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Information transmission via non-verbal cues such as a fright response can be quantified in a
fish school by reconstructing individual fish motion in three dimensions. In this paper, we
describe an automated tracking framework to reconstruct the full-body trajectories of densely
schooling fish using two-dimensional silhouettes in multiple cameras. We model the shape of
each fish as a series of elliptical cross sections along a flexible midline. We estimate the size of
each ellipse using an iterated extended Kalman filter. The shape model is used in a model-
based tracking framework in which simulated annealing is applied at each step to estimate
the midline. Results are presented for eight fish with occlusions. The tracking system is
currently being used to investigate fast-start behaviour of schooling fish in response to
looming stimuli.
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1. INTRODUCTION

Animal aggregations in many species fascinate and
inspire engineers who study collective behaviour [1,2].
Engineering tools have the potential to advance the
understanding of animal groups, and roboticists can
use this improved understanding to design bioinspi-
red robotic systems. Among the many animals that
demonstrate collective behaviour, fish are particularly
attractive as a model system because a wide variety
of schooling fish are easy to procure and maintain in a
laboratory setting.

While there are many bioinspired algorithms
that seek to replicate collective behaviour [3–5], we
are not aware of any algorithm that has been validated
by experimental data. One reason such experiments
are lacking is that (markerless) tracking of multiple
organisms is inherently hard. The application of com-
puter-vision techniques has helped, but a technique
to track the pose (i.e. position and orientation) and
shape of individual animals in a group is not yet avail-
able. Even in a laboratory setting, we must address
challenges such as underwater lighting, occlusions
and reflections.

Our interest in collective behaviour lies in the rapid
transmission of information via a non-verbal cue such
as a fright response. An example of a fright response in
fish is a fast start, which is often the precursor to an
escape or an attack [6]. Two behaviours associated
with fast-start swimming are C-starts and S-starts [7],
rrespondence (dpaley@umd.edu).
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named for the corresponding body shape during the
manoeuvres, which take place in less than 100 ms. The
propagation of startle responses in a fish school may be
indicative of the social transmission of information [8].

Fish schools have been tracked in their natural
environment [9] and in laboratories [10,11]. Positions
of up to 14 fish have been tracked in two dimensions
[11] and groups of four and eight fish have been tracked
in three dimensions [10]. In the study of Handegard
et al. [9], an acoustic sensor is used on a moving plat-
form to track individual fish in a school. In Viscido
et al. [10] and Schell et al. [11] least-squares fitting
is used to join track segments already matched in
sequential video images. In each instance, the fish
are modelled as point masses; orientation and shape
information is ignored. Shape kinematics have been
tracked and studied for fewer fish [12,13] and the
midline has been used previously to describe fish move-
ment [12–14]. For example, in Fontaine et al. [13], a
two-dimensional model built around the midline is
used for tracking.

Deformable objects such as a fish body can be
detected in images using active contours [15,16]. A
predefined contour based on a decreasing energy func-
tion is wrapped around the edges of regions of high
contrast. In three dimensions, deformable objects are
encountered in markerless human motion capture [17]
and articulated hand-tracking [18]. Most of these tech-
niques rely on a predefined three-dimensional model to
estimate pose and shape from two-dimensional images.
Changes in shape are captured by deforming the model
along degrees of freedom such as joint angles or prin-
cipal components. Methods to define a (deformable)
shape use quadrics [18,19], superquadrics [20] and
This journal is q 2011 The Royal Society
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cubic splines [13]. In the study of Butail & Paley [21],
we propose approximating fish shape by a bendable
ellipsoid. We are able to track simple motion using
this method, but not C- or S-starts, which motivates
the approach described here.

The number of fish or, more importantly, the density
of fish poses another challenge to tracking. For example,
it is desirable to preserve the identity of each fish
through time and between camera views, even during
occlusions. Data-association problems such as this can
be addressed instantaneously using shape fitting [22]
or over a section of the target trajectory using motion
coherence [23–25]. These problems have been addressed
in tracking flies [26–28] and ants [29]. Data associa-
tion can be resolved using motion coherence if the
occlusions last for only a few frames and the target
size is relatively small (so that it is rare for a target to
change course while occluded). However, in the case
of high frame-rate tracking of fast-start behaviour,
occlusions can last many frames and the fish often
turn while occluded.

In this paper, we describe a high frame-rate track-
ing framework for estimating the instantaneous
shape of multiple fish in a dense school (i.e. with sus-
tained occlusions). We apply methods from generative
modelling to produce a shape model, which is then
used to reconstruct the fish body in three dimensions
using two-dimensional silhouettes in multiple cameras.
The contributions of the paper are (i) a method to auto-
matically generate a three-dimensional model of a fish
from two orthogonal camera views and (ii) the design
of a multi-layered tracking system that reconstructs
the position, orientation and shape of individual fish
in a dense school. The technical approach involves
the application of tools from generative modelling,
nonlinear optimization and Bayesian estimation.

