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The mapping of environment, through variation in individuals’ life histories, to dynamics can be
complex and often poorly known. Consequently, it is not clear how important it is dynamically.
To explore this, I incorporated lessons from an empirical system, a soil mite, into an individual-
based model. Individuals compete for resource and allocate this according to eight ‘genetic’ rules
that specify investment in growth or reserves (which influences survival or fecundity), size at matur-
ation and reproductive allocation. Density dependence, therefore, emerges from competition for
food, limiting individual’s growth and fecundity. We use this model to examine the role that genetic
and phenotypically plastic variation plays in dynamics, by fixing phenotypes, by allowing pheno-
types to vary plastically and by creating genetic variation between individuals. Variation, and how
it arises, influences short- and long-run dynamics in a way comparable in magnitude with halving
food supply. In particular, by switching variation on and off, it is possible to identify a range of pro-
cesses necessary to capture the dynamics of the ‘full model’. Exercises like this can help identify key
processes and parameters, but a concerted effort is needed across many different systems to search
for shared understanding of both process and modelling.
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1. INTRODUCTION
Given the unprecedented rate of environmental change,
and the increasing recognition that ecological systems
provide extremely valuable services to society, there is
a pressing need to understand how biological systems
respond to environmental change in order to be
able to manage and protect the services they provide.
Predicting the way a complex ecological system will
behave requires some form of modelling approach.
Models are simplifications of reality; so choices need
to be made at the outset as to what processes to include.
For some general, strategic questions, models can be
made very simple and then be solved analytically. How-
ever, for population prediction, such models may be
inappropriate because they miss important biological
details that influence the way that the system responds
to any environmental change. These ‘important biologi-
cal details’ include (i) individual differences caused by
age, stage or previous history [1], (ii) the mechanism
by which density influences demographic rates, and
that different rates may have different functions with
density [2,3], (iii) the extent to which the environment
fluctuates over time and space [2,4,5], and (iv) evolution-
ary dynamics that arise from genetic and phenotypic
dynamics [6–8]. Although these factors are probably
ubiquitous, they are sometimes not modelled for
two good reasons: either the data are unavailable, or
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because more complexity in processes leads to more
cumbersome models.

Empirical data were, until recently, largely unavail-
able. However, in the past two decades, empirical
systems have been studied in great depth, and the
biological processes underpinning phenotypic, popu-
lation and evolutionary dynamics have begun to be
elucidated [3,6,7,9–11]. Field-based systems have
been illuminating, and much has been performed to
disentangle different processes contributing to the
population and evolutionary dynamics by dissecting
detailed population time series coupled with pedigree
analysis. Laboratory ecological systems have the par-
ticular benefit of allowing experimental dissection of
the processes that underlie the dynamics. For one
amenable empirical model (the soil mite, Sancassania
berlesei ), we have experimentally dissected the relation-
ship between phenotypic and dynamical variation.
This mite is small enough to conduct replicated free-
running population experiments, yet large enough to
undertake detailed investigations on individuals [12].
One over-riding conclusion that emerges from our lab-
oratory experiments is that individuals are plastic and
vary in resource allocation decisions according to the
food they gain. Thus, per capita food (PCF) determines
growth rate, which determines age and size at maturity
[13]. A female’s size and resources determine repro-
duction by affecting the number and size of eggs; the
latter also influences the offspring life history in a con-
text-dependent way [14,15]. Long-running population
experiments show that these phenotypic relation-
ships evolve in response to environmentally imposed
This journal is q 2011 The Royal Society
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selection pressures [16], and therefore have a genetic
component; these experiments also demonstrate that
population dynamics evolve [16]. Population responses
to perturbations in food supply are therefore the
integration across the population of the individual
responses to changing resource levels, and, through
delayed effects, previous environments including those
of parents [13–15,17].

