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Hemichordate worms possess ciliated gills on their trunk, and the homology of these structures with the

pharyngeal gill slits of chordates has long been a topic of debate in the fields of evolutionary biology and

comparative anatomy. Here, we show conservation of transcription factor expression between the devel-

oping pharyngeal gill pores of the hemichordate Saccoglossus kowalevskii and the pharyngeal gill slit

precursors (i.e. pharyngeal endodermal outpockets) of vertebrates. Transcription factors that are

expressed in the pharyngeal endoderm, ectoderm and mesenchyme of vertebrates are expressed exclu-

sively in the pharyngeal endoderm of S. kowalevskii. The pharyngeal arches and tongue bars of

S. kowalevskii lack Tbx1-expressing mesoderm, and are supported solely by an acellular collagenous endo-

skeleton and by compartments of the trunk coelom. Our findings suggest that hemichordate and

vertebrate gills are homologous as simple endodermal outpockets from the foregut, and that much

vertebrate pharyngeal complexity arose coincident with the incorporation of cranial paraxial mesoderm

and neural crest-derived mesenchyme within pharyngeal arches along the chordate and vertebrate

stems, respectively.
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1. INTRODUCTION
Pharyngeal gill slits are one of the four classic chordate

anatomical synapomorphies (along with a dorsal hollow

nerve cord, a notochord and a post-anal tail [1]), and fea-

ture prominently in most narratives or scenarios of

vertebrate evolution and diversification [2–6] (discussed

in [7]). However, gill slits (or gill pores) are also present

in hemichordate worms [8], and gill-slit-like structures

have been described in putative stem-echinoderms [9]

and stem-deuterostomes [10]. This suggests that, far

from being a chordate synapomorphy, pharyngeal gill

slits are a primitive feature of deuterostomes that has

been lost in echinoderms and Xenoturbella (and possibly

also in acoelomorph flatworms [11]). It follows from this

that, as the only extant non-chordate deuterostome taxon

to possess gill slits, hemichordates represent a crucial

phylogenetic data point for studies on the evolutionary

origin of the vertebrate pharynx and its derivatives [12].

The earliest morphological indication of gill slit for-

mation in vertebrates is the appearance of pharyngeal

endodermal outpockets (reviewed in [13]). These outpock-

ets evaginate from the foregut, contact the body wall
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ectoderm and fuse, giving rise to a slit (gill slit) in the wall

of the pharynx. One consequence of the iterative perforation

of pharyngeal gill slits is the formation of mesenchyme-filled

epithelial columns (pharyngeal arches) between the slits.

These arches are lined laterally by ectoderm, medially by

endoderm and contain a discrete central core of cranial para-

xial mesoderm surrounded by cranial neural crest-derived

mesenchyme [14,15]. In all vertebrates, pharyngeal arch

ectoderm gives rise to the sensory neurons of the epibran-

chial ganglia [16,17], while pharyngeal arch mesoderm

and neural crest-derived mesenchyme give rise to the mus-

culature and skeletal elements of the pharynx, respectively

[18,19]. Finally, pharyngeal arch endoderm gives rise to

the endocrine glands of the pharynx—the thymus, thyroid

and (in amniotes) parathyroid glands [20,21].

Early gill slit morphogenesis in hemichordates closely

resembles that of vertebrates. Hemichordates possess a

tripartite bodyplan (figure 1a), with an anterior muscular

proboscis (prosome), a middle collar (mesosome) and a

posterior trunk (metasome), and gill slits form exclusively

on the metasome. Endodermal outpockets evaginate from

the gut, contact metasome surface ectoderm and fuse to

form pharyngeal pores, which are separated by pharyn-

geal arches [8]. However, hemichordates do not exhibit

the complex sequence of pharyngeal arch organogenesis

that is seen in vertebrates. In some pterobranch hemi-

chordates, gills remain as simple ciliated pores that open

directly into the foregut, and lack any form of endo-

skeletal support [22]. In enteropneust hemichordates,

the gills open externally as simple pores (figure 1b), but

are subdivided internally by an epithelial ‘tongue bar’
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Figure 1. Anatomical overview of the juvenile and adult Sacco-
glossus kowalevskii pharyngeal gills. (a) S. kowalevskii exhibits a
tripartite body organization, with an anterior proboscis, a
middle collar and a posterior trunk. In juveniles, gills form