In our tracking framework, we describe each fish by
its position, orientation and shape (midline). The
measurements consist of images from multiple cameras
that are each modelled as a perspective-projection
system. (A perspective projection is a nonlinear map-
ping between a three-dimensional point in space and
its two-dimensional position in the image plane.) In
order to capture the C- and S-shapes associated with
fast-start behaviour, we model the midline of the fish
body as a polynomial curve. We assign an orthogonal
reference frame to each point on the midline and use
this frame to automatically construct a three-dimensional
shape profile for each fish. We use simulated annealing
(SA) to optimize the instantaneous state estimate and
Kalman filtering to smooth the estimate in time.

The paper is organized as follows. In §2, we introduce
the concepts of nonlinear estimation, generative model-
ling, data association and nonlinear optimization.
Section 3 presents the fish-midline representation and
automatic model generation. Section 4 describes a
multi-layered approach to reconstruct midline trajec-
tories, including the objective function used in
optimization. Section 5 presents tracking results with
up to eight giant danio (Danio aequipinnatus). We con-
clude in §6 with a description of our ongoing use of
the tracking system to study information transmission
in danio.
J. R. Soc. Interface (2012)
2. BACKGROUND

2.1. Nonlinear estimation and data association

In the tracking framework described below, we perform
estimation in two stages. First, we estimate the shape
geometry of each fish, then we use the estimated
shape for model-based tracking. The shape-estimation
process uses occluding contours (silhouette boundaries)
from multiple views. The model-based tracking uses
the shape geometry to reconstruct the fish position,
orientation and midline (figure 1).

In general, the state of a target at time k is described
by the vector Xk [ Rn. A measurement at time k is
denoted by Zk [ Rm. The state Xkþ1 and measurements
Zkþ1 are related to the state Xk according to

Xkþ1 ¼ FðXk ;wkþ1Þ
and Z kþ1 ¼ HðXkþ1;nkþ1Þ;

�
ð2:1Þ

where F represents the (nonlinear) motion model, H
represents the (nonlinear) measurement model, and w
and n are the instantaneous disturbance and measure-
ment noise values. Given the state estimate X̂k , the
estimation error X̂k �Xk is a random quantity owing
to noise and approximation in F and H. The conditio-
nal probability of a state estimate pðX̂k jZkÞ given the
measurements up to time k, Zk, is called the posterior
probability density function (PDF). An optimal Baye-
sian solution recursively maximizes the posterior PDF.
Common applications use possibly sub-optimal solutions
that assume Gaussian noise distribution.

Our first application of nonlinear estimation is to
estimate the shape of each fish. We parametrize the
body surface in three dimensions using methods from
generative modelling to identify the model parame-
ters. Generative modelling provides a framework for
reconstructing the shape of asymmetrical objects. A gen-
erative model may be produced by rotating and
translating an object along a trajectory [30]. Formally, a
continuous set of transformations are applied on an
object shape (also called the generator) to build a genera-
tive model. A curve generator of the form g(u): R! R3 is
transformed through a parametrized transformation,
d(g(u), s): R3 � R! R3, to form a shape. For example,
a cylinder with radius r is produced by choosing

gðuÞ ¼
cos u
sin u

0

2
4

3
5 and dðgðuÞ; sÞ ¼

rg1
rg2
s

2
4

3
5; ð2:2Þ

where s [ [0,1] and u [ [0,2p]. Similarly a cone is
produced by linearly decreasing r ¼ 1 2 s along the
trajectory.

In a vision-based tracking system, a nonlinear esti-
mator such as the extended Kalman filter (EKF), the
unscented Kalman filter or the particle filter is often
used [31]. The EKF updates the target estimate by
linearizing the measurement and target state about
the current estimate. A single update of the EKF is
equivalent to a single step of a Gauss–Newton optimiz-
ation method [32]. We iterate the following EKF
algorithm to estimate the shape model of a fish.
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estimate cross-sectional ellipses
by iterated EKF (§3.2)

reconstruct shape by simulated
annealing (§4.2)

estimate three-dimensional midline
by two-stage optimization (§3.1)

smooth shape trajectories
by Kalman filtering (§4.3)

perform measurement–target data
association by nearest-neighbour
matching (§4.1)

Figure 1. Tracking framework. Generative modelling is used to parametrize a shape model; these parameters are estimated using
an iterated EKF. Shape reconstruction is performed by matching measurements from segmented images in multiple cameras to a
three-dimensional shape estimate. (Online version in colour.)
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EKF algorithm
Input:
J. R. Soc. Interfa
Motion model F, measurement model H,
covariance matrices for measurement noise
R and disturbance Q.

�

Initialize:
 State estimate X̂1 and error covariance

matrix P1
2, prior to the first measurement.
For each time step k ¼ 1, 2, . . .
1. Compute gain matrix: Wk ¼ Pk

2 Hk
T Sk

21, where Sk ¼ Hk .
Pk

2 HT
k þ Rk is the measurement prediction covariance and

Hk ¼ @H
@XðX̂

�
k Þ.