Therefore, data are increasingly available to inform
the mechanistic drivers of dynamical change. The
issue of modelling the system then comes down to
the choice of processes to model. The traditional mod-
elling approach, that values analytical simplicity
greatly, can be characterized by statistical analogy as
a ‘forwards selection’ approach, as typically the sim-
plest possible model is taken as the starting point
and single processes are added. A priori, however, it
is not clear the extent to which different biological
details really matter in determining dynamical proper-
ties, and therefore which processes are necessary and
sufficient to capture the dynamics of any biological
system. The choice of processes is particularly import-
ant for models aiming to be used as a predictive tool
for management. To inform these choices, we need
to undertake some exercises where we build models
rich in biological detail and investigate their proper-
ties, to identify the extent to which biological detail
affects the details of the model result. Continuing the
statistical analogy, the requirement in such cases may
be calls for a ‘backwards selection’ approach from a
maximal model.

To explore the dynamical importance of between-
individual variation (arising from variation in genes
plus variation in resources, leading to phenotypic plas-
ticity), I have incorporated many of the biological
drivers of the dynamics we observe in the mite experi-
ments into an individual-based model. The mapping
of environment to dynamics is complex, and depends
on many indirect pathways, even crossing generations
via the resources allocated to eggs, as a main mechanism
driving parental effects. The purpose of this model is not
to fit it specifically to empirical time series (although
methods are available to do this, e.g. [18]), but to
build an informed model that captures a meaningful
range of biological mechanisms translating environment
into dynamics. Using this biologically realistic ‘system
model’, we explore the extent to which different
endogenous and exogenous processes are particularly
important in capturing the overall dynamics.
2. METHODS
The model description follows the 7-step overview,
design and details (ODD) protocol for describing indi-
vidual- and agent-based models [19]. The model used
for this paper is coded in R v. 2.10.0 [20]. Code is
available on request.

(a) Purpose

The purpose of the model is to model an ecological,
single-species system using a range of factors that
have been identified as key drivers of demography
from experiments on the mite laboratory system.
This model can then be used to explore the
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relationship between phenotypic, population and evol-
utionary dynamics, with a particular view towards
identifying which of the processes driving phenotypic
dynamics are important for transient and long-term
dynamics.

(b) State variables and scales

The agents in the model are individuals that reproduce
clonally. Individuals take in resources and allocate
them to growth, reserves or reproduction according
to eight rules (genes), which are passed on to offspring
(with potential for mutation). Each individual’s state is
tracked via its size (Si), age (Ai), reserves (Ri) and its
maturation status. Reproduction is clonal and depend-
ent only on resources. Individuals are followed from
birth to death, and the time step is daily (to match
our experimental programme). Space is implicit.
Population size and structure are only constrained by
the resource input.

(c) Process overview and scheduling

The model is summarized in figure 1. Briefly, each
time step begins with food being supplied. This is
shared out between individuals according to a compe-
tition function (see §3). An individual’s PCF is spent
in a way determined by its variants (‘alleles’) of its
life-history rules (‘genes’). In particular, juveniles
invest PCF in growth or reserves, or adults in repro-
duction or reserves. Juveniles mature once past a
(genetic) size threshold and at a probability deter-
mined by their growth rate and reserves. Adults
allocate food and reserves to reproductive effort,
which is then partitioned into eggs of a size deter-
mined by age, size and reserves. Survival is a
binomial process depending on size, age and reserves,
and occurs at the end of each time step.

(d) Design concepts

(i) Emergence
Individuals’ life histories emerge from their patterns of
resource investment in growth, reserves and fecundity.
These investment decisions are either genetically fixed
or are gene � environment interactions that are plastic
in response to food supply and internal state (age, size,
etc.). Density dependence occurs only in the sharing
of food between individuals, and thereafter density-
dependent relationships between demographic rates
and density arise from investment decisions. Popu-
lation dynamics emerges from individual rules.
Differential survival and reproduction of individuals
with different variants of the genes (‘alleles’) is natural
selection. Mutation (a small per capita chance of a
change in an allele from parent to offspring) allows
new genetic variation to emerge leading to sustained
evolutionary dynamics.

(ii) Individual characteristics
Individuals do not interact, mate, sense or move.

