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The world is changing at an unprecedented rate. In such a situation, we need to understand the nature
of the change and to make predictions about the way in which it might affect systems of interest; often
we may also wish to understand what might be done to mitigate the predicted effects. In ecology, we
usually make such predictions (or forecasts) by making use of mathematical models that describe the
system and projecting them into the future, under changed conditions. Approaches emphasizing the
desirability of simple models with analytical tractability and those that use assumed causal relation-
ships derived statistically from data currently dominate ecological modelling. Although such
models are excellent at describing the way in which a system has behaved, they are poor at predicting
its future state, especially in novel conditions. In order to address questions about the impact of
environmental change, and to understand what, if any, action might be taken to ameliorate it, ecolo-
gists need to develop the ability to project models into novel, future conditions. This will require the
development of models based on understanding the processes that result in a system behaving the way
it does, rather than relying on a description of the system, as a whole, remaining valid indefinitely.
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1. INTRODUCTION
The statement that the world’s environment is facing a
period of unprecedented change has become a truism.
The ‘anthropogenic cocktail’ of climate change, habi-
tat loss and degradation are combining to put
considerable pressure on the world’s ecosystems [1].
We know that the natural world is already being
affected because we can observe effects consistent
with climate change that range from the loss of
animal and plant species [2], to shifts in distributional
ranges [3], and, in particular, to changes in phenology
[4–6]. At present, our understanding of the vulner-
ability of ecological systems, and the services
provided by them, to impacts arising from environ-
mental change is relatively weak [7]. In addition,
although it is clear that the ecology of the Earth is
essential for human health and well-being and that
the services provided by the world’s ecosystems are
important both economically and culturally, it is
equally clear that these services are poorly understood
[8,9]. Society needs answers to questions about the
likely future state of the natural world in order to
inform decisions about appropriate land-use policies
and strategies, and to allow assessment of the risks
posed by climate change to different ecological systems
and to different environments [10–13].
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In the first half of the twentieth century, the
majority view of climatologists seems to have been
that the climate was a self-regulating system, such
that in understanding future climates ‘we can safely
accept the past performance as an adequate guide for
the future’ [14]. However, the discovery that the con-
centration of carbon dioxide in the atmosphere was
increasing at a rate similar to that which would be pre-
dicted from the combustion of fossil fuels with no
feedback processes removing it from the atmosphere
[15] was incompatible with the view that the climate
system would equilibrate. In the decades since, the
science of climatology has changed significantly, no
longer viewing the climate as a self-regulating system,
and now uses some of the largest computer models
in the world to make forecasts of future climates.
Such forecasts include the modified climates that are
predicted to occur in the future owing to anthropo-
genic activity resulting in the release of greenhouse
gases such as carbon dioxide into the atmosphere. As
a result of this modelling effort, which has been syn-
thesized in the series of reports (to date four) from
the Intergovernmental Panel on Climate Change
(IPCC), we have an increasingly detailed understand-
ing of the likely impact of changing concentrations of
greenhouse gases on climate [16]. The physical
science of climate change currently suggests that over
the next century there will be 1.8–4.08C (depending
on emissions scenario) increase in mean global surface
temperature, with associated changes in the amount
and distribution of precipitation and rises in sea level
[16]. In addition to providing this synthesis, the
This journal is q 2011 The Royal Society
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IPCC has paved the way for the translation of climate
science into policy [17].

The scale of the likely changes in the physical
environment (e.g. temperature change of 1.8–48C)
is worthy of consideration because few people would
be able to detect directly a change in mean tempera-
ture of this magnitude against the background of
normal, highly variable weather. Despite the fact
that these changes will not be easy to discern directly,
the consensus view is that climate change is a serious
problem. The perceived seriousness of the problem
arises not from the temperature change itself but
from its likely impact on non-physical elements of
the world. The indirect effects of the changes in the
physical environment—changes in the landscape, the
demise of charismatic species, drought-induced crop
failures and by changes in the services received from
ecosystems—will affect most (if not all) people. In
other words, it is the impact of the physical changes
on the biological world, and not the scale of the
physical changes themselves, that give the issue of
climate change its seriousness. We therefore have the
paradox that our state of knowledge about the
aspect of the problem that will affect people the great-
est amount is simultaneously the aspect about which
we know least.