2. Update state estimate: X̂k ¼ X̂
�
k þWkðZ k �HðX̂�k ;nkÞÞ.

3. Update state covariance: Pk ¼ (1 2 Wk Hk )Pk
2.

4. Predict state prior to next measurement:
X̂
�
kþ1 ¼ FðX̂k ;wkþ1Þ.

5. Compute covariance: Pkþ1
2 ¼ Fk Pk Fk

T þ Qk, where
Fk ¼ @F

@XðX̂kÞ.

In an iterated EKF, we loop steps (1)–(3) until a
threshold is reached on the matrix norm of the state
covariance Pk.

A multi-target tracking system requires measure-
ments to be matched to targets, a process called data
association. A simple and fast data-association strategy
called nearest-neighbour matching [24] assigns a
measurement to the closest (projected) estimate on
the image plane. We compute a metric for the distance
between the measurement and the target as a function
of the complete midline. This metric makes a nearest-
neighbour association reliable, even when the targets
are close to one another.
2.2. Nonlinear optimization

In a high frame-rate tracking system, the time difference
between successive measurements is small. As a result,
tracking primarily entails processing the measurements,
ce (2012)
and does not require an accurate motion model. For
tracking individual fish, we cast the system (2.1) into
a numerical optimization problem and use SA to solve
it. The measurement model is represented by an objec-
tive function ||Zk 2 H(Xk, nk)||, which evaluates the
match between measurements and the estimate. SA
is a probabilistic optimization method used to find the
global minimum of the objective function even if there
are multiple minima [33]. It mimics the annealing pro-
cess by accepting a jump out of a local minimum with
a probability that decreases as the search approaches
a global minimum. The SA algorithm is summarized
as follows.
SA algorithm
Input:
 Cost function C: Rn! R, perturbation
function r: Rn! Rn and a non-increasing
cooling schedule.
Initialize:
 State estimate at current time step, X1 ¼Xk.

Until a termination criterion is reached, iterate for j ¼ 1; 2; . . .
1. Perturb the system X̃

j ¼ rðXjÞ and compute the costs
C(X j ) and CðX̃jÞ. Let dC be the change in cost.

2. Sample from a uniform distribution r � U(0,1) and update
the state:

X jþ1 ¼ X̃
j

if r � minð1; expð�dC
tj ÞÞ

Xj otherwise;

�

where tj is the temperature.
3. Update the temperature tj based on the cooling schedule

(e.g. t jþ1 ¼ Kct
j , where 0 , Kc , 1).
One or more termination criteria may be used
such as reaching a freezing temperature tf, exceeding a
maximum number of unsuccessful function evaluations
at a given temperature Nmax or attaining a minimum
cost value.



Table 1. Nomenclature.

s midline coordinate, s [ [0,1]
1(s) elliptical cross section of fish body at s
a(s) semi-major axis of cross section at s
b(s) semi-minor axis of cross section at s
d(s) displacement of cross section along normal axis at s
c camera index, c ¼ 1,2,3
f(s) midline at s in body-fixed reference frame
S the surface of a fish body
h heading vector (orientation of head)
k time index, k ¼ 1,2, . . .
L a line in three dimensions
m(s) midline in world reference frame at s
cO occluding contour in camera c
p vector of polynomial coefficients
g vertical axis in world frame
t(s) tangent vector to the midline at s
x(s) normal vector to the midline at s
y(s) binormal vector to the midline at s
T 4�4 transformation matrix
cu measurement in pixels in cth camera image
cû projected estimate in pixels in cth camera image
Xk state of a target at time k
Zk measurements at time k
B body frame fixed to head
C camera reference frame
W world reference frame

Figure 2. The body frame B is fixed to the head with
the heading vector h pointing towards the tip of the nose.
The pitch (green), roll (blue) and yaw (red) axes complete
the frame.
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3. GENERATING THE FISH MODEL

This section describes a novel method for generating a
fish-shape model to be used for model-based tracking.
The shape model is based on the midline of the fish.
There are several ways to generate the midline. In the
study of Hughes & Kelly [14], the midline is found by
projecting the top-view profile on a plane of orientation.
In the work of Tytell & Lauder [12] and Fontaine et al.
[13], the midline is generated manually. The midline in
our tracking system is generated automatically when
the fish is in clear view of all cameras, i.e. when there
are no occlusions and both head and tail are visible.
The shape model is generated automatically from
the midline using an iterated EKF. The relevant
nomenclature is summarized in table 1.
3.1. Shape representation using the midline

For the purpose of model generation and tracking, we
make the following assumptions about fish motion
observed in our experiments.

Assumption3.1.Thefish in our tracking experiments
bend laterally [14].

Assumption3.2.Thefish in our tracking experiments
turn and pitch, but rarely roll.

Assumption 3.3. The portion of the body from the
eyes to the nose (the head) does not bend.