(iii) Stochasticity
Stochasticity occurs in daily food supply, the maturation
decision and daily survival. Food supply is a stochastic
environmental variable around a deterministic mean.



food supplied

per capita  food depends on
competition: big animals win
more (with some noise)

juveniles partition
food into growth or
reserves (G1)  

adults partition food into reproductive
effort or reserves (G1). Effort is
augmented with an amount from
reserves depending on intake rate and
reserves (G3, G4, G5)

if past threshold
size (G2): mature
depending on
growth rate (G3)
and reserves
(binomial process)

egg size depends on
G7, G8 + age and
reserves

fecundity is effort
divided by egg size

offspring are born with
reserves proportional to
egg size, inheriting genes
from mother (with
potential for mutation)

survival is binomial probability which
depends on reserves, body size and age

population size and structure

time increments

population initiated

Figure 1. Schematic layout of the structure of the individual-based model. The heritable allocation rules, ‘genes’ 1–8 are speci-

fied by G1 . . . G8. Sequencing runs from top to bottom.
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For a given food level, the deterministic per capita share
is multiplied by a random deviate to proxy variation cre-
ated by encounter rate, spacing of food and contest
competition. Maturation and survival decisions are
binomial deviates around a deterministic mean.

(iv) Observation
At each time step, individuals’ states are recorded
(size, age and reserves), along with the number of
eggs laid and their sizes, their age at maturation and
death. Each individual’s alleles are recorded at birth,
along with parental identity. At each time step, the
population’s genome, pedigree and demography are
known, along with population size and structure.

(e) Initialization

The population is initiated with a number of individ-
uals (throughout 1000, selected from a random
Phil. Trans. R. Soc. B (2012)
uniform distribution of sizes from 0.1 to 4.9). Genetic
variation was initiated by drawing values from uniform
distributions (see appendix A for details). Simulations
were typically run for 1000 time steps. For each scen-
ario, five simulation runs at each set of starting values
were performed.
(f) Input

Resource is supplied to the population at a specified
amount (number of units) per time step. Here, we use
two regimes, constant food (with the baseline being
200 units d21) and periodic food (with the deterministic
signal being a sine wave of amplitude 150 units, centred
around 200 units and a 100 day period). ‘Constant’ and
‘variable’ food supplies were chosen to reflect empirical
investigations. To reflect small-scale environmental sto-
chasticity, the daily food is multiplied by a normal
deviate of mean 1+0.3 s.d.
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(g) Submodels

(i) Competition
Resource is divided up among individuals so that large
individuals get proportionally more. Two competition
rules are used. (i) Logistic competition, such there is
an asymptote above which larger animals do not con-
sume more. The competitive ability (C) of each
individual (i) of size (S) is defined by

Ci ¼
1

1þ expð�4� SiÞ

(ii) Linear sharing of food according to the body size of
each individual. These rules correspond to empirical
results associated with different competitive scenarios.
When food is clumped and easily defendable, the big-
gest individuals can eat continuously, whereas when
food is less defendable, patches get depleted via scram-
ble competition, leading to a size-asymptote in intake
(G. Truelove & T. G. Benton 2006, unpublished
data). Noise is added each time step to each Ci by mul-
tiplying it by a normal deviate of mean 1+0.15 s.d.
The daily food is then shared out in proportion to
the distribution of Ci across the population, giving
each individual its PCF.

(ii) Genes
There are eight genes that specify individuals’ life his-
tories. Variation in individuals’ genes (‘alleles’) creates
phenotypic differences.

G1, Reserves. Empirically, juveniles can choose to
grow slowly but have higher adult fecundity [14], imply-
ing the existence of investment in reserves. G1 is the
percentage of resources that go into reserves (the rest
is invested in growth in juveniles or reproductive effort
in adults).

G2 and G3, Maturation. In mites, maturation is con-
sistent with Day & Rowe’s (2002) threshold maturation
model: well-resourced individuals growing fast continue
to grow past the threshold maturation size [13]. We
assume that the probability of an individual maturing
at time t is a linear function of the individual’s size,
Si, above its genetic threshold, G2i, a quadratic function
of its reserves, Ri (such that maturation probability
increases fast with well-resourced animals), and inver-
sely proportional to its current growth increment. G3i

is then a scaling factor for this relationship.

Pri;tðmaturationÞ ¼
G3iðR2

i;t þ ðSi;t �G2iÞÞ
ð1�G1iÞPCFi;t

Individuals that mature at one time step can reproduce
at the next.