as simple pores on the trunk. (b) A lateral view of the adult
S. kowalevskii trunk shows the gills opening externally as
simple pores. (c) A medial view of the adult S. kowalevskii
trunk shows the alternating arrangement of internal pharyn-
geal arches and tongue bars that bound and divide,

respectively, each pharyngeal gill slit. Scale bars: (a) 250 mm;
(b,c) 1 mm. gp, gill pore; pa, pharyngeal arch; tb, tongue bar.
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that descends by evagination from the dorsal wall of the

slit. This yields an arrangement of alternating pharyngeal

arches and tongue bars, interspersed with narrow, ciliated

slits that open into the pharyngeal cavity and function as a

feeding apparatus (figure 1c) [23]. The enteropneust

pharyngeal apparatus is supported by an endodermally

secreted, acellular collagenous endoskeleton, which

takes the form of a series of inverted trident structures,

with arms descending into each pharyngeal arch and

tongue bar [24–28] (see also figure 2e,f ).
Proc. R. Soc. B (2012)
A number of transcription factors—including Pax1,

Pax9, Eya1, Six1, Hox1, Hox3, FoxC and Tbx1—are

expressed during early pharyngeal arch development in

mammals (see below). A complex network of regulatory

links between these factors is now emerging, and null

mutations of most of these genes results in loss or abnor-

mal development of the pharyngeal arches and/or their

derivatives—including aplasia or hypoplasia of the thy-

roid, thymus and parathyroid [29–31]. Did these

molecular interactions arise in conjunction with the

origin of anatomical complexity in the vertebrate phar-

ynx, or did novel vertebrate pharyngeal arch derivatives

arise within the context of an ancient, pre-existing

pharyngeal gene-regulatory network?

We sought to test the extent to which the vertebrate

pharyngeal transcriptional network was assembled in the

last common ancestor of deuterostomes, by characterizing

the expression of hemichordate orthologues of these tran-

scription factors during gill pore development in the

enteropneust worm, Saccoglossus kowalevskii. Interest-

ingly, we find conserved expression of five of these

factors in the endoderm of the morphologically simple

pharyngeal gill pores of S. kowalevskii. Our findings

suggest that a sophisticated transcriptional network func-

tioned primitively to regulate endodermal outpocketing in

the pharynx of the last common ancestor of deutero-

stomes. We suggest that much vertebrate pharyngeal

complexity arose through novel tissue interactions—inter-

actions that were enabled by the stepwise incorporation

into the pharyngeal arches of paraxial mesoderm and

neural crest-derived mesenchyme, along the chordate

and vertebrate stems, respectively.
2. MATERIAL AND METHODS
(a) Animal collection, husbandry and fixation

Saccoglossus kowalevskii adults were collected in September

2008 from Waquoit Bay, near Woods Hole, MA, USA.

Embryos were acquired, maintained and fixed as previously

described [32]. Juvenile cultures were maintained in glass

dishes of filtered sea water with a reptile sand substrate at

ambient temperature (approx. 218C), and were fed DT’s

Premium Reef Blend phytoplankton following daily water

changes. Amphioxus (Branchiostoma lanceolatum) adults

were provided by Hector Escriva, and were fixed as pre-

viously described [32]. Scyliorhinus canicula embryos were

obtained from the CNRS Station Biologique in Roscoff,

France, and were fixed as previously described [33].

(b) Probes

Antisense riboprobes for Pax1/9 (GenBank DQ869011), Six1

(GenBank JN008939), Eya (GenBank JN008940), FoxC

(GenBank EU932651), Hox1 (GenBank AY313156), Hox3

(GenBank NM_001164907) and Tbx1 (GenBank

GU076134) were transcribed using T7 RNA polymerase

(Invitrogen) and digoxygenin- or fluorescein-labelled rNTPs

(Roche), according to the manufacturer’s instructions.