A single fish is characterized by the position of the
head, the orientation of the head (the heading vector)
and the midline. The midline is a curve that runs
from the head to the tail. A surface is generated
around the midline to approximate the shape. We
define the shape locally using a body-fixed reference
frame B. The origin of frame B is the centre of the
J. R. Soc. Interface (2012)
head with one axis in the direction of the nose. The
heading h [ R3 is a unit vector pointing from the
centre of the head to the tip of the nose (figure 2).
Based on assumption 3.2, the body-frame axes are
completed by performing the cross-product of the
vertical g W [0 0 1]T with the heading h to get the pitch-
ing axis, followed by the cross-product between the
heading and the pitching axis to get the yaw axis.
Given the position of the head r [ R3, the complete
body frame in the world-frame coordinates can be
represented by the transformation

WTB ¼
h g � h h � ðg � hÞ r
0 0 0 1

� �
:

The midline is parametrized in the body frame by
f(s) ¼ [ f1(s) f2(s) f3(s)]

T, where s [ [0,1]. We assume
the functions fi(s) are differentiable, which permits us
to define an orthonormal frame at each point s on the
midline. We use this frame to define the body cross
section at s.

To allow for up to two inflection points and the
possibility of a C-start or S-start, we model f1(s) and
f2(s) as quadratic and quartic polynomials, respectively.
We have

f1ðsÞ ¼ p1s þ p2s2;

f2ðsÞ ¼ p3s2 þ p4s3 þ p5s4

and f3ðsÞ ¼ 0;

9>>=
>>; ð3:1Þ

where p ¼ [ p1, . . ., p5]
T are the polynomial coefficients.

The midline is represented in world-frame coordinates
using the transformation WTB, i.e.

mðsÞ
1

� �
¼ WTB

f ðsÞ
1

� �
: ð3:2Þ

The midline m(s) is projected onto the image by
perspective projection, which uses the camera cali-
bration parameters [34]. The projected midline cûðsÞ
on camera c is [35]

cûðsÞ ¼
cw1
cw3

cw2
cw3

h iT
;



(a) (b) (c)

Figure 3. Generating the fish shape model. (a) Midline fits and occluding contours in the top view and side view are used to gen-
erate a midline in three dimensions. The white circles are the measurements and red circles are the projected estimates of the
endpoints of the ellipse axes. (b) Cross-sectional ellipse normal to the midline. (c) The top profile and side profile are used to
generate the final surface. (The black ellipse partitions the head and the rest of the body.)
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where cwðsÞ ¼ cPmðsÞ and cP is the camera projection
matrix [35].

To automatically generate the midline, we locate
the head, nose and tail of the fish from the top view
(camera 1) based on the following observations: (i)
the centre of the head is the centre of the largest
circle that fits inside the silhouette, (ii) the nose is the
highest curvature point on the portion of the occluding
contour near the head, and (iii) the curvature of the
occluding contour is highest at the tail. (Curvature,
defined in §5.3, represents the degree of bending.)

The location of the nose expressed in pixels in camera
1 is denoted by 1u n, the tail by 1u t and the centre of the
head by 1u h. The distance of a point on the silhouette
1u [ R2 from any point on the projected curve
1ûðsÞ [ R2 is given by ||1u � 1 ûðsÞ||. The side views
(cameras 2 and 3) give orientation information as well
as position information. Let cl W (clm, clr) be a line in
camera c, where clm is the slope and clr is the intercept
with the vertical axis of the image plane. A least-
squares fit on the silhouette in camera c establishes a
line from the head to the tail. The body frame is
oriented so that the heading is aligned with this line
in the side view and with the vector from the head to
the nose in the top view. The head and nose are
marked in the top view. We use the following additional
constraints in the side view to build the body frame:

cû2;h ¼ clm cû1;h þc lr
cû2;n ¼ clm cû1;nþclr ;

where c [ f2,3g. We solve these constraint equations in
either one of the side cameras for the position of the
head m(0) [ R3 and nose. We complete the body
frame by applying the no-roll assumption 3.2.

The estimated midline parameters p̂ are found using
a nonlinear cost function that measures the distance of
the silhouette to the midline. Let q*i be the distance of
the point 1ui in the top-view silhouette to the closest
point on the projected midline 1ûðsÞ. The midline
J. R. Soc. Interface (2012)
parameters p̂ are estimated by solving

p̂ ¼ argmin
p

X
i

q�i ;

where q�i ¼ min
s
k1ui � 1 ûðsÞk

subject to 1ûð1Þ ¼ 1ut :

9>>>>>=
>>>>>;

ð3:3Þ

We minimize equation (3.3) by applying a two-stage
optimization process consisting of SA followed by a
quasi-Newton line search [36]. Once a midline is esti-
mated, a surface is generated around it to create a
shape model as described next.