G4–G6 specify the rate at which ‘reserves’ are
withdrawn to complement current food supply and
determine reproductive effort E. The results of Plaistow
et al. [14] imply both capital and income breeding, and
that the balance between these varies between individ-
uals developed under low, medium and high food.
Hence, we choose three different rules, ‘expressed’ in
different contexts. If reserves are low (less than
10% body size), reserves are withdrawn at a rate of 0,
50 or 100 per cent (G4 takes three values); if
reserves are not low and the intake rate is high
(less than 10� reserves), reserves are withdrawn at a
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rate of 0, 50 or 100 per cent (G5 takes three values);
otherwise, reserves are withdrawn at a rate between 0
and 100 per cent (G6 is a continuous proportion).

G7 and G8 determine an individual’s investment in
each offspring [15,21]. G7 is the slope of a regression
of egg size, f, on maternal age. G8 modifies the inter-
cept with respect to the overall effort being invested,
such that

fi;t ¼ G7ið0:1Ai;tÞ þ
G8i

Ei;t
:

Fecundity is then a function of the total reproductive
effort and the specified egg size. We assume that ener-
getic reserves contribute to half the egg (with the
other half being, for example, water), and that individ-
uals are born with some reserves contributed via yolk
(30% of their initial size). Eggs hatch as time increments
(so contribute to competition at the next time step).

(iii) Survival
An individual’s probability of survival at time t is
related to its size (Si), reserves (Ri) and age (Ai).

Pri;tðsurvivalÞ ¼ 1

1þ expð�Si;t � Ri;tÞ
� Ai;t

1000

Pr(survival) was bounded at zero and unity. The
parameter values were arbitrarily chosen, but provide
realistic patterns of size-based survival.

(h) Modelling experiments

Three scenarios were used to examine the role of vari-
ation in the life history on dynamics:

— individuals had their alleles assigned at random,
providing a genetically heterogeneous population;

— individuals had their alleles for genes fixed at the same
value. This provided a genetically homogeneous
population but allowed phenotypic variation between
individuals in response to their state (resources, age,
size, etc.). To assess the role of variation in each
gene, one or more genes were allowed to vary, while
the rest were held constant. To assess the role of selec-
tion, genes were fixed at the initial population mean
genotype, or at the mean genotype following 1000
steps of selection; and

— individuals had their phenotype fixed and therefore
genes were neutral. The phenotypes constrained
were size at maturity, the percentage of resources
invested in reserves and egg size (so all individuals
matured at the same size, although age varied, and
laid the same size eggs, although fecundity varied).

To assess the ‘necessary and sufficient processes’ that
replicated the full dynamics (all eight genes variable),
a ‘stepwise backwards’ process was undertaken by
fixing genes in increasing rank order of their single
gene effects (figure 2) until an ANOVA of the five
model runs showed significant differences from the
baseline (all eight genes variable).

3. RESULTS
The model captures some of the patterns we see in
the experimental observations. Population dynamics
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Figure 2. Transient dynamics and the role of genetic and phenotypic variation between individuals. The eco-evolutionary
dynamics of a single run of the IBM where initial genetic variation occurs in all genes (G, triangles), or where the values of

the genes are fixed at the mean value of five runs of the variable model (GF, black circles), the mean value of the initial con-
ditions (NOG, white circles) or where the phenotype is fixed (PF, adults have a fixed threshold maturation size, a fixed egg size
and a fixed investment rate in reserves; grey circles). (a) Adult dynamics, (b) juvenile dynamics, (c) mean adult size at matu-
ration, (d) egg size, (e) the upper and lower limits of G1, illustrating the narrowing of genetic variability owing to selection;
( f ) shows the initial genetic variation for G5, G7 and G8 and the final variation after 1000 time steps. Values for GF are

