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Evolutionary adaptation is often likened to climbing a hill or peak. While this process is simple for fitness

landscapes where mutations are independent, the interaction between mutations (epistasis) as well as

mutations at loci that affect more than one trait (pleiotropy) are crucial in complex and realistic fitness

landscapes. We investigate the impact of epistasis and pleiotropy on adaptive evolution by studying the

evolution of a population of asexual haploid organisms (haplotypes) in a model of N interacting

loci, where each locus interacts with K other loci. We use a quantitative measure of the magnitude of

epistatic interactions between substitutions, and find that it is an increasing function of K. When

haplotypes adapt at high mutation rates, more epistatic pairs of substitutions are observed on the line

of descent than expected. The highest fitness is attained in landscapes with an intermediate amount of

ruggedness that balance the higher fitness potential of interacting genes with their concomitant decreased

evolvability. Our findings imply that the synergism between loci that interact epistatically is crucial for

evolving genetic modules with high fitness, while too much ruggedness stalls the adaptive process.
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1. INTRODUCTION
As a population adapts to its environment, it accumulates

mutations that increase the chance for the long-term suc-

cess of the lineage (or lineages) it represents. The

standard picture for this process is Fisher’s geometric

model [1] of evolution by small steps, i.e. the accumu-

lation of many mutations with small benefit. The

evidence supporting this concept, however, is scarce [2]

and many open questions remain [3].

More modern treatments use stochastic substitution

models [4–8] to understand the adaptation of DNA

sequences. If the mutation rate is small and selection is

strong, the adaptive process can explore at most a few muta-

tional steps away from the wild-type, so that mutations are

fixed sequentially and deleterious mutations play only a

minor role (if any) [8]. However, if the rate of mutation is

high (and/or selection is weak) mutations can interact sig-

nificantly and adaptation does not proceed solely via the

accumulation of only beneficial (and neutral) mutations.

Instead, deleterious mutations play an important role as

stepping stones of adaptive evolution that allow a population

to traverse fitness valleys. Kimura [9], for example, showed

that a deleterious mutation can drift to fixation if followed by

a compensatory mutation that restores fitness. Recent work

using computational simulations of evolution has shown

that deleterious mutations are crucial for adaptation, and

interact with subsequent mutations to create substantial

beneficial effects [10–14]. Even though the potential of

interacting mutations in adaptive evolutionhas been pointed

out early by Zuckerkandl & Pauling [15], their importance
for correspondence (ostman@msu.edu).

ic supplementary material is available at http://dx.doi.org/
/rspb.2011.0870 or via http://rspb.royalsocietypublishing.org.

28 April 2011
2 June 2011 247
in shaping adaptive paths through a fitness landscape has

only recently come to the forefront [16–19], and is still a

topic of much discussion [20–23]. In this respect, the

impact of the sign (i.e. positive or negative) as well as the

size of epistasis on adaptation, and how this impact is modu-

lated by the mutation rate, has not received the attention it

deserves [24–26].

If we move from the single gene level to networks of

genes, the situation becomes even more complex. Gene

networks that have been explored experimentally are

strongly epistatic [27–30], and allelic changes at one locus

significantly modulate the fitness effect of a mutation at

another locus. To understand the evolution of such systems,

we have to take into account the interaction between loci,

and furthermore abandon the limit where mutations on

different loci fix sequentially. Here, we quantify the impact

of epistasis on evolutionary adaptation (and the dependence

of this impact on mutation rate), by studying a compu-

tational model of a fitness landscape of N loci, whose

ruggedness can be tuned: the NK landscape model of

Kauffman [31–34]. The model (and versions of it known

as the ‘blocks model’) has been used to study a varietyof pro-

blems in evolution (e.g. [32,35–40]), but most concern the

evolution of beneficial alleles at a single locus. Models that

study interacting gene networks (e.g. transcriptional-

regulatory networks) have focused mainly on the topology,

robustness and modularity of the network [41–44]. Instead,

we are interested in the evolution of the allelic states of the

network as a population evolves from low fitness to high fit-

ness: how interacting mutations allow the crossing of fitness

valleys, and how the ruggedness of the landscape shapes the

evolutionary path. The NK model can describe genetic

interactions that are more complex than what can be

described by analytical models, which generally handle no

more than two loci (see [45,46]). Here we use N ¼ 20
This journal is q 2011 The Royal Society
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Figure 1. NK model haplotypes for N ¼ 16 and K ¼ 2. For
these parameters, the fitness contribution of each locus is
determined by interacting with two loci (adjacent in the rep-
resentation shown here), giving rise to blocks of 2K þ 1
interacting genes. (a) Interactions between loci represented

by lines, with arrows indicating which loci affect the fitness
component of other loci. (b) Actual epistatic interactions
on a particular high-fitness peak, where the width of the
lines indicates the strength of epistatic interactions (thicker

lines equal higher values of 1, defined in the main text).
Three modules of interacting loci are coloured. The remain-
ing interactions (dashed grey lines) are weak (arrowheads
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loci, while retaining the ability to carry out simulations with

high statistics.

As opposed to most work studying adaptation in the

NK fitness landscape, we do not focus on population obser-

vables such as mean fitness, but rather study the line of

descent (LOD) in each population in order to characterize

the sequence and distribution of mutations that have come

to represent the evolutionary path (e.g. [10,13]). We con-

sider this approach more valuable because it more closely

mimics studies in nature where usually the information we

gain about evolutionary history is from surviving lineages.

The mutations that are found on the LOD are not

independent of each other in general, and paint a complex

picture of adaptation that involves deleterious and beneficial

mutations that are conditional in the presence of each other:

a picture of valley crossings, compensatory mutations and

reversals. Further, we are specifically interested in evolution

in landscapes of intermediate ruggedness, as fitness of

neighbouring genotypes in maximally rugged landscapes

of K ¼N 2 1 are uncorrelated (see [47] for an analysis of

evolution in maximally rugged landscapes).
omitted for clarity).
(a) NK model

The NK model of genetic interactions [31–33] consists of

circular, binary sequences encoding the alleles at N loci,

where each locus contributes to the fitness of the haplotype

via an interaction with K other loci. For each of the N loci,

we create a lookup-table with random numbers between 0

and 1 (drawn from a uniform distribution) that represent

the fitness component wi of a binary sequence of length

K þ 1. For example, the case K ¼ 1 (interaction with one

other locus) is modelled by creating random numbers for

the four possible binary pairs 00,01,10,11 for each of

the N loci, that is, the fitness component at one locus is con-

ditional on the allele at one other locus (usually adjacent).

Because independent random numbers are drawn for the

four different combinations, the fitness contribution of a

locus to the overall fitness of the organism can change dras-

tically depending on the allele of the interacting locus. The

case K ¼ 0 is the simplest, because loci do not interact, and

therefore there is no epistasis, except in the case of consecu-

tive mutations at the same locus (reversals), which give rise

to ‘self-interaction’. This choice gives rise to a smooth land-

scape with only a single peak, which any search algorithm

can locate in linear time. Increasing K makes the fitness of

a locus dependent on a total of K þ 1 loci, resulting in a

rugged landscape with multiple local peaks. At the same

time, the fitness of K þ 1 loci is affected by a single

mutation, giving rise to pervasive pleiotropy that amplifies

the ruggedness of the landscape by increasing the effect of

single mutations. Pleiotropy is one of the main assumptions

behind Fisher’s geometric model, and appears to be

common in nature [48,49]. Increasing K increases rugged-

ness, i.e. it increases both the number of peaks (frequency)

and the variation in genotype fitness (amplitude). In the NK

model, the increased peak amplitude is caused by

pleiotropy: when each fitness component is determined

by K þ 1 loci, then it is also true that each locus acts

pleiotropically, affecting K þ 1 fitness components. As the

lookup-tables contain 2Kþ1 random numbers, the likeli-

hood of finding a haplotype of very high fitness increases

with K. The average height of the global peak thus increases

with K [50]. For this reason, we expect that adaptation will
Proc. R. Soc. B (2012)
result in higher fitness when loci interact more, as long as

the evolutionary dynamics allows the population to locate

the higher peaks. We argue that this effect is not solely an

artefact of this model, but that it is also an effect that

should be observable empirically (see §3). However, we

also provide control simulations where the height of the

fitness peaks is normalized. In figure 1a, we show an

example haplotype with N ¼ 16 and K ¼ 2, indicating the

potential interactions. For high-fitness haplotypes, some

interactions are stronger than others (figure 1b) and

lead to the formation of clusters of strongly interacting

loci (modules).