(c) mRNA in situ hybridization

In situ hybridizations for neurula-stage embryos were per-

formed as described by Zou et al. [31]. In situ hybridizations

for one to four gill-slit-stage juveniles were performed similarly,

but with the following modification: following rehydration

from 100 per cent ethanol (EtOH), juveniles were treated

with a 1 : 10 000 dilution of proteinase-K (Roche) for
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Figure 2. Pharyngeal histology in Saccoglossus kowalevskii (a–c) juveniles and (d– f ) adults. (a) A horizontal section through a
juvenile S. kowalevskii shows two perforated gill pores, with the third gill pore in the process of forming. Gill pore formation
occurs by fusion of an endodermal outpocket with the body wall ectoderm, and this results in the trapping of a compartment of
the metacoel within the pharyngeal arch between two gill pores. (b) The metacoel is sparsely lined by a thin mesothelium that
sits subjacent to the body wall and gut basal lamina, and (c) these coelom-lining cells are occasionally trapped within the coe-

lomic compartment of a pharyngeal arch. (d) In S. kowalevskii adults, the cells lining the metacoel give rise to a myoepithelium.
(e) A ventral cross-section through the pharyngeal arches of S. kowalevskii reveals the arrangement of alternating pharyngeal
arches and tongue bars. ( f ) The Saccoglossus pharyngeal endoskeleton is acellular, and is secreted by the endoderm within
each pharyngeal arch and tongue bar. Scale bars: (a) 30 mm; (b,c) 15mm; (d) 20 mm; (e) 25mm; (f ) 10 mm. bw, body wall;
c, collagenous endoskeleton; eop, endodermal outpocket; gp1–2, gill pores 1–2; g, gut; msc, mesocoel; mtc, metacoel;

myo, myoepithelium; pa, pharyngeal arch; pa1, pharyngeal arch 1; ph, pharyngeal endoderm; tb, tongue bar. Anterior is to
the left in all images, except for ( f), where anterior is down.

Origin of the deuterostome pharynx J. A. Gillis et al. 239
17 min at room temperature. Juveniles were then post-fixed in

formaldehyde, and hybridization was carried out as previously

described [31].

(d) Immunohistochemistry

Juveniles were rehydrated from 100 per cent EtOH in 1X

PBS þ 0.1% Triton X-100 (PBSTr), and rinsed 3 � 10 min

in PBSTr. Blocking was carried out in 5 per cent goat serum

in PBSTr for more than 1 h at room temperature, and primary

antibody incubation was carried out at 48C overnight. Mono-

clonal anti-acetylated tubulin produced in mouse was diluted

1 : 200 in 5 per cent goat serum/PBSTr. Following primary

antibody incubation, animals were rinsed 3 � 30 min in

PBSTr at room temperature. Secondary antibody incubation

(Alexafluor 546 rabbit-anti-mouse IgG, diluted 1 : 50 in 5%

goat serum in PBSTr) was carried out for 4 h at room tempera-

ture. Animals were then rinsed 3 � 30 min in PBSTr at room

temperature, and stored in PBSTr at 48C prior to photography.

Embryos were mounted in Prolong Gold antifade mounting

medium (Molecular Probes) for imaging.

(e) Histology

From 100 per cent EtOH, S. kowalevskii juveniles and adults,

B. lanceolatum adults and Scyliorhinus canicula embryos were

embedded in paraffin (Fisher) following infiltration with

Citrisolve (Fisher). In a 588C paraffin oven, specimens

were infiltrated for 3 � 24 h in Citrisolve, 2 � 24 h in 1 : 1

Citrisolve : paraffin and 3 � 24 h in paraffin. Specimens

were then embedded in fresh paraffin and left to harden for

24 h prior to sectioning. Sections of 5 mM were cut on a

Microm HM330 rotary microtome, and these sections were

mounted on glass slides and stained with either a standard
Proc. R. Soc. B (2012)
or a modified haematoxylin and eosin staining protocol

[33]. Slides were cover-slipped with Permount (Fisher)

prior to imaging.
3. RESULTS
(a) Gill pore perforation and pharyngeal arch

histology in Saccoglossus kowalevskii

The gill pores of S. kowalevskii are heavily ciliated, and

stain positively for acetylated tubulin. Acetylated tubulin

immunoreactivity may therefore be used to observe the

timing of gill pore perforation and morphogenesis (see

electronic supplemental material). Saccoglossus kowalevskii

embryos hatch from their vitelline envelopes at 5–5.5

days post-fertilization (dpf). At this stage, the first gill

pore has already perforated anterior to the ciliary band

(see electronic supplementary material, figure S1a). At

approximately 7–9 dpf, the second gill pore perforates

(see electronic supplementary material, figure S1b). At

this stage, the first gill pore has enlarged and begins to

adopt a U-shaped morphology as a result of downward

evagination of the dorsal gill pore epithelium. This is

the earliest indication of tongue bar development in the

first gill pore. At approximately 10–11 dpf, the third gill

pore perforates (see electronic supplementary material,

figure S1c). The fourth gill pore perforates at approxima-

tely 20–23 dpf (see electronic supplementary material,

figure S1d). By this time, the first two gill pores show

early signs of tongue bar evagination, while the third

and fourth gill pores remain as simple, circular pores.