G1 ¼ 0.4797552, G2 ¼ 6.25119, G3 ¼ 0.8206453, G4 ¼ 0.00305499, G5 ¼ 0.5, G6 ¼ 0.7390198, G7 ¼ 0.0982889,
G8 ¼ 0.361522; values for NOG are G1 ¼ 0.5050849, G2 ¼ 5.024989, G3 ¼ 0.5050392, G4 ¼ 0.5, G5 ¼ 0.5, G6 ¼
0.5050981, G7 ¼ 0.05050591, G8¼ 0.2050123; values for the fixed-phenotypes are adult size ¼ 6.414548, investment in
reserves 0.4798, egg size ¼ 0.8547742.
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is density-dependent, typically with decaying oscil-
lations (compare figure 2 with time series in earlier
studies [17,21]). Individual’s growth rates are inversely
correlated with population density, such that age at
maturity is a positive correlate of total population den-
sity at birth (r ¼ 0.52, n ¼ 884 individuals tracked
throughout life over 1000 time steps) and maturity
(r ¼ 0.98); similarly, lifetime fecundity is a function
of density at birth, maturity and death (r ¼ 0.51,
0.29 and 0.4, respectively). In the model, most mor-
tality happens to juveniles, such that the median age
of death is 2 days (mean 6); this is consistent with
our empirical understanding [22]. The mean age of
maturity of a sample of individuals (884 out of
50 000 individuals tracked) is 20 days, s.d. 6, range:
11–45; again the patterns were not inconsistent with
our observations [13,23]. The model suggests survival
to maturity is only approximately 2 per cent, but once
there, adults live for an average of 16 days (s.d. 13).
Genetics leads to mother–daughter similarity, as do
Phil. Trans. R. Soc. B (2012)
maternal environmental effects: mothers laying large
eggs give a competitive advantage to offspring. There
are therefore correlations between mother and off-
spring in: egg size laid (r ¼ 0.67, n ¼ 432), fecundity
(r ¼ 0.49), longevity (r ¼ 0.42) and age at maturity
(r ¼ 0.95).

Variation between individuals in their phenotypes,
and how it arises, has marked effects on the population
dynamics. Figure 2 contrasts the transient phenotypic,
genetic and population dynamics between the three
modelling scenarios: (i) phenotypically fixed popu-
lation (PF), (ii) genetically fixed populations (where
phenotypic plasticity remains, but all individuals have
the same genotype). We illustrate two genetically
fixed populations: one where the genes are fixed at
the mean of the initial conditions (GFi), one where
they are fixed at the mean values at the end of 1000
time steps (GFe), after selection has operated, and
(iii) genetic variation in all genes (G, allowing different
individuals to respond to the same environment in
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different ways). Overall, the population dynamics of
the three ‘fixed’ populations is considerably more vari-
able than the population with genetic variability, and
cohort cycles are sustained for longer (figure 2a,b).
The phenotype-fixed treatment shows little phenotypic
variation as expected. The average size at maturity
tracks resource availability in the genetically variable
population, to a lesser extent in the GFi population
and not at all in the GFe population (figure 2c). Con-
versely, egg size instead tracks resource availability in
the GFe population, to a lesser extent in the GFi popu-
lation and not at all in the genetically variable
population (figure 2d).

That size at maturity is strongly density-dependent
in the genetically variable population, coupled with a
small egg size (and thus high juvenile mortality)
tends to dampen the oscillations in adult numbers
faster than in the fixed treatments (figure 2a), such
that between time 75 and time 125, adult numbers
are considerably lower (means of 56 for G, 68 for
GFi, 105 for GFe, 77 for PF). Fewer adults result in
more PCF for each, and a greater size and per capita
fecundity, leading to more juveniles. However, these
are born smaller, compete heavily, grow slowly and
suffer greater mortality (figure 2b). The sum of these
two effects is marked, with the genetically variable
population averaging 68 or 65 per cent of the biomass
of the fixed-phenotype or GFe populations during the
initial phase of 150 days (here, biomass is the size-
weighted total population size, approximated by the
sum of all individuals’ body sizes).

Genetic variation not only alters mean phenotypes
but also creates opportunities for selection, with
the response to selection creating phenotypic (and
population) dynamics. The upward drift in egg size
(figure 2d) arises from strong selection, as reflected in
the distribution of alleles in the population (figure 2f ):
after 1000 time steps, selection on genes 7 and 8 has
moved the mean genotype to the top end of the initial
range, leading to the production of large eggs.