At one level, there is a childishly easy answer to the
question ‘what is the impact of climate change on
the biological world?’ Given that, for obvious physical
reasons, temperatures decrease with both altitude and
latitude, most people would expect that as climate
change proceeds, species ranges should move pole-
wards and upwards. A general answer, such as this,
provides some information but is insufficiently specific
to provide anything other than a likely, and very gen-
eral, direction of travel. A more robust answer, which
gives specific information about systems of interest,
will be required. The critical step that needs to
be taken to tackle the problem of understanding
the ecological impact of environmental change is the
development of realistic models of ecological systems,
which can be projected into future changed conditions
to make accurate predictions about the state of the
system in those conditions. In accordance with this,
prediction is going to have to be an important function
of the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services [18]. Therefore,
there is an urgent need to develop the ability to pro-
duce ecological forecasts, so as to be able to predict
the future state of ecosystems and parts of ecosystems
[19]. This will be challenging, as ecological systems
are both complex and noisy at all organizational levels.
2. MODELLING PHILOSOPHY
Models represent real world phenomena in simplified
forms in order to generate understanding of those
phenomena [20,21]; in ecology, models are typically
mathematical objects [22]. A modeller attempting to
represent even a simple ecological system has to cope
with its inherent complexity. As it is impossible to cap-
ture every possible element of a system in a model,
modellers need to take decisions about which of its
features to include and which to disregard. These
Phil. Trans. R. Soc. B (2012)
decisions are, or at least should be, guided by the
aims that the modeller is attempting to achieve by
creating a model. Three common aspirations for
models are that they be general (the model’s con-
clusions can be applied to a wide range of real-life
systems—in other words, it captures some basic
essence that applies to many possible systems), realis-
tic (achieved when a model’s conclusions have a close
match to a real-life system—in other words, it accur-
ately captures the way in which a particular system
functions) and precise (the model’s predictions for a
specific set of circumstances have little or no uncer-
tainty; figure 1). In 1966, Levins suggested that
while it would be desirable to ‘work with manageable
models that maximized generality, realism and pre-
cision’, simultaneous maximization of these three
different desiderata could not, in practice, be achieved
[23]. He described various modelling strategies that
had been adopted to cope with the inability to simul-
taneously maximize desiderata, all of which involved
trading-off one desideratum in order to achieve greater
performance in the other two (e.g. sacrificing realism
to achieve generality and precision). While these are
all reasonable strategies for simplifying a complex
phenomenon into a tractable form [24], adopting
any of them (or indeed any other idealization strategy)
will have consequences that will result in the resulting
model being more or less well suited for particular
types of problem.

Although, some philosophers have cast doubt on
the existence of Levins’ claimed trade-offs [20,25,26],
the consensus in the philosophical literature is that in
model building at least some of these trade-offs exist
[27–29], and recent work has claimed to have formal-
ized proofs for the existence of trade-offs between
desiderata (e.g. generality and precision) as posited by
Levins ([28] and R. De Langhe, unpublished
data; http://www.ugent.academia.edu/RogierDeLang
he/Papers/132229/A-general-argument-for-tradeoffs-
in-model-building). In the particular case of ecology, it
seems inevitable that there should be a trade-off
between realism and precision, as any realistic model
will contain stochastic effects, and stochasticity will
inevitably reduce precision. Similarly, there must be a
trade-off between realism and generality. A realistic
model will explicitly consider biological characteristics
specific to the system, which will inevitably reduce the
generality of the predictions. For an ecologist attempting
to model a complex ecological system, the important
consequence of the existence of these trade-offs is that
if one wishes to maximize one of these desiderata,
then one has to sacrifice at least one of the other two
(figure 1). In other words, if these trade-offs exist,
then the modeller will have to decide which of these
characteristics they would like the model to possess
and allow this decision to inform model development.