At this gross morphological level of analysis, gill pore

perforation in S. kowalevskii appears to be bilaterally
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Figure 3. (a–d ) Pax1/9, (e–h) Eya and (i– l ) Six1 are expressed in the developing pharyngeal gill pores of Saccoglossus kowa-
levskii. Pax1/9 is expressed in the presumptive first gill pore endoderm at (a) the neurula stage, and in the epithelium of the
gill pores at the (b) one-, two- (not shown), (c) three- and (d ) four-gill-pore stages. Eya is expressed in the presumptive first
gill pore endoderm at (e) the neurula stage, and in the innermost epithelium of the gill pores at the ( f ) one-, (g) two-, (h)

three- and four- (not shown) gill-pore stages. Six1 is expressed in the proboscis–collar boundary and presumptive first gill
pore endoderm at (i) the neurula stage, and in the epithelium of the gill pores at the ( j) one-, two- (not shown), (k) three-
and (l ) four-gill-pore stages. In all images, animals are oriented with anterior to the upper left. Scale bar in (a): 50 mm; all
images to same scale.
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symmetric, with no evidence of pronounced left–right

asymmetry (i.e. as is seen in amphioxus [34]).

In the trunk of S. kowalevskii juveniles, the space

between the ciliated gut endoderm and the body wall ecto-

derm is occupied by a mesodermally derived trunk coelom

(the metacoel). As S. kowalevskii gill pores form by the

fusion of ciliated endodermal outpockets with trunk ecto-

derm, each gill pore must perforate the metacoel, and

each pharyngeal arch therefore encloses a small meta-

coel-derived coelomic space (figure 2a). The juvenile

metacoel is lined by a thin mesothelium—presumably of

mesodermal origin—which lies subjacent to the body

wall and gut basal lamina (figure 2b). The pharyngeal

arches of S. kowalevskii juveniles are epithelial structures,

and are effectively devoid of mesoderm, with the exception

of small numbers of coelom-lining mesothelial cells that

may become trapped within the pharyngeal arch during

gill slit formation (figure 2c). In S. kowalevskii adults,

cells lining the metacoel give rise to the muscular lining

of the coelom (figure 2d)—the myoepithelium [22]. The

endoderm of the pharynx secretes an acellular collagenous

endoskeleton, which takes the form of an inverted trident.

The central branch of the trident descends into a pharyn-

geal arch, while the lateral branches descend into the two

adjacent tongue bars (figure 2e,f ).

(b) Pax1/9, Eya and Six1 expression

In E9.5–10.5 mouse embryos, the homeobox transcrip-

tion factors Pax1 and Pax9 are co-expressed in the

pharyngeal endodermal outpockets [35,36], while Eya1
Proc. R. Soc. B (2012)
and Six1 are co-expressed in pharyngeal endoderm, ecto-

derm and mesenchyme [29]. Mutant analysis has

revealed that these genes form a Pax–Eya–Six regulatory

hierarchy, which is required for the normal development

of the parathyroid and thymus [29,31]. We therefore exam-

ined the expression patterns of Pax1/9, Eya and Six1

orthologues during gill pore development in S. kowalevskii.

Expression of Pax1/9 has previously been reported in the

first gill pore of S. kowalevskii [37], as well as in the adult gill

epithelium of S. kowalevskii [28] and Ptychodera flava [38].

We note that Pax1/9 is strongly expressed in the presump-

tive first gill pore endoderm of neurula stage embryos,

prior to endodermal outpocketing (figure 3a) [37]. This

expression is maintained in the ring of epithelium sur-

rounding the first gill pore following perforation (figure

3b) [37]. Pax1/9 is also expressed in the epithelium of the

second, third and fourth (figure 3c,d) gill pores. Pax1/9

expression is maintained throughout the gill epithelium

following perforation of each gill pore.

At the neurula stage, Eya is expressed in an ectodermal

band at the proboscis–collar boundary, and in the ecto-

derm and endoderm at the level of the presumptive first

gill pore (figure 3e). Like Pax1/9 and Six1 (see below),

Eya expression is detected exclusively in the gill pore

epithelium at the one-, two- and three-gill-pore stages

(figure 3f,h). Unlike Pax1/9 and Six1, however, Eya

expression appears to be restricted to the innermost layer

of the gill slit epithelium.