While the NK model is an abstract model of a fitness

landscape, the number of interacting genes that we con-

sider (N ¼ 20) is comparable with that of viruses (e.g.

HIV has 15 proteins, see [51]), or else to modular path-

ways whose function directly affects the fitness of the

organism. Genetic networks with modular structure are

common in living organisms [52], and examples of mod-

ules with approximately 20 genes or proteins include

fibrin blood clotting with 26 genes [53] and human mito-

chondria with 37 genes [54]. The modular composition

of such structures ensures that selection can act on

them without affecting other traits at the same time,

and the breaking of pleiotropic constraints between mod-

ules coding for separate traits is thought to result in

networks with a high level of modular partitioning [55].

In our implementation of the NK landscape, we

choose the fitness of each haplotype to be the geometric

mean of the values wi found in the lookup-tables:

W ¼
YN
i¼1

wi

 !1=N

; ð1:1Þ

rather than the average as is done traditionally [33]. This

form is more realistic than its additive counterpart and has

been suggested before [39,56]. In such a landscape, single

mutations can potentially have a large effect on fitness,

including lethality. The landscape defined by equation (1.1)

gives rise to very few neutral mutations because each locus
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Figure 2. Schematic illustration of epistasis. Two mutations
A and B can interact epistatically in different ways with vary-
ing effects on fitness. The fitness of the wild-type is
represented by the black baselines, and the heights of

arrows represent the fitness after one mutation (WA or WB)
and after both mutations (WAB). Green, positive epistasis,
red, negative epistasis, black, no epistasis. In (a), two inde-
pendently beneficial mutations may have their joint effect
increased or diminished (WAB larger or smaller), while in

(b) the independent effect of the two mutations is deleterious
and beneficial, respectively, and the combined expected
effect on fitness is deleterious. In (c), each mutation by
itself is deleterious, but when they interact, the result can

be reciprocal sign epistasis (green arrow). These sketches
illustrate an additive model, where the sum of WA and WB

is equal to WAB without epistasis. In our model, using the
geometric mean this corresponds to taking the logarithms
of the fitness.
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Figure 3. Representative examples of adaptation in single
lineages. Fitness on the LOD for a simulation lasting 2000

updates. The adaptive ascent is only shown until the lineage
has attained the same fitness as it has after 2000 updates, for
N ¼ 20, K ¼ 0 (dashed line) and K ¼ 4 (solid line), at a
high mutation rate m ¼ 1022. The inset shows an example

LOD at m ¼ 1024, which has only beneficial mutations on
the LOD.
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contributes to fitness in one way or the other, and we have

not explicitly introduced alleles with zero fitness (lethals).

We note that the results presented here do not depend on

whether fitness is the arithmetic or the geometric mean

(electronic supplementary material, figure S1).
(b) Quantifying epistasis

Two mutations (A and B) occurring on a haplotype with

wild-type fitness W0 are said to be independent if the fit-

ness effect of the joint mutation equals the product of the

fitness effect of each of the mutations alone. If the fitness

effect of the double mutant is WAB/W0, while the fitness

effect of each of the single mutations is WA/W0 and

WB/W0, respectively, then mutational independence

implies (see illustration in figure 2)

WA

W0

WB

W0

¼WAB

W0

: ð1:2Þ

We quantify epistasis as the deviation from this equality,

such that:

1 ¼ log
W0WAB

WAWB

¼ log
WAB

W0

� log
WA

W0

� log
WB

W0

ð1:3Þ
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is zero when the combined effect of the two mutations

is the same as the product of the individual effects on fit-

ness. This definition is equivalent to the usual quantitative

definition of epistasis in a two-locus two-allele model

(cf. [57], but see [17] for a different definition) and trans-

forms to the well-known additive definition of epistasis

when the individual fitness effects are replaced by their log-

arithms (e.g. [58]). Such a quantitative measure of epistasis

was also used in assessing epistasis between mutations in

experiments with Escherichia coli [59] and digital organ-

isms [60]. For organisms on the LOD (see §4) of an

evolutionary run, A and B refer to two substitutions that

need not be adjacent either on the LOD oron the haplotype.

We do see examples of non-consecutive mutations interact-

ing, such as when a valley is crossed in more than one step

(e.g. in figure 3, K ¼ 4), but here we restrict ourselves to

studying the interaction between adjacent mutations on

the LOD only, so that if WAB is the fitness of the haplotype

that has both substitutions A and B, then the type preceding

this sequence on the LOD has fitness WA. WB is found

by reverting the first substitution (A), and measuring

the fitness of the haplotype carrying only the second

mutation (B).
2. RESULTS
We studied the impact of epistasis on adaptation by

conducting evolutionary runs with different K (which

changes landscape ruggedness) and a fixed number of loci

(N ¼ 20), for different per-locus mutation rates m at a con-

stant population size N of 5000 individuals. In order to

study only that part of evolutionary adaptation where a

population climbs a local peak, each evolutionary run was

initiated with a random selection of haplotypes of less

than average fitness so that initially many beneficial

mutations are available, akin to experiments with RNA

viruses that are forced through bottlenecks [2,61], or are
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subject to environmental change [62]. The evolutionary

dynamics of each run were similar in most cases: the popu-

lation quickly adapts and situates itself near the top of a

local peak, after which it enters a period of stasis when

exploration of the adjacent parts of the landscape does

not turn up any more beneficial mutations (figure 3).

This protocol is different (in terms of adaptation) from

experiments in which only deleterious effects of mutations

are studied, and advantageous mutations are found to

be rare [63]. Thus, in this work we study the transient

period of adaptation as opposed to mutation–selection bal-

ance. Initiating populations with only a single genotype

does not change the evolutionary dynamics we observe

(electronic supplementary material, figure S1).

K

Figure 4. Fraction of epistatic pairs on the LOD. The fraction
of mutational pairs on the LOD that interact epistatically

(circles) is larger than the numerical pre-selection prediction
(crosses) for m ¼ 1022 (p ¼ 0.013672, Wilcoxon signed-rank
test). For smaller mutation rates (m ¼ 1024 shown in inset),
there is no significant difference from the expectation (p ¼
0.23242, Wilcoxon signed-rank test). Reversals have been

excluded from this analysis. Lines are drawn to guide the eye.
(a) Epistatic pairs on the line of descent

The mode of fixation of mutations, that is, whether they

go to fixation one by one or whether multiple mutations

can interact in the same individual before fixation, is

determined by the mutation supply rate, i.e. the product

of the mutation rate per genome per generation and the

population size, mgN. When this product is less than

about 10, mutations usually go to fixation or are lost

before the next mutation occurs [7,38,64,65]. This does

not imply that mutations cannot interact, but instead that

deleterious mutations are unlikely to be incorporated into

the genome. When the mutation supply rate is significantly

larger than 10, mutations occur frequently enough that

they can interact with each other before the first goes to fix-

ation (the concurrent mutations regime [66–68]). Given our

population size of 5000 and 20 loci, at the smallest rate we

investigate (m ¼ 1024), the mutation supply rate is 10, and

mutations largely go to fixation separately, with the result

that the fraction of deleterious substitutions is less than 1

per cent. The mutation supply rates we investigate range

from 10 to 1000, but are substantially smaller than the

supply rate in the long-term evolution experiment with E.

coli for example. In that case, an upper bound on the

mutation rate per genome is mg � 0.74 � 1023 [69],

while the effective population size is N � 3 � 107 [70],

for a mgN � 22 000. While the per-locus mutation rate we

use is higher than what we would expect in organisms

that do not express a mutator phenotype [71], we expect

that the results will not change significantly if we could

decrease the mutation rate while at the same time increas-

ing the population size commensurately. In fact, it was

shown (at least for neutral evolution [64]) that evolutionary

dynamics is essentially unchanged if the two factors mg

and N are varied independently, as long as the product is

the same.