The way variation in different genes contributes to
the mean and variability in transient dynamics is sum-
marized in figure 3. Fixing all genes at the mean initial
conditions (i.e. GFi), but allowing one to vary shows,
for example, that variation in G1 (resources into
reserves or growth/fecundity) decreases the average
adult population size but increases its variance, and
vice versa with juvenile numbers. This pattern arises
because investment in reserves affects growth rate,
age- and size-at-maturity decisions and reproductive
effort, and individuals with high values of G1 invest
more in reserves, and so have a slower growth, smaller
size at maturity but higher fecundity. Removing
genetic variation by fixing 7 or 8 of the genes increases
the relative variability in adult numbers (reinforcing the
results of figure 2, indicating that genetically vari-
able population dynamics decline in variability more
quickly). Using a systematic stepwise backwards pro-
cedure to find a minimal model, the behaviour of
which was consistent with the model including variation
in all genes, identified one that included variation in G1,
G2, G5, G7 and G8 (figure 3). This suggests that key
processes in the dynamics are resource allocation to
growth/fecundity or reserves, allocation of reserves to
Phil. Trans. R. Soc. B (2012)
reproductive effort and apportionment of that effort
between offspring.

Genetic variation also changes the predictability of
the dynamics (contrast the height of the grey bars, repre-
senting the way the mean population size varies over the
five replicated simulations). It also changes the variation
in the dynamics over time measured by the mean coef-
ficients of variation (CVs; variation in single genes tends
to increase temporal variance in adult dynamics).
Finally, compare the three fixed treatments (GFi and
GFe—the mean genotypes before and after selection,
and PF—the fixed-phenotype treatment). The PF
versus GFe comparison shows the difference caused by
plasticity alone (which can be considerable; see adult
numbers). The GFe versus GFi indicates the role of
selection over 1000 time steps. This is most noticeable
with respect to the evolution of biomass, where GFi

and GFe differ considerably. This is due to selection to
increase egg size, reducing their mortality and therefore
preventing their loss from the system.

Having examined the sensitivity of dynamics to gen-
etic and phenotypic variation, we can now ask how the
magnitude of effect compares with the impact of exter-
nal processes, such as the amount and variance in food
supply. Using the same baseline conditions but varying
the food amount, or its variance, has a strong effect on
the dynamics (figure 4). Changing food levels affects
population size in a nonlinear way (quartering the
food results in a third of the biomass). Over the first
250 time steps, the baseline adult population size is
70+4 s.d., at half the food this falls to 40+2.3 s.d.
and at a quarter to 22+2.2 s.d. Adding variability to
the food gives 74+4 s.d. at baseline food and 44+3
s.d. at half food, and therefore it does not have much
effect on mean population size; however, it does
impact on the population variability (especially of juven-
iles) as the dynamics follow the food (figure 4d).
Changing the competition function, allowing individuals
to access food proportional to their body size, also has a
very strong effect on population size (figure 4a,c,e). This
is because logistic competition creates an upper asymp-
tote in the PCF an individual can gain (giving a type
III functional response), reducing the selection to con-
tinue to grow over a certain size. A linear share (type I
functional response) creates a continuing advantage to
growing, selecting for larger individuals and thus chan-
ging stage structure, as more biomass is partitioned
into larger adults and less into juveniles. The average
number of adults across the first 250 time steps changes
from 70+4 s.d. to 113+4 s.d. with the change in com-
petition from type III to type I. The absolute change in
population biomass caused by different levels of genetic
variation (figure 3e) is similar in magnitude to decreas-
ing food supply to the population by 50 per cent, or
changing the competition function (figure 4e).

Within the simulations reported earlier, there was no
mutation; so selection occurs on the initial genetic vari-
ation. Allowing mutation allows evolutionary change to
be sustained (figure 5). Under many parameter values,
size at maturity is driven upwards by increasing selection
on egg size as K-selection selects for increased competi-
tive ability. The change in life histories that results
impacts on the population dynamics in different ways
at different temporal scales (after the initial transients,
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the phenotype is fixed using means from the end of G (see legend to figure 2 for values). Biomass is the sum of all individuals’
sizes across the population. NB: the long-run averages (time steps 501 : 1000) are qualitatively similar but differ in some
instances; for example, where genes are fixed (NOG), age and size at maturity are less variable, so cohort cycles tend to be