Six1 is expressed at late neurula stage in the presumptive

first gill pore endoderm and in an ectodermal ring at the
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Figure 4. (a–c) Hox1, but not (d– f ) Hox3, is expressed in the developing pharynx of Saccoglossus kowalevskii. At the (a) one-gill-
pore stage, Hox1 is expressed in the ectoderm and endoderm at the level of the first pore. This expression is subsequently extin-

guished, and by the (b) three- and (c) four-gill-pore stages Hox1 is expressed in the posterior pharyngeal endoderm and in the
ventral nerve cord. At the (d) one-gill-pore stage, Hox3 is expressed in the dorsal and ventral ectoderm, but not in the endo-
derm of the first gill pore. At the (e) three- and ( f ) four-gill-pore stages, Hox3 expression is detected in the dorsal and ventral
nerve cords, but is not detected in the pharyngeal endoderm. In all images, animals are oriented with anterior to the upper left.
Scale bar in (a): 50 mm; all images to same scale.
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proboscis–collar boundary (figure 3i). Six1 expression

persists in the pharyngeal epithelium of the first gill pore

after perforation (figure 3j). As with Pax1/9, Six1

expression is detected in the pharyngeal epithelium sur-

rounding the second, third and fourth gill pores (figure

3k,l). Expression persists in all gill pores at the four-gill-

pore stage, with a slight downregulation of expression in

the dorsal epithelium of the first and second gill pores on

either side of the forming tongue bar (figure 3l ).
(c) Hox1 and Hox3 expression

In mice, the homeobox transcription factors Hoxa1,

Hoxb1 and Hoxa3 are expressed in the endoderm and

neural-crest-derived mesenchyme of the third and

fourth pharyngeal arches [39,40], and in Hoxa12/2/

Hoxb12/2 and Hoxa32/2 mice, the parathyroid and

thymus—which derive from the endoderm of the third

and fourth pharyngeal pouches—fail to form [39,41]. In

S. kowalevskii, we note the expression of Hox1 in the ecto-

derm of the anterior metasome, approximately at the level

of the presumptive first gill pore (data not shown;

as previously reported [37,42]). At the one-gill-slit stage

(figure 4a), Hox1 expression is detected in the ectoderm

skirting the first gill pore, aswell as in the endoderm immedi-

ately posterior to the pore opening (marking the posterior

boundary of the pharyngeal endoderm [42]). At the three-

gill-slit stage, Hox1 expression is restricted to the endoderm

at the posterior boundary of the foregut, and to the ventral

nerve cord (figure 4b). Ventral nerve cord expression of

Hox1 extends anteriorly to the level of the collar. Endoder-

mal expression of Hox1 remains restricted to the posterior

pharynx at the four-gill-pore stage (figure 4c).

Unlike in vertebrates, Hox3 expression is not detected

in the pharyngeal endoderm of Saccoglossus. At neurula

stage, Hox3 is expressed in an ectodermal ring that sits

posterior to the ectodermal ring of Hox1 expression on
Proc. R. Soc. B (2012)
the metasome (data not shown; as previously reported

[42]). At the one-gill-pore stage, expression becomes

focused along the dorsal and ventral midline (figure

4d). Ventral midline expression extends posteriorly to

the ciliary band and anteriorly to the collar, while dorsal

midline expression spans the entire length of the trunk.

At the three-gill-pore stage (figure 4e) and four-gill-pore

stage (figure 4f ), Hox3 expression remains restricted to

the dorsal and ventral nerve cords, with dorsal cord

expression extending anteriorly to the level of the collar,

and ventral nerve cord expression extending anteriorly

to the boundary between the first and second gill pores.

No Hox3 expression is detected in the pharyngeal

endoderm.
(d) Tbx1 and FoxC expression

In mice, Tbx1 is expressed in the endoderm and core

mesoderm of the pharyngeal arches, and in the neural-

crest-derived mesenchyme of the head [43]. Tbx12/2mice

phenocopy human DiGeorge syndrome and exhibit para-

thyroid and thymus hypoplasia [44]. Members of the

Forkhead box (Fox) family of transcription factors act as

upstream regulators of pharyngeal Tbx1 expression. Phar-

yngeal endodermal expression of Tbx1 is directly regulated

by endodermal expression of FoxA [45], and compound

Foxc12/2/Foxc22/2 mice exhibit a downregulation of

pharyngeal mesoderm Tbx1 expression and hypoplastic

pharyngeal arches [46,47].