Given the demand from society for answers to ques-
tions about the ecological impact of environmental
change, it would seem reasonable to give some thought
to what modelling strategies might be most appropri-
ate in order to provide the forecasts that will be
necessary to answer such questions and what charac-
teristics they would need to have to make them
useful. It does not seem unreasonable to suggest that:
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— forecasts will need to be realistic, probably reflecting
specific systems and allow judgements to be made
about potential action that may be taken; and

— forecasts will be needed about the state of systems of
interest in novel environmental conditions, as almost
by definition these are what is created by the environ-
mental changes with which we are concerned.

In §3, I will ask whether the prevalent modelling
approaches used in ecology meet these pre-requisites.

3. CURRENT APPROACHES TO ECOLOGICAL
MODELLING
(a) ‘Biology-as-physics’

In 1966, Levins identified his second set of modelling
idealization strategies as those that sacrificed realism
to generality and precision. He suggested that most
physicists who entered biology worked in this manner,
setting up simple equations from which they could
obtain precise answers [23]. This tradition of modelling
has a long history [30] and can be traced back to the
work in the early part of the twentieth century of
the mathematical physicist Volterra, who used simple
differential equations to examine trends in prey and
predatory fish populations in the Adriatic [31].
Anderson & May [32,33] used essentially the same
equations over 50 years later in their highly influential
papers on the population biology of diseases. Such
models have the advantage of mathematical tractability;
they can be solved analytically to give precise, point
answers and can be easily interrogated to determine
the sensitivity of the model to its parameters. There is
a tendency to regard simple models, such as these, as
being general by virtue of their simplicity. While it
seems intuitively obvious that simple models will
never accurately reflect any particular system (and so
they lack realism), it does not seem obvious that a
simple model should necessarily have generality. It
might be more true to claim that, at their best, simple
models provide general, rather than specific, insight.
For example, the conclusion that the rate of change in
the size of a population of organisms infected with a dis-
ease will be influenced by the birth rate, the disease-
independent mortality rate and the mortality rate of
infected individuals (eqn 4, [32]) is generally useful.
However, if this is to be applied more specifically,
then new terms need to be added that increasingly
make the results less general (e.g. compare eqn 4,
[32] representing the general case, with eqn 14 [33]
that presents a highly simplified model for human
populations affected by malaria). Even when this is
achieved, the output of such models need further modi-
fication; otherwise they suggest, for example, that every
outbreak of a disease will be identical [33].

As they emphasize analytical precision and aim for
generality, biology-as-physics models lose realism and
are usually difficult to apply to specific systems [34].
An approach with this emphasis is unlikely to meet
the first pre-requisite for forecasting the ecological
impact of environmental changes—as it will be diffi-
cult to make realistic predictions for specific systems
that will inform us about the nature of change pre-
dicted in that system and what action might be taken
to ameliorate it.
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(b) Phenomenological

If we are concerned about the impact of environmental
change on ecological systems then, almost by defin-
ition, the future into which we would like to project
our predictions will be novel. It is well appreciated
that models based on phenomenological descriptions
of data (such as simple statistical associations) should
not be used to predict beyond the realm of existing
data [35–37]. Phenomenological models are excellent
at describing what has happened and have been a
powerful tool in the analysis of datasets, including
those concerned with environmental change but
should not be projected beyond the regions within
which data were collected [21]. If one does so, then
there is a high possibility of errors occurring when
the association between two variables (e.g. gender
and rate of change in sprint performance [35], climatic
constraints and species ranges [10], financial incen-
tives and the induction of conservation favourable
behaviours [38]) that hold for the regions of parameter
space in which data were collected break down in other
hitherto unobserved regions. Twain [39] provided an
excellent illustration of the problems of extrapolating
outside the range of observed data:
In the space of one hundred and seventy-six years the