When the mutation supply rate is low, we do not expect

that epistasis between mutations plays a significant role in

the fixation of any individual mutation, simply because it

is unlikely that any pair went to fixation in tandem. As a

consequence, we expect that the number of interacting

pairs on the LOD of populations evolving at low mutation

rate equals the rate at which they were produced. In other

words, selection cannot amplify or reduce the number of

interacting pairs. It is easy to compute the naive expectation

of how many pairs of mutations interact by chance in the

NK model. If we ignore ‘self-interactions’ (a mutation

can interact with itself when it is reversed by the next

mutation on the LOD), the fitness of each locus is
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determined by K others, but also plays a role in the fitness

determination of K other sites. As a consequence, 2K pairs

out of the possible N 2 1 pairs (each locus can potentially

interact with N 2 1 others in the absence of reversals) are

interacting owing to chance alone, that is, simply because

they were within K of each other. If we find more than

2K/(N 2 1) mutational pairs on the LOD that interact epis-

tatically, then we can conclude that these interactions

contributed to why such pairs are on the LOD, in other

words, that epistasis is selected for. However, in reality,

mutational events can include more than two mutations

per haplotype, leading to a fraction of interacting mutations

that is elevated from the naive expectation 2K/(N 2 1). To

calculate the corrected fraction, we numerically obtain the

fraction of all mutational pairs that will interact before the

mutations are screened by selection by randomly mutating

pairs of haplotypes and testing if any mutations are a

distance of K loci or less away from each other (see

electronic supplementary materials for details).

We found that the fraction of epistatic pairs on the LOD

differs significantly from the fraction available (the pre-

selection prediction) when the mutation rate is high (m ¼

1022; figure 4). We conclude that because deleterious

mutations enable organisms to cross valleys between

peaks, the LOD is enriched by epistatic pairs that include

deleterious mutations. For smaller mutation rates this is

not the case, as valleys cannot be crossed (see inset in

figure 4 for m ¼ 1024).

(b) Mechanism of interaction between mutations

The majority of consecutive pairs of mutations on the

LOD are pairs of beneficial mutations (BB pairs; see elec-

tronic supplementary material, figure S3a), followed by

BD, DB and DD pairs (see table 1 for definitions). The

relative fraction of these pairs depends on the mutation

rate, but is roughly independent of K. How (and how

often) these mutations interact, however, does depend

on K. Let us first look at the second mutation of an inter-

acting pair of substitutions, to which we can give the

labels Bþ, B2, Dþ and D2, depending on whether they



Table 1. Relationship between positive/negative and synergistic/antagonistic epistasis for different mutational pairs. (Positive

(1 . 0) and negative (1 , 0) epistasis imply synergistic/antagonistic if the two mutations are both beneficial or both
deleterious, but when the mutations are of opposite effect, the meaning of synergy or antagony is unclear (dashes). A
substitution can be characterized by how it interacts with the mutation that precedes it on the LOD using the sign of 1.
Beneficial substitutions are designated as Bþ or B2, depending on whether they interacted epistatically with the preceding
substitution to form positive or negative epistasis, respectively. Dþ and D2 similarly indicate deleterious substitutions with

positive and negative epistasis. Alternatively, writing BBþ indicates that both substitutions increased fitness (with the second
B being on the background of the first), and that the second substitution had a larger beneficial effect on the background of
the first than it would have had on the background of the wild-type. DB2 denotes a deleterious followed by a beneficial
substitution that did not increase fitness as much as it would have if the deleterious substitution had not occurred.)

designation epistasis sign effect designation epistasis sign effect

DD2 1 , 0 negative synergistic DB2 1 , 0 negative —
DDþ 1 . 0 positive antagonistic DBþ 1 . 0 positive —

BB2 1 , 0 negative antagonistic BD2 1 , 0 negative —
BBþ 1 . 0 positive synergistic BDþ 1 . 0 positive —
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were beneficial or deleterious on the background of the

preceding substitution, and on whether they interacted

positively or negatively with it.

All four types of epistatic mutations increase in frequency

at the expense of mutations that do not interact epistati-

cally (figure 5). Overall, we observe that as K increases,

the population uses deleterious mutations that interact

epistatically to adapt more efficiently, as valleys are cros-

sed to ascend higher fitness peaks. This effect is severely

diminished when the mutation supply rate is low (mgN ,

10), in which case mutations typically go to fixation

before a second mutation occurs (electronic supplemen-

tary material, figure S2). Crossing fitness barriers is

enabled mostly by pairs of the type DBþ, that is, a deleter-

ious mutation followed by a mutation whose benefit

is enhanced by the presence of the preceding deleterious

mutation (see electronic supplementary material, figure

S3b). This synergy between deleterious and beneficial

mutations can go as far as sign epistasis, i.e. a mutation

that is beneficial only in the presence of the preceding dele-

terious mutation, but deleterious in its absence. At K ¼ 0,

most mutational pairs consist of two beneficial mutations

that do not interact epistatically, except when the second

mutation occurs at the same locus as the first, thereby rever-

sing the first mutation (figure 5). Reversals mostly consist

of deleterious–beneficial pairs exhibiting positive epista-

sis DBþ, with a small minority of beneficial–deleterious

pairs exhibiting negative epistasis (BD2). Once K ¼ 5,

most of the DB pairs show positive epistasis, showing that

interacting mutations ease the traversal of fitness barriers

(electronic supplementary material, figure S3).

(c) Correlation between epistasis and beneficial

effect

We define the mean size of epistasis on the LOD as the mean

1 between all consecutive pairs:

k1l ;
1

n

Xn

i¼1

1i; ð2:1Þ

where the sum runs over all substitutions on the LOD,

1i is the size of epistasis of the ith pair (between mutation

i þ 1 and i on the LOD, given by equation (1.3)), and n is

the number of pairs (one less than the number of substi-

tutions). This measure has an expectation value of zero if

negatively and positively interacting pairs occur with
Proc. R. Soc. B (2012)
equal likelihood, and with equal and opposite strength,

on the LOD. We are studying the mean of 1 in order to

compare this measure across evolutionary runs that

differ in the average number of mutations on the LOD.

We find that k1l increases with K for all three mutation

rates (figure 6a). Higher mutation rates result in larger

k1l on the LOD, because the higher rate decreases the

waiting time for new mutations, making it easier for a

lineage to cross a valley in the fitness landscape via a dele-

terious mutation. If a mutation is deleterious, the lineage

that carries this mutation needs another mutation that at

least compensates for the fitness loss before the lineage

goes extinct.

While k1l increases with K, the number of substitutions

during adaptation decreases (figure 6b), and the fraction of

deleterious substitutions is mostly unchanged between low

and intermediate K (electronic supplementary material,

figure S4). The origin of the decrease in the number of sub-

stitutions is clear: for K ¼ 0, mutations that increase fitness

are not difficult to find because the landscape is smooth.