We found that Tbx1 was not expressed in the pharyn-

geal region of S. kowalevskii at any stage. At neurula

stage, Tbx1 is expressed panectodermally, excluding the

ciliary band (figure 5a). However, this panectodermal

expression is extinguished by the stage at which the first

gill pore has perforated (figure 5b), and no expression is

detected in the pharyngeal region of juveniles at the

two-, three- or four-gill-pore stages (figure 5c,d).
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Figure 5. (a–d) Tbx1 is not expressed in the pharyngeal gill pores or pharyngeal arches of Saccoglossus kowalevskii, though (e–h)
FoxC is expressed in the gill pore epithelium. (a) At the neurula stage, Tbx1 is expressed panectodermally, excluding the ciliary
band. Expression of Tbx1 is not detected at the (b) one-, two- (not shown), (c) three- or (d) four-gill-pore stages. (e) At the
neural stage, FoxC is expressed at the presumptive proboscis–collar boundary, and in the presumptive first gill pore endoderm.
Expression of FoxC is subsequently detected in the epithelium of the developing ( f ) first, second (not shown), (g) third and (h)

fourth gill pores. In all images, animals are oriented with anterior to the upper left. Scale bar in (a): 50mm. All images to same scale.

242 J. A. Gillis et al. Origin of the deuterostome pharynx
Expression of FoxA was also not detected in the phar-

yngeal endodermal outpockets of S. kowalevskii (data not

shown). However, FoxC expression was detected during

pharyngeal gill pore development in S. kowalevskii. At

the neurula stage, we observed FoxC expression in an

ectodermal ring at the proboscis–collar boundary, and

also in the endoderm at the level of the presumptive

first gill pore (figure 5e). This endodermal expression per-

sists until perforation of the first gill pore (figure 5f ), and

a similar expression pattern is reiterated in the perforating

second, third and fourth gill pores (figure 5g,h). However,

unlike the expression of Pax1/9, Six1 and Eya (which

persist in the perforated gill pore epithelium), FoxC

expression is extinguished from the gill pore epithelium

shortly after perforation. Pharyngeal endodermal

expression of FoxC has not been described previously

in osteichthyans, but has been observed in the shark

Scyliorhinus canicula [48].
4. DISCUSSION
The morphological disparity exhibited by chordate and

hemichordate pharyngeal gills has raised questions

about the level at which these structures may be con-

sidered homologous [22]. Here, we have shown that key

elements of the vertebrate pharyngeal arch gene-regulat-

ory network are conserved in the pharyngeal

endodermal outpockets and gill pore epithelium of a

hemichordate, S. kowalevskii. Specifically, we observe

conserved co-expression of Pax1/9, Eya and Six1 in the

developing pharyngeal gill pores of S. kowalevskii. Given

the co-expression and regulatory interaction of these fac-

tors in the pharyngeal endoderm of vertebrates [29,31]

and the non-vertebrate chordate amphioxus [49,50],

these findings suggest a deeply conserved role for a

Pax–Eya–Six regulatory cascade in patterning the phar-

yngeal endoderm of deuterostomes. We also observe

conserved posterior pharyngeal endodermal expression
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of Hox1. However, unlike in vertebrates, we find no evi-

dence of pharyngeal Hox3 expression, suggesting that

the co-expression of Hox1 and Hox3 in pharyngeal endo-

derm might represent a chordate or vertebrate novelty.

Finally, we do not observe pharyngeal expression of

Tbx1, though we do observe gill slit expression of FoxC,

which acts (probably indirectly) as an upstream regulator

of Tbx1 in vertebrate pharyngeal arch mesoderm. Taken

together, these findings are indicative of a stem-deutero-

stome origin of some of the key molecular interactions

that are involved in vertebrate pharyngeal patterning,

and suggest that the roles of many of these transcription

factors in vertebrate pharyngeal organogenesis (e.g. thy-

roid, thymus and parathyroid development) are secondary

to a more primitive role in endodermal outpocketing and

early gill slit morphogenesis.

In vertebrates, Hox1 and Hox3 paralogues play central

but distinct roles in patterning the pharyngeal arches.