Lower Mississippi has shortened itself two hundred

and forty-two miles. That is an average of a trifle

over one mile and a third per year. Therefore, any

calm person, who is not blind or idiotic, can see that

in the Old Oolitic Silurian Period, just a million

years ago next November, the Lower Mississippi

River was upwards of one million three hundred thou-

sand miles long, and stuck out over the Gulf of Mexico

like a fishing-rod. And by the same token any person

can see that seven hundred and forty-two years from

now the Lower Mississippi will be only a mile and

three-quarters long. Twain [39]
Phenomenological models, based on assumed
causal relationships derived statistically from data,
fail to fulfil the second pre-requisite for forecasting
the ecological impact of environmental change—
that of projection into novel conditions. To predict
a system’s behaviour in novel conditions requires
models that capture the important underlying
mechanisms that drive the behaviour of the system
[40–42]. This distinction is observed in climatologi-
cal research in which the description of historical
datasets (such as carbon dioxide time series [15]
or temperature time series [43]) is conducted with,
sometimes complex, statistical analyses. However,
forecasting the effects of future greenhouse gas con-
centrations on temperature and other aspects of the
world’s climate is done using process-based systems
models [44]. These models rely on an understanding
of the underlying mechanisms that interact to influ-
ence the climate system. It is because of this that
they can predict the effect of previously unknown
levels of greenhouse gases with climate change emer-
ging as a property of the system under these novel
conditions [44,45].
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Figure 1. Schematic of modelling trade-offs. A modeller has to decide what characteristics their model will emphasize.
Philosophical considerations suggest that they cannot have a model that maxmizes all these desirable characteristics.
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4. AN ALTERNATIVE APPROACH
If a system is defined as a set of interacting or inter-
dependent entities forming an integrated whole, then
ecology is clearly concerned with systems. It is a
truism that all populations, communities and
ecosystems are composed of interacting individual
organisms. Despite this, ecologists typically treat
populations, communities and ecosystems as entities
that can be studied in isolation and usually define
themselves as having interests addressing a single
level of organization. Population dynamics or com-
munity structure are usually seen as properties of
the population or community. However, any
population or ecosystem attribute arises from indi-
viduals and the way they live, interact and die.
Demography, growth rates, extinction rates, commu-
nity structure and epidemiology are all emergent
properties of individual-based systems [46,47]. If
we could understand these individual decisions and
model them in an appropriate manner, then, as
has been suggested, we could treat population or
community dynamics as emergent properties of the
system [40,42,48].

Each individual is itself an emergent property of the
morphological, physiological, cellular, metabolic, gen-
etic systems below; and contributes to the hierarchical
levels ‘above’ by interacting with other individuals and
contributing to population and community dynamics.
However, the individual is also clearly the funda-
mental level of biological function; it is at this level
that interactions with the environment occur and at
which selection operates (through the differential
survival and/or reproduction of individuals and
through them their genes). The challenge for a sys-
tems approach will be to decide what processes at
lower hierarchical levels are necessary to predict the
emergent properties of higher hierarchical levels. For
Phil. Trans. R. Soc. B (2012)
example, does predicting the population dynamics of
a specific system require information on how genes
and environment shape individual phenotypes and
with dynamics arising as the sum of individuals’ life
histories across the population? Understanding ecosys-
tem dynamics will probably not require the inclusion
of every individual within the community, but may
require some of the spatio-temporal heterogeneity
in between-species interactions that arises from
individual-level heterogeneities. The requirement to
consider a priori which mechanisms at lower organiz-
ational levels may drive the system at the level of
interest (for example, population dynamics emerges
from individuals and their behaviour, which in turn
depends on genes and environment; community
dynamics depends on interactions between species
that will have means and variances that depend on
individuality) is one benefit of conceptualizing
ecological systems as systems.

A systems approach to ecology would imply that
processes operating within a system were modelled
such that changes in the system (e.g. population
dynamics, community structure, ecosystem services)
emerged as properties of the system. A robust under-
standing of these processes allows the prediction of
the future state of the system in a novel environment
and so allows better prediction of the impacts of
environmental change on the biological world. This
is something with which non-systems approaches
struggle [10,11,49–53], because they require us to
assume that a description of the system will remain
valid indefinitely. There are many methods (e.g.
[54,55]) that can be used to cross levels of organiz-
ation and therefore abstract the necessary and
sufficient information from the levels below [23].
A ‘necessary and sufficient’ abstraction makes intuitive
sense—a predator may not care which individual it



carnivores

herbivores

plants

individual-based models 
of different species/
functional types

dietary requirements of a particular herbivore 
filter total plant abundance. Spatial and temporal
distribution of the suitable food resource is abstracted and 
can be fed into herbivore model. 