More rugged landscapes risk confining the population to

local peaks, and even though valleys can be crossed towards

higher fitness peaks that are close, ultimately the rugged-

ness puts a stop to further adaptation [72]. Even though

the number of substitutions decreases with K, higher fitness

levels are achieved at intermediate K compared with lower

K. Indeed, the attained fitness, V (the fitness of the best

genotype at the end of a simulation run), increases with

K up to intermediate values (figure 7), and the time to

reach the attained fitness is shorter when K is higher

(electronic supplementary material, figure S5). This also

explains why the observed attained fitness for K ¼ 0 and

m ¼ 1024 is not maximal in figure 7a as we would expect

for a smooth landscape: the time to reach the peak is

just too long given the length of the run. Increasing the

simulation time to 100 000 updates does give the popu-

lation enough time to reach the peak (data not shown).

For K � 5, the attained fitness is an increasing function of

both k1l and the mean selection coefficient (electronic sup-

plementary material, figure S6), that is, higher k1l goes

hand in hand with higher achieved fitness.

That higher fitness can be achieved with fewer substi-

tutions seems counterintuitive (see [73]), yet is an effect

achieved both by epistasis and pleiotropy. Pleiotropy can

result in a single mutation increasing K þ 1 fitness com-

ponents at the same time, leading to the same fitness
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Figure 5. Fraction of types of the second substitution among all
epistatic pairs. Blue, D2; green, B2; red, Dþ; white, Bþ. Height
of bar shows the fraction of all epistatic mutations of a particular
type on the LOD for m ¼ 1022. At this mutation rate, a con-
siderable fraction of epistatic substitutions are Dþ and D2,

while those fractions are lower for m ¼ 1023 and 1024

(electronic supplementary material, figure S2).
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Figure 6. Mean 1 and substitutions on the LOD. (a) k1l on
the LOD as defined by equation (2.1). Each datum is the
average of 200 LODs and error bars are s.e. Mutation rates

are m ¼ 1022 (blue line), m ¼ 1023 (green dashes) and m ¼

1024 (red dots). Population size is 5000, N ¼ 20 and the
replacement rate is 10%. Lines are drawn to guide the eye.
(b) Total number of substitutions as a function of K,

mutation rates and colours as in (a).
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Figure 7. Attained fitness V as a function of K for three
different mutation rates (colours and parameters as in
figure 6a) on LOD. Kopt, the point at which V is maximal,
is larger for higher mutation rates.
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increase with fewer mutations. With luck, one mutation

will increase fitness in all or most of the K þ 1 com-

ponents that it affects, amplifying the effect of the
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mutation. Pleiotropy is therefore directly responsible for

the increase in potential selection coefficients as a func-

tion of K. Even though the chance that a mutation will

have a positive effect on all K þ 1 interacting loci becomes

smaller as K increases, the relationship between fitness

increase per substitution is an approximately linear func-

tion of K (figure 8a), indicating that each mutation on the

LOD carries a ‘bigger punch’ as the number of interacting

loci, K, increases. Both peak frequency and amplitude

correlate with K, and together these two cause the

increase in average selection coefficients for mutations

by increasing the slope leading up to the peaks. Just such

an interaction between traits to achieve higher fitness

has also recently been observed in quantitative trait loci

affecting skeletal characters in mice [49].

Besides changing the degree of pleiotropy, K also

directly modulates epistasis. More epistasis causes the

frequency of peaks and valleys to increase, which, in

addition to pleiotropy, causes increased selection coeffi-

cients. The correlation between the benefit a mutation

provides and the amount of epistasis 1 between this and

other mutations, as evidenced by figure 8b, mirrors the

observation of a correlation between directional epistasis

and the deleterious effects of mutations seen in other compu-

tational studies of evolution [43,74,75], as well as in protein

evolution in vitro [76], bacterial evolution [77] and even vir-

oids [78]. Because beneficial mutations are rare in most of

these studies, a correlation between positive effects and

epistasis has not been shown before. Varying the mutation

rate does not qualitatively change these results.

As K increases, the mean height of peaks decrea-

ses beyond K ¼ 1 (electronic supplementary material,

figure S7) because many more shallow peaks appear

than high ones. Yet, the global peak height continues to

increase beyond K ¼ 5 (but note that peaks can never

exceed W ¼ 1, no matter what the K is). Thus, part of

the observed effect comes from the fact that landscapes

with higher K contain higher peaks [50]. To test whether

the observed increase in mean beneficial effect with K of

single substitutions solely stems from the increase in peak

height, we ran control simulations in which the fitness

landscape is normalized such that the range in fitness is

the same across all K. In this case, the global peak is
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(a) The effect on fitness of beneficial, sb (open symbols),
and deleterious substitutions, sd (solid symbols), both
increase approximately linearly as a function of K (colours

and parameters as in figure 6). (b) Correlation between size
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K ¼ 5 and m ¼ 1022. Reversal substitutions are excluded
because they do not contribute to adaptation. Including

them would only strengthen the overall correlation. Pearson
correlation coefficient r ¼ 0.3549.
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fixed at the same height in all fitness landscapes, while the

frequency of peaks remains unaffected. In this instance of

the NK model, the attained fitness is never larger than

what can be attained at K ¼ 0, and decreases as K increases

owing to the increased ruggedness of the landscape (see

electronic supplementary material, figure S8a). Yet, the

selection coefficients are still an increasing function of K

even in the normalized landscape, but the slope is shallower

than for the non-normalized model (electronic supplemen-

tary material, figure S8b). Thus, beneficial mutations still

cooperate synergistically for a ‘bigger punch’ per mutation,

even if the peak height is normalized.
3. DISCUSSION
We studied how interacting mutations impact the evol-

utionary dynamics for populations evolving in an artificial

fitness landscape in which the ruggedness is determined

by a single parameter K, in the ‘strong mutation’ limit. We

found that increasing the ruggedness of the landscape by

increasing K has several consequences. First, the mean epi-

static effect per substitution k1l monotonically increases
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with K (figure 6). Second, the number of substitutions on

the LOD decreases, while the fraction of those substitutions

that are deleterious or beneficial remains largely unchanged

(electronic supplementary material, figure S4). We might

intuit that fewer beneficial substitutions will impair adap-

tation, but here we instead observe a third effect, namely

that those higher peaks that appear as K is increased

can be located faster and in fewer steps (figure 7), because

the mean selection coefficient per mutation (figure 8)

increases with K in an approximately linear fashion. This

effect is robust even if we correct for the increasing height

of fitness peaks with increasing K in this landscape, and

reflects the proliferation of adaptive opportunities that

come with synergistic interactions.

Ruggedness is normally viewed as an impediment to

adaptation, because the presence of valleys means that a

lineage has to suffer a decrease in fitness before it can

gain a fitness advantage [14]. However, in the NK model,

increased ruggedness not only translates into more peaks

to ascend and more valleys to cross, but also increases

both the fitness difference between the peaks and the valleys

(amplitude) and the height of the global peak. The attained

fitness is maximal at K ¼ 3 to 5, from which we infer that an

intermediate amount of epistasis and pleiotropy is most

conducive to adaptation (figure 7). The population is

able to take advantage of the presence of higher peaks

that exist for higher K, particularly for the highest mutation

rate. The observed decrease in the attained fitness at K . 5

is caused by longer waiting times to new mutations (as was

shown in Clune et al. [14]), which is a consequence of the

increasingly rugged structure of the NK landscape for high

K. As we increase K, the increased average effect of single

mutations (either beneficial or deleterious) is counterba-

lanced by the increasing ruggedness of the landscape,

which makes it more likely that the population becomes

stuck on a suboptimal fitness peak instead of locating the

global peak. This lowers the average attained fitness of

the population compared with lower K.