Hoxa1, Hoxb1 and Hoxa3 are expressed in the third and

fourth pharyngeal endodermal outpockets, and while

Hoxa1 and Hoxb1 double-mutants exhibit defects in phar-

yngeal endodermal outpocketing [40,41], Hoxa3 mutants

undergo normal outpocketing, but subsequently exhibit a

number of defects in posterior pharyngeal endodermal

derivatives (including athymia, aparathyroidism and thyr-

oid hypoplasia [39,51,52]). A conserved role for Hox1

in patterning the posterior pharynx has been demon-

strated in the cephalochordate amphioxus [50,53], and

our demonstration that Hox1 (but not Hox3) is expressed

in the posterior pharyngeal endoderm in Saccoglossus

suggests that this is probably a primitive feature of deu-

terostomes. The different phenotypes exhibited by Hox1

and Hox3 mutant mice (i.e. defective outpocketing

versus defective organogenesis, respectively) may reflect

a primitive function of Hox1 as a regulator of endodermal

outpocketing in deuterostomes, and a Hox3 function in

pharyngeal organogenesis that was acquired subsequently

in vertebrates.
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The T-box transcription factor Tbx1 is expressed in the

mesodermal core of the pharyngeal arches in all chordates

examined to date, including mouse [43], lamprey [54]

and amphioxus [55]. The absence of Tbx1 expression in

the pharyngeal arches of S. kowalevskii suggests that Tbx1-

expressing pharyngeal mesoderm may have originated

along the chordate stem. The forkhead transcription factors

FoxA, FoxC1 and FoxC2 are known regulators of Tbx1

expression in the mammalian head and pharyngeal

arches. We did not detect FoxA expression in the pharyngeal

gill pores of S. kowalevskii, though the single S. kowalevskii

orthologue of FoxC1 and FoxC2—which are expressed in
Proc. R. Soc. B (2012)
pharyngeal arch mesenchyme in mouse, chicken and frog

[56–59]—is expressed in the developing gill pore endo-

derm in S. kowalevskii. Interestingly, expression studies of

FoxC paralogues in the shark Scyliorhinus canicula report

that FoxC1 is expressed in pharyngeal arch mesenchyme,

while FoxC2 is expressed exclusively in pharyngeal endo-

derm—a site of expression that has not been described

in any other vertebrate to date [48]. While Wotton et al.

[48] consider this endodermal expression of FoxC2 to be

a derived condition of chondrichthyans, our findings

hint at a possible primitive role for FoxC expression in

deuterostome pharyngeal endoderm.
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Seemingly coincident with the absence of a molecu-

larly distinct mesoderm population in the developing

S. kowalevskii pharynx is the conspicuous absence of a dis-

crete mesodermal core in the pharyngeal arches of juvenile S.

kowalevskii, or mesodermal derivatives within the pharyngeal

arches of adult S. kowalevskii. The pharyngeal arches of S.

kowalevskii are bound by epithelium, but are filled largely

with metacoel and an acellular collagenous matrix that is

secreted by cells of the pharyngeal endoderm [24–28]

(figure 6a). This condition is markedly different from that

seen in the cephalochordate Branchiostoma lanceolatum

(in which the pharyngeal epithelium encloses paraxial

mesoderm; figure 6b) or in vertebrates (in which the pharyn-

geal epithelium encloses a distinct core of paraxial mesoderm

and neural crest-derived mesenchyme; figure 6c). Exper-

imental embryological data from chick and axolotl suggest

that the ability to form pharyngeal endodermal outpockets

is an intrinsic property of foregut endoderm, with little

dependence upon interactions with adjacent mesoderm or

neural-crest-derived mesenchyme [60–62] (though see

[63]). Additionally, the presence of gill slits along the entire

length of the body—from the mouth to the anus—in certain

stem gnathostomes [64] suggests that endodermal outpock-

eting from the gut can occur regardless of the identity (i.e.

paraxial versus lateral plate) of adjacent mesoderm. Based

on these observations—and in light of our expression data

revealing conservation of vertebrate pharyngeal arch tran-

scription factor expression exclusively in the pharyngeal

endoderm of S. kowalevskii—we hypothesize that gill slit for-

mation in deuterostomes was primitively an endodermally

driven process, and that pharyngeal endodermal outpockets

are the level at which hemichordate and vertebrate gills may

be considered homologous. The acquisition of cranial para-

xial mesoderm and neural-crest-derived mesenchyme

within the pharyngeal arches of chordates and vertebrates,

respectively, probably provided the basis of novel epi-

thelial–mesenchymal interactions and, consequently,

anatomical novelty.
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