3.2. Generating a shape model

We model the fish cross section at point s on the midline
by an ellipse 1(s) in the plane that is normal to the mid-
line at s. We compute the ellipse planes at each point
using curve framing [37]. The tangent t(s) to the midline
at point s forms an axis of a local orthogonal frame [x(s)
y(s) t(s)]. The local frame at each point on the midline is
completed as follows: the normal axis x(s) is x(s) ¼ g �
t(s) and the binormal is y(s) ¼ t(s) � x(s) (figure 3). A
point on the cross section 1(s) can be represented in the
world frame W using the transformation matrix

WT1 ¼
xðsÞ yðsÞ tðsÞ mðsÞ

0 0 0 1

� �
; ð3:4Þ

where

tðsÞ ¼ @m1

@s
@m2

@s
@m3

@s

� �T

:

In order to generate the body surface, we estimate
the major a(s) and minor b(s) axes of each elliptical
cross section. We include a parameter, d(s), which
allows us to displace the ellipse along y(s). Using candi-
date values for a(s), b(s), d(s) and the transformation
matrix above, we scale and transform the cross section
g(u) ¼ [cos(u) sin(u) 0]T, where u [ [0,2p] [30,38]. The
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transformation is defined as (see equation (2.2))

dðg; sÞ ¼ MðsÞgþTðsÞ; ð3:5Þ

where

MðsÞ ¼ ½xðsÞaðsÞ yðsÞbðsÞ 03�1�
TðsÞ ¼ mðsÞ þ yðsÞdðsÞ:

)
ð3:6Þ

The curve m(s) is formed using equation (3.2). Sub-
stituting equation (3.6) into equation (3.5), we obtain
the surface

Sðs; uÞ W dðgðuÞ; sÞ
¼mðsÞ þ aðsÞ cosðuÞxðsÞ þ ðbðsÞ sinðuÞ
þ dðsÞÞyðsÞ; ð3:7Þ

where s [ [0,1] and u [ [0,2p].
In order to generate an accurate surface model for

each fish, we measure the values a(s), b(s) and d(s)
using the top-view and side-view observations. These
values are the state variables in the model-estimation
process. Each measurement in this process is the
length of the line segment contained in the occluding
contour and normal to the midline (figure 3).

We substitute u ¼ f0,pg in equation (3.7) to produce
the endpoints of the major axis, a(s); u ¼ fp/2, 3p/2g
produces the values for the minor axis, b(s) and d(s).
A perspective projection of a surface point S(s,u) on
camera c is denoted by cS(s,u). The measurement
model is

paðsÞ ¼
k1Sðs; 0Þ � 1Sðs;pÞk

2
þ e1;

pbðsÞ ¼
k2Sðs;p=2Þ � 2Sðs; 3p=2Þk

2
þ e2

and pdðsÞ ¼
�����

2Sðs;p=2Þ þ 2Sðs; 3p=2Þ
2

�2ûðsÞ
�����þ e2;

9>>>>>>>>>=
>>>>>>>>>;

ð3:8Þ

where pa(s), pb(s) and pd(s) are the measurements of
a(s), b(s) and d(s) in the respective camera views, and
e1 and e2 are the measurement noise in cameras 1 and
2, respectively.1

We use an iterated EKF to update our estimates.
(An iterated EKF updates the estimate about the last
computed value to minimize the measurement error.)
A requirement for generating a reliable model is that
we have a clear view of the fish including its nose and
tail in all camera views at least once. The EKF is initi-
alized by selecting all fish in each camera. Once the
ellipse sizes are estimated, we can use them to generate
a shape in combination with the state of the fish X ¼
[rT hT pT]T [ R11, where r ¼m(0).
1Note that the above measurement model assumes that the occluding
contour of a fish is a projection of the extreme ends of the elliptical
cross sections. As the camera distance (1 m) is much larger than the
fish cross section (2.5 cm), this assumption introduces only sub-pixel
measurement error.
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4. RECONSTRUCTING FISH MOTION

In this section, we describe the steps for tracking indi-
vidual fish after a model is generated. We first
describe the metric used to associate target estimates
to measurements, then present the objective function
used to estimate the position, orientation and shape
trajectories.

The tracking algorithm associates the silhouette of a
blob in a camera image to a target based on the proxi-
mity of the silhouette to the target’s projected midline.
Once a match is made, we use the estimated three-
dimensional model to again project the boundary of
the fish body (i.e. the occluding contour) onto a
camera plane. This occluding contour is compared
with the silhouette boundary in multiple views while
varying the position, orientation and shape until a
best fit is obtained. We use a numerical optimization
algorithm to find the best fit.

4.1. Finding measurement–target associations

In a multi-target tracking experiment, before we update a
target estimate using a new measurement, we must first
associate the measurement with a target. We use near-
est-neighbour matching, which associates a measurement
to a target based on a generalized distance metric. The
Euclidean distance between centroid positions may not
provide an accurate association when the fish are close to
one another, sowe establish anothermetric described here.