As the number of peaks increases with K (thus shorten-

ing the mutational distance between peaks), the fitness

decrease that an organism must endure while traversing

the valley in between the peaks becomes larger. As a con-

sequence, successful lineages must have an increased

benefit per substitution for higher K. Indeed, with increas-

ing K, the distribution of single-substitution fitness effects

becomes broader (electronic supplementary material,

figure S9), allowing some mutations to increase the fitness

of the haplotype by as much as a factor of K þ 1 compared

with the case of K ¼ 0. This is an effect of pleiotropy, which

is inseparable from epistasis in this implementation of the

NK model, and has a direct counterpart in empirical fitness

landscapes as well [49]. Further investigation into the

different roles and impacts of epistasis and pleiotropy is

important for the understanding of the dynamics of the

NK model, as well as for the relative roles of epistasis and

pleiotropy in adaptive evolution.

As discussed, the results presented here are a conse-

quence of the increased frequency and amplitude of the

peaks as well as the increase in global peak height (the

height of the highest peak) of the landscape as K is

increased. It could be argued that this increase in the

size of the highest peaks (even as the mean peak height

decreases) is an artefact of the NK model that has no

counterpart in how biological fitness landscapes change
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when the number of interactions between genes changes.

Instead, we believe that the increase in adaptive potential

is germane, because interacting loci can work synergisti-

cally to produce higher fitness when compared with a

set of non-interacting loci. In a sense, increasing K creates

a more modular landscape of epistatically interacting

genes. Indeed, searching for epistatically interacting

genes is one method to search for modules in metabolic

genes [79], and a clustering method has been used

recently to find modules from epistatically interacting

pairs of genes in yeast [30]. The authors of that study

found a dependence of the fraction of pairs that are epi-

static on the size of the deleterious effect of a mutation

that mirrors the dependence we observe here (electronic

supplementary material, figure S10), and thus strongly

epistatic pairs of mutations have the largest fitness effect

also in yeast.

For the NK model, we can understand why the global

peak fitness increases as a direct consequence of the mod-

ularity of the fitness components: each fitness component

wi is controlled by K þ 1 loci, giving 2Kþ1 possible values.

It is more likely to find higher fitness values in those larger

samples. So, just as in the biological pathways with mod-

ular structure in yeast, the more loci that contribute to a

fitness component, the better this component can be

fine-tuned to optimize its contribution to fitness. Given

these considerations, we contend that the NK fitness

landscape, obtained from interacting loci that synergisti-

cally contribute to the function of traits, is a reasonable

and appropriate model for describing interacting gene

networks in biological organisms.
4. METHODS
(a) Simulations

We simulate the evolutionary process by randomly removing

10 per cent of the population every update, and replacing

them with copies of a subset of the remainders, selected with

probabilities proportional to individual fitness. This is akin

to the Wright–Fisher model for haploid asexuals [80], but

with overlapping generations. In evolution experiments im-

plemented in flow reactors (for example, continuous culture

experiments, see [81]), the replacement rate is akin to the

flow rate of the reactor. Varying the replacement rate does

not change the conclusions we reach in this study. We define

the period of adaptation as beginning at update zero, and

ending when the lineage first reaches the same fitness that it

acquired at the end of the simulation. In this manner, we

exclude from the analysis reversal mutations (i.e. mutations

undoing previous mutations at the same locus) that occasion-

ally occur after a fitness peak has been ascended. If we included

those reversals, both the number of deleterious substitutions

and the amount of epistasis measured would be affected,

even though they do not contribute to adaptation.

In order to study the part of the evolutionary trajectory that

corresponds to climbing the nearest fitness peak, we choose as

the ancestral population a sample of individuals with fitness in

the lowest 50 per cent of a randomly generated population

where the haplotypes of the individuals are uncorrelated. As

a consequence, many beneficial mutations are possible, so

individual lineages may climb different peaks (except for K ¼

0, in which case there is only one peak), and the lineage that

happens to climb the fastest will be most likely to outcompete

the other organisms in the population. This protocol is similar
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in spirit to that used in earlier studies [2,61], where a popu-

lation of F 6 viruses was put through bottlenecks in order to

study the dynamics of re-adaptation. For each mutation rate

and for each K, we collected 200 independent evolutionary

runs and extracted one LOD (see below) from each. In our

results, we report the average values across these 200 samples,

and provide standard errors.

The probability of each locus changing its binary value is

set by a per-site mutation rate m. While the average rate of

mutation is fixed, the process itself is stochastic so that the

distribution of the number of mutations per organism is

Poisson-random with the given mean. We vary K from 0 (no

interaction between neighbouring loci) to 10, where each

locus interacts with 10 of its neighbouring loci. Because the

haplotypes are circular, for K ¼ 10 all mutational pairs interact

(100% of mutational pairs are epistatic).

(b) Line of descent

We study the sequence of mutations that accumulates as

populations adapt from an initial state of low fitness to the

maximum fitness they can attain given their environment,

by studying a single individual lineage from its inception to

the end of the simulation run (typically 2000 updates of

the population). We do this by picking the most fit organism

after a set number of simulation updates, and then track this

individual’s ancestry all the way back to the beginning of the

simulation. This sequence of haplotypes defines a sequence

of mutations as the LOD, and we discard all other data

from that simulation [10,13]. For asexual populations in a

single niche (no frequency-dependent selection), the LOD

accurately represents the population as each substitution

that appears on the LOD between the origin and the most

common recent ancestor is shared by the whole population.
This work was supported in part by a grant from the
Cambridge Templeton Consortium, by the National
Science Foundation’s Frontiers in Integrative Biological
Research grant FIBR-0527023 and by NSF’s BEACON
Center for the Study of Evolution in Action, under
cooperative agreement No. DBI-0939454. The funders had
no role in study design, data collection and analysis,
decision to publish or preparation of the manuscript.
REFERENCES
1 Fisher, R. 1930 The genetical theory of natural selection.

Oxford, UK: Oxford University Press.
2 Burch, C. L. & Chao, L. 1999 Evolution by small steps

and rugged landscapes in the RNA virus F6. Genetics
151, 921–927.

3 Orr, H. A. 2005 The genetic theory of adaptation: a brief
history. Nat. Rev. Genet. 6, 119–127. (doi:10.1038/
nrg1523)

4 Gillespie, J. H. 1984 Molecular evolution over the muta-
tional landscape. Evolution 38, 1116–1129. (doi:10.
2307/2408444)

5 Gillespie, J. 1991 The causes of molecular evolution.

New York, NY: Oxford University Press.
6 Orr, H. 2002 The population genetics of adaptation: the

adaptation of DNA sequences. Evolution 56, 1317–1330.
(doi:10.1111/j.0014-3820.2002.tb01446.x)

7 Kim, Y. & Orr, H. A. 2005 Adaptation in sexuals vs. asex-

uals: clonal interference and the Fisher-Muller model.
Genetics 171, 1377–1386. (doi:10.1534/genetics.105.
045252)

8 Kryazhimskiy, S., Tkacik, G. & Plotkin, J. B. 2009 The
dynamics of adaptation on correlated fitness landscapes.

http://dx.doi.org/10.1038/nrg1523
http://dx.doi.org/10.1038/nrg1523
http://dx.doi.org/10.2307/2408444
http://dx.doi.org/10.2307/2408444
http://dx.doi.org/10.1111/j.0014-3820.2002.tb01446.x
http://dx.doi.org/10.1534/genetics.105.045252
http://dx.doi.org/10.1534/genetics.105.045252


Epistasis and pleiotropy B. Østman et al. 255
Proc. Natl Acad. Sci. USA 106, 18 638–18 643. (doi:10.
1073/pnas.0905497106)