maintained leading to the highest CVs.
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adult population size increases over 500 time steps
before decreasing again). Long-running laboratory
experiments typically document similar changes in
dynamics [12], and the empirical evolution of dynamics
is addressed in [16].
4. DISCUSSION
The purpose of this modelling exercise was to explore the
way in which variability between individuals, created by
genetic and plastic responses to resources, impacts on
short-term population dynamics, and therefore our abil-
ity to predict ecological responses to environmental
change. Our model incorporates the sorts of biological
mechanisms underlying phenotypic dynamics that may
be broadly applicable across many systems. Population
dynamics arises from interactions between individuals
over resources, rather than being imposed as a density-
dependent function. Summarizing the results, even
Phil. Trans. R. Soc. B (2012)
when life is simple, with ecologically rational rules, we
perhaps still need to measure most things in order to
create predictive models.

The long-running mite laboratory study has high-
lighted that individuals vary because life histories are
highly responsive to current [13] and past environments,
whether the individual’s own or via parental effects across
generations [17,23], and also that life histories change
rapidly in response to selection in populations [16].
This latter result indicates that allocation rules describing
reaction norms are heritable. Resource-related growth
rates, plasticity in maturation, variation in number and
resources allocated to each offspring, and heritability
in reaction norms have been found in a range of well-
studied organisms (such as ungulates [7,24], plants
[25], isopods [26], Daphnia [27] and fishes [28]), and
so these sorts of processes may well be general. On the
basis of such results, the IBM assumes some simple
mechanismsunderlying individual phenotypic dynamics,
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and although the specifics are mite-informed, the model
may be more general in terms of the processes included.

The IBM allows the investigation of the dynamical
effects of different biological processes that cannot
easily be modified empirically. Specifically, we can
use it to switch off phenotypic and genetic variation,
and, by comparing the results, we can identify pro-
cesses, and sources of variation, that contribute most
to the results of the ‘full model’. Thus, sensitivity
analysis of the model can provide insight into the pro-
cesses or parameters most influential for the dynamics,
and so can act as a guide to future research effort in
order to reduce process and parameter uncertainty
[29,30]. The results described here indicate that (i)
variation between individuals arising from phenotypic-
ally plastic allocation rules interacts with genetic
variation to influence dynamics. Hence, variation in
population dynamical responses to a perturbation is
a necessary result of variation between individuals in
life histories [1]; (ii) that genetic variation in a range
of processes throughout the animal’s life was needed
to approximate the full model: the rate at which an
individual allocates resources to growth or reserves,
the maturation threshold size (correlated with age at
Phil. Trans. R. Soc. B (2012)
maturity), the way it allocates resources to reproduc-
tive effort and the way the effort is partitioned
between propagules. These relationships therefore are
necessary to describe the whole life history and how
it responds to environmental resources, as well as its
evolutionary fitness.

This model further suggests two important lessons:
firstly, as is increasingly being recognized, it is not pos-
sible to separate ecological and evolutionary timescales
[6,31,32]. Therefore, under a stationary environment,
the dynamical attractor is not a population dynamical
one, but a population and evolutionary one. Population
growth rate, or carrying capacity, can evolve significantly
over a small handful of generations ([16,33], figure 5).
Secondly, although selection is a powerful force, indirect
effects may prevent selection from driving phenotypic
traits in response to it. For example, on average, matur-
ation size is selected to increase under the majority of
conditions explored in this paper (figure 5c); however,
during periods of high competition, the average adult
body size may nonetheless decrease in the population
(figure 2c, black points, time 50–100). This is similar
to Soay sheep on St Kilda, where body size is selected
to increase, but average body size has decreased in
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recent decades in response to changes in age structure
and thus competition [7].

In the model, density dependence works through
resource competition, with the available resources being
partitioned into growth (or reproduction) and reserves.
The effects of density therefore impact on all demo-
graphic traits and do not just influence survival or
fecundity [34]. They also lead to complex lag structures
in the dynamics, as generation time itself varies with den-
sity. The model indicates that changing the amount of
food, or the way it is competed for, can have significant
impacts on the population dynamics. For example, the
spatial aggregation of food can change competition from
scramble to contest, changing individual growth rates,
body sizes and population dynamics [12]. The way
density dependence operates is therefore context-depen-
dent, making identification of the correct process more
difficult, especially in the field [35–37]. Despite the
focus in the literature on the effects of different mechan-
isms of density dependence, it is interesting to note that
the impacts of individual variation are not dissimilar in
magnitude to halving the food supply, or changing the
model for competition from scramble to contest.