The measurements in our case are silhouettes on a
camera frame. Let the set of measurements on a
camera frame be indexed by j. Z j denotes a silhouette
on the camera frame. The points in a silhouette are
indexed by i, i.e. ui

j [ Z j. Note that ui
j [ R2 is measured

in pixels. To match a silhouette with a target, we pro-
ject the midline from each target onto the camera
image plane. We then assign a silhouette to the target
if it is the ‘closest’ silhouette to the midline. The gener-
alized distance metric computes the sum of the
minimum distance of each point on the midline to a sil-
houette. Let cûtðsÞ denote the projected midline of
target t. The measurement jt associated to target t in
frame c is computed by solving

jt ¼ argmin
j

X
s

q�s

where q�s ¼ minikcui � cûtðsÞk:

9>=
>; ð4:1Þ

Note that in equation (4.1), the minimum distance
from the midline is computed. This is because we are
not attempting to fit the midline to a silhouette, but
rather to find how far it is from a given silhouette. In
the case of an occlusion, two targets are assigned the
same silhouette. The search space is automatically
increased so that we now fit multiple shape projections
to the same silhouette.

4.2. Shape-matching cost function

Once a model is generated, we produce a three-dimen-
sional line from each point on the occluding contour
O. The distance of each line to the model surface S is
used to optimize the state estimate [39]. We represent



Figure 4. Camera views C1, C2 and C3, and world frame W.
Cameras C1 and C2 are used for tracking; camera C3 is used
for validation purposes.
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Figure 5. Time-series plots of (a) position, (b) orientation and
(c) total curvature for a single fish. The plots are shown before
filtering (dashed lines) and after filtering (solid lines). The two
peaks in the total curvature correspond to turns. ktotal is
defined in §5.3. (a) Blue, r1; green, r2; red, r3; (b) red, yaw;
green, pitch; blue, roll.

Table 2. Parameter values used for tracking.

parameter value description

a 0.05 background update coefficient (initial)
a 0.0001 background update coefficient (final)
l 5 coefficient of decay for midline

parameters p
t1 1 starting temperature for SA
e1 1 noise variance in top view (pixels)
e2 2 noise variance in side view (pixels)
Sw 1 noise variance for generating new

points in SA
Kg 10 weighting factor in shape-matching cost

function
tf 1026 freezing temperature for SA
Kc 0.9 cooling coefficient for cooling schedule
Nmax 400 maximum unsuccessful evaluations at a

temperature
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a line L in three dimensions by Plücker coordinates [39].
The advantage of this representation is that it defines a
line uniquely and its distance to a point is a straightfor-
ward operation. Let LW[lv

T lm
T]T, where lv [ R3 is the unit

vector representing the direction of the line and lm ¼
lr � lv is the moment of any point lr [ R3 on the line.
The distance of point r from the line L is given by
||r � lv 2 lm||. The cost function is a measure of the
total distance of a surface from an occluding contour.
We denote a point on the surface S by Si. The state esti-
mate X̂ is obtained by solving

X̂ ¼ argmin
X

X
c[ð1;2Þ

X
o[cO

cD�o þ gðDlÞ

where cD�o ¼ min
i[S
kSi � c lv;o � c lm;ok:

9>>=
>>;
ð4:2Þ

g(Dl ) is a non-decreasing function of Dl, the difference
in length between the midline as computed from
shape estimation and from the candidate state X. In
§5, we choose g(Dl ) ¼ Kg ||Dl||2 , where Kg . 0.

We use SA to search the state space. New points are
generated at each step of the optimization algorithm
using Gaussian disturbance w with known covariance.
Unlike an iterative closest-point algorithm [40], we do
not perform a prior association between the measure-
ments and the surface. This permits larger variation
in pose and shape, which is common during fast starts.
4.3. Filtering the state estimates

The optimization output is rarely smooth because
errors in the measurements are absorbed into the esti-
mates. We smooth the estimates by passing the
output state through a Kalman filter. Fish movement
comprises change in position, orientation and shape.
We model velocity and heading vector as being subject
J. R. Soc. Interface (2012)
to Gaussian disturbance

dṙ ¼ dwr and dh ¼ dwh; ð4:3Þ

where wr, wh [ R3 indicate white noise processes.
The shape consists of the curve parameters p ¼

[ p1, . . . , p5]
T. In a straight midline, p1 represents the

length of the fish and p2, . . . , p5 are all zero. A bent mid-
line corresponds to non-zero values in p2, . . . , p5. We
model the fish as having constant length; the midline
tends to straighten out after being bent. Therefore, we
model changes in p1 using Gaussian noise wp,i, and
model p2, . . . , p5 as exponentially decaying variables
with rate l . 0, i.e.

dp1 ¼ dwp;1

and dpi ¼ �lpi dt þ dwp;i; i ¼ 2; . . . ; 5:

