (black arrows) at higher pamidronate concentrations.
Magnification 100×.
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Figure 4. Induction of apoptosis in alveolar osteoblast (A, B, C, D, E, F) and BMSC (G, H, I, J,
K, L) treated cultures
Tunel assay (green stain) indicated the presence of apoptotic cells (white arrows) in the total
cell population (blue stain - nuclei) treated with 10−4 M pamidronate (B, H) compared to
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untreated controls (A, G). Corresponding bright-field images are shown for pamidronate
treated (D, J) and untreated cultures (C, I). Magnification 100×. Quantitative assessments of
the Tunel slides (E, K) and measurements of caspase-3 activity (F, L) indicated a significant
increase in the apoptotic cells after 72h of treatment with 10−4 M pamidronate compared to
lower concentrations (*, p< 0.001). A similarly increasing trend with significant increases of
caspase-3 activity after 72h was found with three-times higher pamidronate concentration
(#, p<0.01) (*, p< 0.001). Data represent averages ± SD of measurements (n=3–4) obtained
from three alveolar bone and three BMSCs samples.
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Figure 5. Wound healing assay
Alveolar osteoblasts (A) and BMSCs (B) were pretreated with pamidronate for 24h,
wounded and continuously monitored over several days. Pamidronate toxicity (black
arrows) limited wound healing by BMSCs at 6 × 10−5 M pamidronate (solid brackets), and
completely inhibited wound healing at 10−4 M in both cell types (dotted brackets).
Representative images are shown from testing of two alveolar bone and two BMSC samples.
Magnification 100×.
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