9 Kimura, M. 1985 The role of compensatory neutral

mutations in molecular evolution. J. Genet. 64, 7–19.
(doi:10.1007/BF02923549)

10 Lenski, R. E., Ofria, C., Pennock, R. T. & Adami, C.
2003 The evolutionary origin of complex features.
Nature 423, 139–144. (doi:10.1038/nature01568)

11 Bridgham, J. T., Carroll, S. M. & Thornton, J. W. 2006
Evolution of hormone–receptor complexity by molecular
exploitation. Science 312, 97–101. (doi:10.1126/science.
1123348)

12 Poelwijk, F. J., Kiviet, D. J. & Tans, S. J. 2006 Evolutionary
potential of a duplicated repressor-operator pair: simulat-
ing pathways using mutation data. PLoS Comput. Biol. 2,
467–475. (doi:10.1371/journal.pcbi.0020058)

13 Cowperthwaite, M. C., Bull, J. J. & Meyers, L. A. 2006

From bad to good: fitness reversals and the ascent of
deleterious mutations. PLoS Comput. Biol. 2, 1292–
1300. (doi:10.1371/journal.pcbi.0020141)

14 Clune, J., Misevic, D., Ofria, C., Lenski, R. E., Elena,
S. F. & Sanjuán, R. 2008 Natural selection fails to opti-

mize mutation rates for long-term adaptation on rugged
fitness landscapes. PLoS Comput. Biol. 4, e1000187.
(doi:10.1371/journal.pcbi.1000187)

15 Zuckerkandl, E. & Pauling, L. 1965 Evolutionary diver-
gence and convergence in proteins. In Evolving genes
and proteins (eds V. Bryson & H. J. Vogel), pp. 97–166.
New York, NY: Academic Press.

16 Bloom, J. D. & Arnold, F. H. 2009 In the light of directed
evolution: pathways of adaptive protein evolution. Proc.
Natl Acad. Sci. USA 106, 9995–10 000. (doi:10.1073/
pnas.0901522106)

17 Phillips, P. C. 2008 Epistasis: the essential role of gene
interactions in the structure and evolution of genetic sys-
tems. Nat. Rev. Genet. 9, 855–867. (doi:10.1038/

nrg2452)
18 Weinreich, D. M., Watson, R. A. & Chao, L. 2005 Sign

epistasis and genetic constraint on evolutionary trajec-
tories. Evolution 59, 1165–1174. (doi:10.1111/j.0014-
3820.2005.tb01768.x)

19 Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M. & Tans,
S. J. 2007 Empirical fitness landscapes reveal accessible
evolutionary paths. Nature 445, 383–386. (doi:10.1038/
nature05451)

20 Reetz, M. T., Bocola, M., Carballeira, J. D., Zha, D. X. &

Vogel, A. 2005 Expanding the range of substrate accep-
tance of enzymes: combinatorial active-site saturation
test. Angew. Chem.-Int. Ed. 44, 4192–4196. (doi:10.
1002/anie.200500767)

21 Weinreich, D. M. & Chao, L. 2005 Rapid evolutionary
escape by large populations from local fitness peaks is
likely in nature. Evolution 59, 1175–1182. (doi:10.
1111/j.0014-3820.2005.tb01769.x)

22 Weinreich, D. M., Delaney, N. F., DePristo, M. A. &

Hartl, D. L. 2006 Darwinian evolution can follow only
very few mutational paths to fitter proteins. Science 213,
111–114. (doi:10.1126/science.1123539)

23 Lockless, S. W. & Ranganathan, R. 1999 Evolutionarily
conserved pathways of energetic connectivity in protein

families. Science 286, 295–299. (doi:10.1126/science.
286.5438.295)

24 Whitlock, M. C., Phillips, P. C., Moore, F. B.-G. & Tonsor,
S. J. 1995 Multiple fitness peaks and epistasis. Ann. Rev.
Ecol. Syst. 26, 601–29. (doi:10.1146/annurev.es.26.

110195.003125)
25 Coyne, J. A., Barton, N. H. & Turelli, M. 2000 Is

Wright’s shifting balance process important in evolution?
Evolution 54, 306–317. (doi:10.1111/j.0014-3820.2000.
tb00033.x)
Proc. R. Soc. B (2012)
26 Phillips, P., Otto, S. & Whitlock, M. 2000 Beyond the
average, the evolutionary importance of gene interactions
and variability of epistatic effects. In Epistasis and the evol-
utionary process (eds J. Wolf, E. Brodie & M. Wade),
pp. 20–38. Oxford, UK: Oxford University Press.

27 Kelley, R. & Ideker, T. 2005 Systematic interpretation
of genetic interactions using protein networks. Nat.
Biotechnol. 23, 561–566. (doi:10.1038/nbt1096)

28 Ulitsky, I. & Shamir, R. 2007 Pathway redundancy and
protein essentiality revealed in the Saccharomyces cerevi-
siae interaction networks. Mol. Syst. Biol. 3, 104.
(doi:10.1038/msb4100144)

29 Roguev, A. et al. 2008 Conservation and rewiring of func-
tional modules revealed by an epistasis map in fission
yeast. Science 322, 405–410. (doi:10.1126/science.
1162609)

30 Costanzo, M. et al. 2010 The genetic landscape of a cell.

Science 327, 425–31. (doi:10.1126/science.1180823)
31 Kauffman, S. & Levin, S. 1987 Towards a general theory

of adaptive walks on rugged landscapes. J. Theoret. Biol.
128, 11–45. (doi:10.1016/S0022-5193(87)80029-2)

32 Kauffman, S. A. & Weinberger, E. D. 1989 The NK

model of rugged fitness landscapes and its application
to maturation of the immune response. J. Theoret. Biol.
141, 211–245. (doi:10.1016/S0022-5193(89)80019-0)

33 Kauffman, S. A. 1993 The origins of order: self-organization
and selection in evolution. New York, NY: Oxford

University Press.
34 Altenberg, L. 1997 NK fitness landscapes. In The hand-

book of evolutionary computation (eds T. Back, D. Fogel
& Z. Michalewicz), pp. B2.7:5–10. Bristol, UK: IOP

Publishing.
35 Macken, C. A. & Perelson, A. S. 1989 Protein evolution

on rugged landscapes. Proc. Natl Acad. Sci. USA 86,
6191–6195.

36 Perelson, A. S. & Macken, C. A. 1995 Protein evolution

on partially correlated landscapes. Proc. Natl Acad. Sci.
USA 92, 9657–9661.

37 Solow, D., Burnetas, A., Roeder, T. & Greenspan, N. S.
1999 evolutionary consequences of selected locus-
specific variations in epistasis and fitness contribution

of Kauffman’s NK model. J. Theoret. Biol. 196, 181–
196. (doi:10.1006/jtbi.1998.0832)

38 Campos, P. R., Adami, C. & Wilke, C. O. 2002 Optimal
adaptive performance and delocalization in NK fitness
landscapes. Physica A 304, 495–506. (doi:10.1016/

S0378-4371(01)00572-6)
39 Welch, J. J. & Waxman, D. 2005 The NK model and

population genetics. J. Theoret. Biol. 234, 329–340.
(doi:10.1016/j.jtbi.2004.11.027)

40 Orr, H. A. 2006 The population genetics of adaptation
on correlated fitness landscapes: the block model. Evol-
ution 60, 1113–1124. (doi:10.1111/j.0014-3820.2006.
tb01191.x)

41 Wagner, A. 1996 Does evolutionary plasticity evolve?

Evolution 50, 1008–1023. (doi:10.2307/2410642)
42 Ciliberti, S., Martin, O. C. & Wagner, A. 2007 Robust-

ness can evolve gradually in complex regulatory gene
networks with varying topology. PLoS Comput. Biol. 3,
164–173. (doi:10.1371/journal.pcbi.0030015)