Figure 2. Schematic of coupled species models, interacting to produce an ecosystem model. The basic structure is a layered
series of dynamic models: the vegetation model feeds location-specific parameters into herbivore models to give, for example,
food supply; the herbivore layer then feeds into the carnivore layer in a comparable fashion. This is shown for a single herbivore
but could in theory be conducted separately for all herbivores, and similar abstractions could be conducted for models in other

layers. The three-dimensional vegetation map was produced by the Environmental Change Network, and represents the Moor
House NNR in the Pennines (UK) [56].
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consumes, while for an individual prey the decision
matters greatly. Therefore, at one trophic level,
which individual dies is a matter of concern; while at
higher level it is not (figure 2). This general issue is
similar to the problem faced in developing a digital
cell or organism, in which it will be neither necessary
nor desirable to replicate every metabolic pathway in
every cell in the organism [57,58]. Simplifying
between-individual variation by grouping individuals
into trait-groups (such as size groups, or functional
groups) is a commonly used way of reducing complex-
ity and attempting to carry sufficient information
between levels [40–42].

Considering a system as a system, and modelling
it as such, is a common approach in science. For
example, climate change predictions come from
very complex models [45] that use well-understood,
deterministic but nonlinear, physical relationships
(e.g. the Navier–Stokes equation) within the atmos-
phere and oceans. Global climate models (GCMs)
can predict the effect that previously unknown
amounts of greenhouse gases entering the atmos-
phere would have on climate because they are
process-based [44], and the phenomenon of climate
change emerges from the model under these novel
conditions. The use of such models has played a
large part in convincing the public and policy-
makers that climate change is occurring and that its
cause is anthropogenic [16]. Similarly, systems
biology has emerged as a response to the molecular
Phil. Trans. R. Soc. B (2012)
revolution in the past twenty years [59]. The stimulus
of new, large datasets produced by high-throughput
technologies, coupled with development in compu-
tational power led to the emergence of systems
biology as a coherent discipline at the end of the
twentieth century [59,60]. This is combined with
the recognition that the behaviour of a complex
system (like a metabolic network) cannot be under-
stood by reducing the system to a sample of simple
chemical reactions. There are many definitions of
systems biology, but they typically emphasize that
examining the interactions between its component
parts is the best way of understanding the behaviour
of a system. Patterns emerge at one level of a hierar-
chy because of the processes internal to the system
rather than properties of the system. Most definitions
stress that a systems approach is typified by iterated
cycles of data collection, analysis, computational mod-
elling and prediction, which is usually followed by
further cycles in which the model’s predictions are
tested and the model iteratively refined. Thus, expli-
citly, systems approaches combine data plus
mathematical analysis with a computational approach
to generate predictions. The approach used in systems
biology is therefore very different from that which we
conventionally see in ecology.

System-specific models, by definition, could not be
applied beyond their specific system; yet we would
wish to be able to produce general conclusions.
Empiricists are familiar with the problem of achieving
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generality of conclusions and how this can be achieved
through replication at the appropriate scale. The
results of any experiment or set of observations can
be generalized to the sampled population. Similarly,
if multiple, alternative models of a particular phenom-
enon converged on similar solutions then generality
would be achieved. If models of multiple systems
show the same processes to be important then we
begin to achieve a generality of understanding about
fundamental ecological mechanisms. This approach
to generality is taken by the climatological community:
although the various competing GCMs give predic-
tions that vary substantially in their forecast for the
global mean annual temperature for the same scenario,
they agree on the trajectory. These differences are not
seen as a significant obstacle to progress and it has
been possible to draw robust conclusions, by which
policy decisions have increasingly been informed,
about the changes in mean global temperatures, sea
level and precipitation by combining the outputs of
sets of models [16]. The instances where alternative
models give divergent outputs are often used to
inform model development, or to suggest further
research [61].