)
ð4:4Þ
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Figure 6. Tracking validation using an independent camera. The shape estimated from the (a) top and (b) side camera is
projected onto a (c) multi-exposure image from the independent camera.
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Figure 7. Error for midline fit. The midline was manually
selected on a random set of 100 top-view frames. The distance
was computed between the projected estimate and the manu-
ally generated midline was measured in the top camera frame.
Dark green, minimum; light green, mean; yellow, maximum.
For comparison with previous work, we also computed the
mean error (dashed line) for a fish shape modelled as a bent
ellispoid [21]. (Online version in colour.)
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5. EXPERIMENTAL VALIDATION

5.1. Materials and setup

In order to test our tracking framework, we filmed trials of
one, two, four and eight giant danio (Danio aequipinnatus)
in a 0.61 � 0.30 � 0.40 m (2400 � 1200 � 1600), 20 gallon
tank. Each trial lasted for 1–3 s. Three cameras were
used to film the fish (figure 4). Two cameras were used
for tracking and the third camera was used for validation.
A DRS Lightning RDT high-resolution camera was placed
above the tank to capture the top view at 250 frames per
second and 1280� 1024 pixel resolution. Two Casio EX-
F1 Pro cameras were placed orthogonal to each other
facing the tank sides. These cameras captured images at
300 frames per second and 512� 384 pixel resolution.
To ensure an adequately lit background, the remaining
three sides of the tank were back-lit by a 150 W fluorescent
light source diffused by 1/4 stop with a diffuser fabric.
Videos from the three cameras were synced by marking a
frame in each video with a distinct common event. Simul-
taneous events during a trial were generated in the field of
view of all three cameras by a string of flashing light-emit-
ting diodes. The full videos were then synced and verified
J. R. Soc. Interface (2012)
using a custom Linux shell script. (Every fifth frame in the
250 frames per second video was repeated.)

At the beginning of each experiment, a short video
of the tank was recorded without any fish, so that
we could model the background for background sub-
traction. Each tracking sequence starts with a set of
background images, wherein the background is modelled
as a running average with a tuning parameter ca [41]:

cBkþ1 ¼ cBkð1�caÞ þcacIkþ1; ð5:1Þ

where cB0 is the first background image and cIk is the cur-
rent image of camera c. The value of ca was kept high
initially to model lighting fluctuations and was lowered
when there were fish present (see table 2 for parameter
values used for tracking).

Camera calibration was performed using the
Matlab calibration toolbox [42]. A planar checkerboard
was filmed underwater at different orientations inside the
tank. Extrinsic calibration was performed by moving the
checkerboard between the cameras and propagating the
extrinsic parameters between overlapping camera views
until all camera positions and orientations were known
with respect to the world frame. The reprojection error
during calibration for each camera was in subpixels. In
three dimensions, the error was computed by comparing
the known distance between checkerboard points (ranging
between 30 and 210 mm apart) with the distance between
estimated position. The average error over 50 such obser-
vations was 0.7+0.37 mm. The world frame was chosen
to be directly below the top camera such that the vertical
axis pointed up (figure 4). The top-view camera and the
tank were aligned using a bubble level.

Once the calibration was performed, fish were intro-
duced into the tank from a separate tank in sets of one,
two, four and eight. Three trials were conducted for
each set. Filming was started approximately 10 min
after the fish were introduced. The input to the tracking
system was a set of synced frames from each camera
(top and side) and the calibration parameters for each
camera. The output is a time series of the state vector
X for each fish (figure 5). The number of fish was
constant during each trial.

5.2. Validation of tracking accuracy

Results for the tracking system are reported here for five
out of the 12 trials. In every trial, we were able to track
multiple fish shapes even during occlusions. The



Figure 8. Sequence of frames showing shape tracking during an occlusion. See the video in the electronic supplementary material
(also at http://youtu.be/SgDLNjA1MbU). (Online version in colour.)
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maximum density of the fish schools that we tracked
was one fish per 2.5 gallons. (The actual density was
higher because the fish schooled only in a fraction of
the tank volume.) We used two methods to determine
the accuracy of our tracking algorithm. First, the esti-
mated shape and track reconstruction were verified
using an independent camera. Figure 6 illustrates the
accuracy of the tracker using the projected estimate
on the third camera. Second, we randomly selected a
set of frames across multiple videos and manually
marked 10 control points along the midline in the top
view. The midline was then manually generated by
interpolating a curve between the 10 marked points.
The orthogonal distance between each point on the esti-
mated midline and the manually generated midline was
computed at each point. Figure 7 depicts the average,
maximum and minimum error on the midline. Compar-
ing the manually generated midline and tracked midline
J. R. Soc. Interface (2012)
in the top view for a single fish shows a maximum aver-
age error of five pixels at the tip of the tail. The tail
error is primarily owing to the inconsistent appearance
of the semi-transparent caudal fin in the silhouette
measurements.