43 Azevedo, R. B. R., Lohaus, R., Srinivasan, S., Dang,
K. K. & Burch, C. L. 2006 Sexual reproduction selects
for robustness and negative epistasis in artificial gene
networks. Nature 440, 87–90. (doi:10.1038/nature
04488)

44 Espinosa-Soto, C. & Wagner, A. 2010 Specialization can
drive the evolution of modularity. PLoS Comput. Biol. 6,
e1000 719. (doi:10.1371/journal.pcbi.1000719)

45 Barton, N. H. & Turelli, M. 1991 Natural and sexual
selection on many loci. Genetics 127, 229–255.

http://dx.doi.org/10.1073/pnas.0905497106
http://dx.doi.org/10.1073/pnas.0905497106
http://dx.doi.org/10.1007/BF02923549
http://dx.doi.org/10.1038/nature01568
http://dx.doi.org/10.1126/science.1123348
http://dx.doi.org/10.1126/science.1123348
http://dx.doi.org/10.1371/journal.pcbi.0020058
http://dx.doi.org/10.1371/journal.pcbi.0020141
http://dx.doi.org/10.1371/journal.pcbi.1000187
http://dx.doi.org/10.1073/pnas.0901522106
http://dx.doi.org/10.1073/pnas.0901522106
http://dx.doi.org/10.1038/nrg2452
http://dx.doi.org/10.1038/nrg2452
http://dx.doi.org/10.1111/j.0014-3820.2005.tb01768.x
http://dx.doi.org/10.1111/j.0014-3820.2005.tb01768.x
http://dx.doi.org/10.1038/nature05451
http://dx.doi.org/10.1038/nature05451
http://dx.doi.org/10.1002/anie.200500767
http://dx.doi.org/10.1002/anie.200500767
http://dx.doi.org/10.1111/j.0014-3820.2005.tb01769.x
http://dx.doi.org/10.1111/j.0014-3820.2005.tb01769.x
http://dx.doi.org/10.1126/science.1123539
http://dx.doi.org/10.1126/science.286.5438.295
http://dx.doi.org/10.1126/science.286.5438.295
http://dx.doi.org/10.1146/annurev.es.26.110195.003125
http://dx.doi.org/10.1146/annurev.es.26.110195.003125
http://dx.doi.org/10.1111/j.0014-3820.2000.tb00033.x
http://dx.doi.org/10.1111/j.0014-3820.2000.tb00033.x
http://dx.doi.org/10.1038/nbt1096
http://dx.doi.org/10.1038/msb4100144
http://dx.doi.org/10.1126/science.1162609
http://dx.doi.org/10.1126/science.1162609
http://dx.doi.org/10.1126/science.1180823
http://dx.doi.org/10.1016/S0022-5193(87)80029-2
http://dx.doi.org/10.1016/S0022-5193(89)80019-0
http://dx.doi.org/10.1006/jtbi.1998.0832
http://dx.doi.org/10.1016/S0378-4371(01)00572-6
http://dx.doi.org/10.1016/S0378-4371(01)00572-6
http://dx.doi.org/10.1016/j.jtbi.2004.11.027
http://dx.doi.org/10.1111/j.0014-3820.2006.tb01191.x
http://dx.doi.org/10.1111/j.0014-3820.2006.tb01191.x
http://dx.doi.org/10.2307/2410642
http://dx.doi.org/10.1371/journal.pcbi.0030015
http://dx.doi.org/10.1038/nature04488
http://dx.doi.org/10.1038/nature04488
http://dx.doi.org/10.1371/journal.pcbi.1000719


256 B. Østman et al. Epistasis and pleiotropy
46 Kirkpatrick, M., Johnson, T. & Barton, N. H. 2002
General models of multilocus evolution. Genetics 161,
1727–1750.

47 Jain, K. & Krug, J. 2007 Deterministic and stochastic
regimes of asexual evolution on rugged fitness landscapes.
Genetics 175, 1275–88. (doi:10.1534/genetics.106.067165)

48 Ostrowski, E. A., Rozen, D. E. & Lenski, R. E. 2005
Pleiotropic effects of beneficial mutations in Escherichia
coli. Evolution 59, 2343–2352. (doi:10.1111/j.0014-
3820.2005.tb00944.x)

49 Wagner, G., Kenney-Hunt, J., Pavlicev, M., Peck, J.,
Waxman, D. & Cheverud, J. 2008 Pleiotropic scaling of

gene effects and the ‘cost of complexity’. Nature 452,
470–472. (doi:10.1038/nature06756)

50 Skellett, B., Cairns, B., Geard, N., Tonkes, B. & Wiles, J.
2005 Maximally rugged NK landscapes contain the
highest peaks. In Proc. GECCO ’05 Conf. on Genetic
and evolutionary Computation, 25–29 June 2005,
Washington D.C. (ed. H.-G. Beyer), pp. 579–584.
New York, NY: Association for Computing Machinery.

51 Frankel, A. D. & Young, J. A. T. 1998 HIV-1: fifteen pro-
teins and an RNA. Ann. Rev. Biochem. 67, 1–25. (doi:10.

1146/annurev.biochem.67.1.1)
52 Han, J. D. J. et al. 2004 Evidence for dynamically orga-

nized modularity in the yeast protein–protein
interaction network. Nature 430, 88–93. (doi:10.1038/
nature02555)

53 Doolittle, R. F., Jiang, Y. & Nand, J. 2008 Genomic evidence
for a simpler clotting scheme in jawless vertebrates. J. Mol.
Evol. 66, 185–196. (doi:10.1007/s00239-008-9074-8)

54 Anderson, S. et al. 1981 Sequence and organization of

the human mitochondrial genome. Nature 290, 457–
465. (doi:10.1038/290457a0)

55 Wagner, G. P. & Altenberg, L. 1996 Complex adap-
tations and the evolution of evolvability. Evolution 50,
967–976. (doi:10.2307/2410639)

56 Solow, D., Burnetas, A., Tsai, M. & Greenspan, N. S.
2000 On the expected performance of systems with com-
plex interactions among components. Complex Syst. 12,
423–456. (doi:10.1007/978-3-540-74205-0_31)

57 Bonhoeffer, S., Chappey, C., Parkin, N. T., Whitcomb,

J. M. & Petropoulos, C. J. 2004 Evidence for positive
epistasis in HIV-1. Science 306, 1547–1550. (doi:10.
1126/science.1101786)

58 Mani, R., St. Onge, R. P., Hartman IV, J. L., Giaever, G.
& Roth, F. P. 2008 Defining genetic interaction. Proc.
Natl Acad. Sci. USA 105, 3461–3466. (doi:10.1073/
pnas.0712255105)

59 Elena, S. F. & Lenski, R. 1997 Test of synergistic inter-
actions among deleterious mutations in bacteria. Nature
390, 395–397. (doi:10.1038/37108)

60 Lenski, R. E., Ofria, C., Collier, T. C. & Adami, C. 1999
Genome complexity, robustness and genetic interactions
in digital organisms. Nature 400, 661–664. (doi:10.1038/
23245)

61 Burch, C. L. & Chao, L. 2000 Evolvability of an RNA
virus is determined by its mutational neighbourhood.
Nature 406, 625–628. (doi:10.1038/35020564)

62 Wichman, H. A., Badgett, M. R., Scott, L. A.,
Boulianne, C. M. & Bull, J. J. 1999 Different trajectories

of parallel evolution during viral adaptation. Science 285,
422–424. (doi:10.1126/science.285.5426.422)