So, what conclusions can be drawn from this approach
and this specific model? Ecological systems are obviously
complex, but this exercise in understanding the behaviour
of the system has pinpointed some positive ways to
Phil. Trans. R. Soc. B (2012)
identifying processes that are particularly important for
predicting dynamical responses. The key message is that
variation between individuals (driven by genetic variation
and plastic allocation rules) determines transient
dynamics, owing to complex direct and indirect effects
in the way that individuals, and thus the population,
respond to environmental change [24]. Furthermore,
this model reinforces empirical findings that population
dynamics (as well as phenotypic dynamics) are likely to
carry signatures of responses to selection. That the bio-
logical processes included in the model may be quite
widespread suggests the general result that the predictive
models need to incorporate more biological details to be
realistic. This is a challenge for ecology for two reasons:
one is that collecting data on the way individuals vary
and its causes is complicated. Secondly, we need to
develop a framework for numerical modelling in terms
of how to analyse, report and develop analytical approxi-
mations, as well as identifying parameter and process
uncertainty. It is possible to have a science based on
numerical models with widespread community support,
as exemplified by the earth systems’ community [30,38].

Thanks to Andrew Beckerman, an anonymous referee and
Matthew Evans for comments; and the mite laboratory,
past and present, for inputs. The funding for the mite
programme comes from NERC. Esa Ranta first stimulated
me to make an IBM, and he remains much missed.
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APPENDIX A
(a) Baseline initial settings
n , 21000
Phil. Trans. R. Soc. B (2012)
# original pop size
itime , 21000
 # number of time steps

Xo , -runif(n,0.1,4.9);
 # X is vector of sizes,

food , 2200*rnorm(1,1,0.3)
 # food supplied per day,

200* random normal
deviate
pfood , 2(1/(1 þ exp(21 �
(Xo 2 4)))) � rnorm
(n,1,0.15)
# competition and sharing
of food
share , 2food*(pfood)/
sum(pfood).

(b) Genetic variation (G)
G1 varies from a random uniform distribution
between 0.1 and 0.95
G2 varies from a random uniform distribution
between 5.00 and 7.05
G3 varies from a random uniform distribution
between 0.1 and 0.95
G4 takes three equally likely values of 0.0, 0.5 or 1.0
G5 takes three equally likely values of 0.0, 0.5 or 1.0
G6 varies from a random uniform distribution
between 0.1 and 0.95
G7 varies from a random uniform distribution
between 0.01 and 0.100
G8 varies from a random uniform distribution
between 0.01 and 0.400

(c) If genes fixed at midrange of baseline genetic

variation (NOG)
G1 varies from a random uniform distribution
between 0.50 and 0.51
G2 varies from a random uniform distribution
between 5.00 and 5.05
G3 varies from a random uniform distribution
between 0.50 and 0.51
G4 is 0.5
G5 is 0.5
G6 varies from a random uniform distribution
between 0.50 and 0.51
G7 varies from a random uniform distribution
between 0.05 and 0.051
G8 varies from a random uniform distribution
between 0.20 and 0.21

(d) Mutation

G1 mutants come from a random uniform distribution
between 0.1 and 0.95
G2 is initially specified by a lower and upper range.
Mutations in G2 are from random uniform deviates
within this range, modified by a random deviate in
the range 1–1.05 � upper limit, and 0.95–1.0 �
lower limit.
G3 mutants come from a random uniform distribution
between 0.0 and 1.0
G4 mutants take three equally likely values of 0, 0.5
or 1.0
G5 mutants take three equally likely values of 0.0, 0.5
or 1.0
G6 mutants come from a random uniform distribution
between 0.0 and 1.0.
G7 is initially specified by a lower and upper range.
Mutations in G7 are from random uniform deviates
within this range, modified by a random deviate in the
range 1–1.05 � upper limit, and 0.95–1.0 � lower limit.
G8 is initially specified by a lower and upper range.
Mutations in G2 are from random uniform deviates
within this range, modified by a random deviate in the
range 1–1.05 � upper limit, and 0.95–1.0 � lower limit.
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