It is increasingly clear that it is not appropriate to
treat the process of evolutionary change as being
separate from the ecological context in which it occurs
[62]. At the very least, the timescales are comparable;
for example, ecological succession in a forest commu-
nity is likely to take place on longer timescales than
the evolution of insect species within that forest. The
distinction between the ‘evolutionary play’ and the
‘ecological theatre’ [63] is not appropriate if we want
to understand biological diversity and function
[62,64,65]. Thus, applied ecological problems (such
as predicting species’ ranges, responses to environ-
mental change, harvesting, designing nature reserves),
even if only predicting a few years or decades into the
future, should consider the potential for model par-
ameters to be variables that evolve [66], at least for
species with generation times substantially less than
the model run time. Ecosystem dynamics ultimately
emerge from the actions of, and interactions between,
individuals, and considerable research effort has been
invested in gaining insight into general rules govern-
ing behaviour [67,68]. Both behavioural ecology and
life-history theory have been successful in providing
explanations for why individual organisms do what
they do, rather than simply describing what they do.
The fact that we know organisms will act as if to maxi-
mize fitness gives us a conceptual basis for modelling the
decision-making behaviour of organisms and a way of
inferring the likely behaviour of organisms for which
there is limited information [69,70]. It might also
allow us to account for the fact that ecological and evo-
lutionary change are intertwined—population dynamics
are the product of the realized life histories (a product of
selection) of individuals within the population, while the
strength of selection is modified by properties of the
population (e.g. density) [65]. Further recognizing this
organizing principle in ecology would reveal the
relationship between biological processes at the individ-
ual-level and the population, community or ecosystem
results of these processes.
Phil. Trans. R. Soc. B (2012)
Any predictions that emerge from ecological fore-
casting models will have substantial uncertainty. This
uncertainty will originate from three main sources:

— some will be the result of imprecision in the esti-
mation of biological parameters used in the
model; this source of uncertainty may suggest fruit-
ful areas of future research that would enable
reduction in the output error of the model;

— some will be the result of the inherent stochastici-
ties of any ecological system; the multiplication of
stochastic effects may mean that confidence inter-
vals on predictions inevitably will be large; and

— another inevitable source of uncertainty will be due
to variance in the physical predictions of the
environment into which biological predictions are
being made; any downstream models will inherit
this variance.

The multiplication of stochastic effects may mean that
confidence intervals on predictions are likely to be
large but they would be realistic measures of our
uncertainty, which will truly reflect our ability to pre-
dict outcomes in the real world [71]. These models
would allow us to see effects that, at present, are
obscured by a fear of tackling the complexity inherent
in understanding ecology as the product of its com-
ponent parts, rather than as a system simplified to
the point of tractability [72].