63 Eyre-Walker, A. & Keightley, P. D. 2007 The distribution
of fitness effects of new mutations. Nat. Rev. Genet. 8,
610–618. (doi:10.1038/nrg2146)

64 Van Nimwegen, E., Crutchfield, J. P. & Huynen, M.
1999 Neutral evolution of mutational robustness. Proc.
Proc. R. Soc. B (2012)
Natl Acad. Sci. USA 96, 9716–9720. (doi:10.1073/
pnas.96.17.9716)

65 Gillespie, J. 2004 Population genetics: a concise guide.
Baltimore, MD: John Hopkins University Press.

66 Desai, M. M., Fisher, D. S. & Murray, A. W. 2007 The
speed of evolution and maintenance of variation in
asexual populations. Curr. Biol. 17, 385–394. (doi:10.
1016/j.cub.2007.01.072)

67 Desai, M. M. & Fisher, D. S. 2007 Beneficial mutation-
selection balance and the effect of linkage on positive
selection. Genetics 176, 1759–1798. (doi:10.1534/gen-
etics.106.067678)

68 Fogle, C. A., Nagle, J. L. & Desai, M. M. 2008 Clonal
interference, multiple mutations and adaptation in large
asexual populations. Genetics 180, 2163–2173. (doi:10.
1534/genetics.108.090019)

69 Barrick, J. E., Yu, D. S., Yoon, S. H., Jeong, H., Oh,

T. K., Schneider, D., Lenski, R. E. & Kim, J. F. 2009
Genome evolution and adaptation in a long-term exper-
iment with Escherichia coli. Nature 461, 1243–U74.
(doi:10.1038/nature08480)

70 Lenski, R., Rose, M., Simpson, S. & Tadler, S. 1991

long-term experimental evolution in Escherichia coli.
I. Adaptation and divergence during 2000 generations.
Am. Nat. 138, 1315–1341. (doi:10.1086/285289)

71 Zeyl, C. & DeVisser, J. A. 2001 Estimates of the rate and
distribution of fitness effects of spontaneous mutation in

Saccharomyces cerevisiae. Genetics 157, 53–61.
72 Weissman, D. B., Desai, M. M., Fisher, D. S. & Feld-

man, M. W. 2009 The rate at which asexual
populations cross fitness valleys. Theoret. Popul. Biol. 75,

286–300. (doi:10.1016/j.tpb.2009.02.006)
73 MacLean, R. C. & Buckling, A. 2009 The distribution

of fitness effects of beneficial mutations in Pseudomonas
aeruginosa. PLoS Genet. 5, e1000,406. (doi:10.1371/jour-
nal.pgen.1000406)

74 Wilke, C. O. & Adami, C. 2001 Interaction between direc-
tional epistasis and average mutational effects. Proc. R. Soc.
Lond. B 268, 1469–1474. (doi:10.1098/rspb.2001.1690)

75 Wilke, C. O., Lenski, R. E. & Adami, C. 2003 Compen-
satory mutations cause excess of antagonistic epistasis in

RNA secondary structure folding. BMC Evol. Biol. 3, 3.
(doi:10.1186/1471-2148-3-3)

76 Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. &
Tawfik, D. S. 2006 Robustness-epistasis link shapes the
fitness landscape of a randomly drifting protein. Nature
444, 929–932. (doi:10.1038/nature05385)

77 Beerenwinkel, N., Pachter, L., Sturmfels, B., Elena, S. F. &
Lenski, R. E. 2007 Analysis of epistatic interactions and
fitness landscapes using a new geometric approach. BMC
Evol. Biol. 7, 60. (doi:10.1186/1471-2148-7-60)

78 Sanjuan, R., Forment, J. & Elena, S. F. 2006 In silico pre-
dicted robustness of viroid RNA secondary structures. II.
Interaction between mutation pairs. Mol. Biol. Evol. 23,
2123–2130. (doi:10.1093/molbev/msl083)

79 Segre, D., DeLuna, A., Church, G. M. & Kishony, R.
2005 Modular epistasis in yeast metabolism. Nat.
Genet. 37, 77–83. (doi:10.1038/ng1489)

80 Donnelly, P. & Weber, N. 1985 The Wright–Fisher
model with temporally varying selection and population

size. J. Math. Biol. 22, 21–29. (doi:10.1007/
BF00276544)

81 Lindemann, B. F., Klug, C. & Schwienhorst, A. 2002
Evolution of bacteriophage in continuous culture: a
model system to test antiviral gene therapies for the emer-

gence of phage escape mutants. J. Virol. 76, 5784–5792.
(doi:10.1128/JVI.76.11.5784-5792.2002)

http://dx.doi.org/10.1534/genetics.106.067165
http://dx.doi.org/10.1111/j.0014-3820.2005.tb00944.x
http://dx.doi.org/10.1111/j.0014-3820.2005.tb00944.x
http://dx.doi.org/10.1038/nature06756
http://dx.doi.org/10.1146/annurev.biochem.67.1.1
http://dx.doi.org/10.1146/annurev.biochem.67.1.1
http://dx.doi.org/10.1038/nature02555
http://dx.doi.org/10.1038/nature02555
http://dx.doi.org/10.1007/s00239-008-9074-8
http://dx.doi.org/10.1038/290457a0
http://dx.doi.org/10.2307/2410639
http://dx.doi.org/10.1007/978-3-540-74205-0_31
http://dx.doi.org/10.1126/science.1101786
http://dx.doi.org/10.1126/science.1101786
http://dx.doi.org/10.1073/pnas.0712255105
http://dx.doi.org/10.1073/pnas.0712255105
http://dx.doi.org/10.1038/37108
http://dx.doi.org/10.1038/23245
http://dx.doi.org/10.1038/23245
http://dx.doi.org/10.1038/35020564
http://dx.doi.org/10.1126/science.285.5426.422
http://dx.doi.org/10.1038/nrg2146
http://dx.doi.org/10.1073/pnas.96.17.9716
http://dx.doi.org/10.1073/pnas.96.17.9716
http://dx.doi.org/10.1016/j.cub.2007.01.072
http://dx.doi.org/10.1016/j.cub.2007.01.072
http://dx.doi.org/10.1534/genetics.106.067678
http://dx.doi.org/10.1534/genetics.106.067678
http://dx.doi.org/10.1534/genetics.108.090019
http://dx.doi.org/10.1534/genetics.108.090019
http://dx.doi.org/10.1038/nature08480
http://dx.doi.org/10.1086/285289
http://dx.doi.org/10.1016/j.tpb.2009.02.006
http://dx.doi.org/10.1371/journal.pgen.1000406
http://dx.doi.org/10.1371/journal.pgen.1000406
http://dx.doi.org/10.1098/rspb.2001.1690
http://dx.doi.org/10.1186/1471-2148-3-3
http://dx.doi.org/10.1038/nature05385
http://dx.doi.org/10.1186/1471-2148-7-60
http://dx.doi.org/10.1093/molbev/msl083
http://dx.doi.org/10.1038/ng1489
http://dx.doi.org/10.1007/BF00276544
http://dx.doi.org/10.1007/BF00276544
http://dx.doi.org/10.1128/JVI.76.11.5784-5792.2002

	Impact of epistasis and pleiotropy on evolutionary adaptation
	Introduction
	NK model
	Quantifying epistasis

	Results
	Epistatic pairs on the line of descent
	Mechanism of interaction between mutations
	Correlation between epistasis and beneficial effect

	Discussion
	Methods
	Simulations
	Line of descent

	This work was supported in part by a grant from the Cambridge Templeton Consortium, by the National Science Foundation’s Frontiers in Integrative Biological Research grant FIBR-0527023 and by NSF’s BEACON Center for the Study of Evolution in Action, under cooperative agreement No. DBI-0939454. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
	REFERENCES