Occlusions of two and three fish were tracked reliably
as evidenced by figures 8 and 9. As the tracking process
depends on the silhouettes in each camera frame to esti-
mate the fish position, orientation and shape, the
tracking accuracy is affected by the number of fish in
an occlusion. In our setup, with the low-resolution side
cameras, we found loss of accuracy in occlusions with
four or more fish (figure 10). There were no data associ-
ation errors, although these are expected for dense
occlusions. We intend to address this problem by increas-
ing the camera resolution and number so that the views
with the fewest occlusions can be used to estimate
the shape.

http://youtu.be/SgDLNjA1MbU


(a)

(b)

Figure 9. A multi-exposure image with estimated midlines
projected on the image plane. (a) Top and (b) side views of
four fish.

(a)

(b)

Figure 10. (a) Top view and (b) side view of eight fish tracked
through 250 frames. Because of low resolution, the tracking
accuracy is reduced (centre blue and green midline) in the
side-view camera during dense occlusions.
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5.3. Preliminary analysis of fast-start behaviour

The shape-tracking system described in this paper
yields a new opportunity to study fish behaviour. The
full-body reconstruction at every step allows one to
automatically detect and quantify fast-start behaviour,
which we are doing in the ongoing work outside the
scope of this paper. Figure 11 compares the curvature
profile for a coasting motion with the profile for a
fright response. We compute curvature and total curva-
ture from the midline f(s) as [43]

k ¼ jf
0
1f
00
2 � f 02f

00
1 j

ð f 01
2þ f 02

2Þ3=2
and ktotal ¼

ð1

0
kðsÞds: ð5:2Þ

In the first case, the fish was filmed without any
disturbance. The second case is a midline reconstruc-
tion of a single fish from a multi-fish trial during
which the fish was startled by a visual stimulus.

When no fright stimulus was presented, the curva-
ture is high towards the tail. A coasting turn takes
more than 100 ms and the curvature profile is flat. In
the case of a fright response (an S-start), high curvature
appears along the midline. The turn occurs in
approximately 40 ms and appears as a dark band at
450 ms.

(A thin dark region near body length 0.9 appears in
the curvature plots owing to the combined effect of tail
beat movement and inaccuracy in the tail reconstruc-
tion owing to inconsistent appearance of the caudal fin.)

The three-dimensional reconstruction of each of
these turns shows the distance travelled by each fish
during the turn. The coasting fish travels 54 mm in
500 ms, whereas the startled fish travels 160 mm in
the same time (figure 11).
6. CONCLUSIONS AND ONGOING WORK

In this paper, we describe a three-dimensional tracking
framework for reconstructing the swimming kinematics
of individual fish in a school and present results for
schools with densities greater than one fish per 2.5 gal-
lons. We used model-based tracking to estimate fish
shape with multiple camera views. Using elliptical
cross sections on the midline, we automatically generate
a shape model that is used to track the fish in three
dimensions. A cost function that measures the distance
between a three-dimensional surface and occluding con-
tours on multiple camera planes is used in an SA
algorithm to estimate shape at each time step. The
output of the SA algorithm is passed through a
Kalman filter to further smooth the estimates.

Tracking results with up to eight fish are shown and
validated. The validation is performed using an inde-
pendent camera. We are currently using this system
to study fish schooling behaviour by investigating
fast-start time signatures in the curvature profiles.

The inaccuracies in the tracker result primarily from
(i) the modelling assumption that the fish midline lies on
an inclined plane, (ii) dense occlusions, during which the
limited resolution of the cameras makes it difficult to
resolve the silhouettes into individual shapes, and (iii)
the curve parametrization may be insufficient to represent
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complex curves. The accuracy of the tracker can be further
improved by segregating the head and orientation track-
ing from shape tracking when there are no occlusions. A
particle filter may be run to track the head and orientation
while SA can be used to estimate shape.

Inaccuracies may also result owing to refraction
between air and water. In the case of our setup, where
the camera image plane was parallel to the water sur-
face and centred with respect to the face of the tank,
errors owing to refraction were low (§5.1); however,
mounting the cameras at an angle to the water surface
would require compensation for refraction effects.

As part of the ongoing work we are improving the
tracking speed. The tracking software has been devel-
oped in Matlab, where it takes an average of four
seconds per fish per frame on a 2 GHz CPU with 4 GB
of memory (the tracker is used as a post-trial analysis
tool.) The majority of the computation time is spent in
the optimization step to find the shape fit. During occlu-
sions, the search space increases n-fold, where n is the
number of fish involved in an occlusion. The average
time to resolve a two-fish occlusion was 12 s per fish. A
realistic goal is to be able to track a single fish in 300
frames within 60 s. That would allow a user to study
the results and make any changes for the next trial
within several minutes. A first step in this direction
would be to parallelize the optimization algorithm. For
example, the annealing particle filter [44] runs an SA
algorithm at multiple points in the state space to even-
tually reach the global minimum. Other variants of SA
J. R. Soc. Interface (2012)
algorithm include modifying the sampling distribution
and cooling schedule [45].
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Sheryl Coombs for her collaboration on the experiment design.
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