Systems ecology was a term prevalent in the 1960s
and was used to describe the modelling approach
taken by the International Biological Program (IBP,
for a description of which see [73,74]). Levins
described this approach as sacrificing generality for
precision and realism, and he was equally critical of
both this and biology-as-physics, giving preference to
his own methodology that he characterized as maxi-
mizing realism and generality at the expense of
precision [23]. In 1968, Levins turned his attention
fully to the methods used by the IBP (which he
labelled FORTRAN ecology) and suggested that it
trimmed ‘the scope of theory to its narrowest role of
programming curve fitting’ [75]. This attack probably
contributed to the end of the IBP and to this approach
to the analysis of ecological systems; it also allowed
theoretical population biologists to ignore Levins’
equally robust criticisms of the biology-as-physics
approach [76], which—since the 1970s—has domin-
ated modelling in ecology, especially population
ecology [30]. In some ways, the alternative approach
described here is not dissimilar to the systems ecology
of the 1960s, in that it advocates a more holistic sys-
tems approach. There are, however, some important
differences: the use of functional types potentially pro-
vides a method to abstract features of a system and
allows patterns to be discerned while not requiring
us to include everything in a model; the substantial
advances in evolutionary biology since the 1960s
mean we have the ability to understand decision-
making in organisms, thus improving the theoretical
underpinning of our models; we have vastly more com-
puting power at our disposal than was available in the
1960s, which makes approaches to ecological model-
ling that could not have been conceivably used in the
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1960s feasible now [77]. The systems ecology of the
1960s can be seen as a response to a perceived ecologi-
cal crisis around the utilization, management and
preservation of natural resources [74,75]; similarly
the concern in society today about the ecological
impact of anthropogenic environmental change might
provide the impetus for ecology in the twenty-first
century to adapt its approach to address these issues.
5. EXISTING APPLICATIONS OF SYSTEMS
APPROACHES IN ECOLOGICAL MODELLING
There is an established literature examining commu-
nity succession and ecosystem service provision in
forests that has made substantial use of models similar
to those advocated here [40–42,78,79]. The popu-
lation dynamics of forest trees have been modelled
by tracking the fate of every individual tree in the
Great Mountain Forest (CT, USA) and predictions
made for the state of this secondary regrowth forest
over 1000 years [79]. A related study started with
detailed data on individual trees in one location over
a 12-year period and was able to model 100 years of
forest dynamics in the Great Lakes region of the
USA [41]. A similar model describing the growth,
reproduction and mortality dynamics of trees, but
which does not model the fate of every tree individu-
ally, has been used to make predictions about
ecosystem productivity, biomass and carbon storage
for forest communities in tropical South America
[78], while a model related to this was used to make
similar predictions for the forests of northeastern
USA and Quebec [80]. A comparable model has
been developed, apparently independently, in
Europe, which has been used to simulate the effects
of climate change on community structure and prod-
uctivity in Austrian forests [81–83], while another
process-based model has been used to model changes
in ranges of individual tree species in North America
[84,85]. It is also worth noting that these forest
models are based on the growth characteristics, physi-
ology and behaviour of trees; they do not require
knowledge of, for example, the mycorrhizal commu-
nity or the microbial community involved in decay.
These data would be interesting, and their incorporation
could be potentially valuable, but a lack of knowledge
about this aspect of forest ecology did not impede gen-
eration of an understanding of the forest community,
which perhaps runs counter to an ecologist’s prejudice
that the exclusion of an important ecological process
would invalidate the conclusions of the model.

The forest models described earlier are systems
approaches to the problem of modelling forest com-
munities. They are based on characteristics of
individual trees, and forest-level features are emergent
properties of the models. They were not designed
either to examine the ecological impact of environ-
mental change or to act as models of the ecosystem
as a whole. However, such a model could be used as
a basis for describing the forest habitat of a herbivore
of interest (figure 2). An ecosystem model that
coupled vegetation (two types of trees as well as food
crops), herbivore (humans) and hydrology models
was sufficiently accurate to produce a reasonable
Phil. Trans. R. Soc. B (2012)
description of the current state of a Himalayan valley
from historical starting points and could generate pre-
dictions about its potential future state [86]. While
the forest models contain a single trophic layer [79]
and the model of human activity in a wooded valley
contains two [86], Caron-Lormier et al. [87] present
a process-based model of a highly simplified arable
ecosystem with four trophic layers, using functional
types of various invertebrates rather than species.
These examples demonstrate that the production of
coupled ecosystem models capturing key elements in
a food chain is achievable.

The call to move beyond descriptive models to
developing process-based predictive models is not
new [34,48,62,64,65,88–90] but has so far gone
largely unheeded. Ecology is highly quantitative, but
has remained constrained by an approach that assumes
that only simple models can be useful. The inaccuracy
of ecological models and their lack of utility for applied
questions has been criticized previously, e.g. [34,91].
Simplified models of ecological systems are, and have
been, extremely valuable and can provide insight into
ecological phenomena [92]. We do, however, have to
recognize the strengths and weaknesses of different
approaches and simple models will not be helpful
when accuracy is required and/or when answers are
needed for specific systems. If a conservation manager
needs to make decisions about strategies for halting the
decline of a particular species, or information is
needed for a fishery about harvesting rates or the
impact of climate change on agricultural pollinators
needs to be understood, then a simple, general analyti-
cal model is unlikely to be helpful. Modelling
approaches should be adapted to their purpose. A sys-
tems approach is likely to offer advantages over other
approaches when we are concerned about the impact
of environmental change or when we are interested
in specific, accurate answers to problems.

Thanks to Tim Benton and Ken Norris for the
conversations, thoughts and discussions that led up to this
piece of work. Thanks also to Robert Muetzelfeldt, whose
comments have significantly improved this manuscript.
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