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Systems approaches have great potential for application in predictive ecology. In this paper, we pre-
sent a range of examples, where systems approaches are being developed and applied at a range of
scales in the field of global change and biogeochemical cycling. Systems approaches range from
Bayesian calibration techniques at plot scale, through data assimilation methods at regional to con-
tinental scales, to multi-disciplinary numerical model applications at country to global scales. We
provide examples from a range of studies and show how these approaches are being used to address
current topics in global change and biogeochemical research, such as the interaction between
carbon and nitrogen cycles, terrestrial carbon feedbacks to climate change and the attribution of
observed global changes to various drivers of change. We examine how transferable the methods
and techniques might be to other areas of ecosystem science and ecology.
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1. INTRODUCTION
(a) Ecology is a systems science

Ecology, almost by definition, is a systems science.
A system is defined [1] as a ‘whole compounded of
several parts or members’ or ‘a set of interacting or
interdependent system components forming an inte-
grated whole’. Among the scientific research fields
listed on the definition page (systems theory, cyber-
netics, dynamical systems, thermodynamics and
complex systems; [1]), ecology is not mentioned, but
when we look at the common characteristics of systems
(they have structure defined by components and their
composition; they have behaviour, which involves
inputs, processing and outputs of material, energy,
information or data; they have interconnectivity
in terms of functional and structural relationships
between components; and they have functions or
groups of functions), modern ecology is clearly a sys-
tems science. This is further supported by the
finding that a search of Web of Knowledge on
r for correspondence (pete.smith@abdn.ac.uk).

tribution of 16 to a Discussion Meeting Issue ‘Predictive
systems approaches’.
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10 March 2011, for articles containing the keywords
‘ecology’ and ‘system’ for the 10 years 2001–2010,
yielded more than 100 000 results.

Ecologists, and other scientists involved in model-
ling ecological or ecosystem interactions, have long
considered themselves to be systems scientists.
Indeed, since the 1990s, a number of biogeochemical
or ecological modelling papers have been published
in systems analysis journals [2]. If, in the late 1990s,
we ecological modellers had been asked whether we
considered ourselves to be working in ‘systems
biology’, the majority of us would probably have
answered ‘yes’. If we were to be asked the same ques-
tion now, perhaps far fewer of us would answer in the
affirmative, since systems biology has largely come to
mean something different. Systems biology is now
often (but not exclusively) associated with rather
small-scale processes (from the gene to the organism),
with the majority of projects under recent UK systems
biology initiatives operating at these scales [3]. Some
of the authors of this paper attended a systems biology
talk at the University of Aberdeen in 2008 entitled
‘Modelling across scales’—the scales in question
turned out to be from the gene to the cell! For the
ecological and ecosystem modellers, the talk, while
This journal is q 2011 The Royal Society
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Figure 1. A schematic of the numerous disciplines, models and inputs necessary to project future changes in SOC (using the
RothC model). A multi-disciplinary, systems approach is essential. See [4–6] for further details.
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covering a few orders of magnitude in scale, was not quite
what they expected. Systems biology has, to its credit,
encouraged a range of disciplines (e.g. physics, math-
ematics and computer science) to apply their skills to
biological questions. However, systems biology has
largely failed to engage modellers and numerical biol-
ogists/ecologists working at larger scales, who perhaps
had previously regarded themselves as systems biologists.

If, however, we take the broader definition of sys-
tems biology [1], ecological modelling fits squarely
within the definition: ‘Systems biology is a term used
to describe a number of trends in bioscience research,
and a movement which draws on those trends. Propo-
nents describe systems biology as a biology-based
inter-disciplinary study field that focuses on complex
interactions in biological systems, claiming that it
uses a new perspective (holism instead of reduction).
Particularly from year 2000 onwards, the term is
used widely in the biosciences, and in a variety of con-
texts. An often stated ambition of systems biology is
the modelling and discovery of emergent properties,
properties of a system whose theoretical description
is only possible using techniques which fall under the
remit of systems biology’ [1]. We argue that ecology
is perhaps one of the earliest forms of systems biology.
(b) Systems approaches versus reductionism

Ecology and ecosystem science rely upon studying
whole-system responses and understanding the interact-
ing processes that led to the observed system behaviour.
System approaches, therefore, require us to take a
broader view than focusing on individual processes.
This has led to a sterile distinction between those who
take a systems approach, and those who specialize in
drilling down into the underlying processes of the
system. Those taking the systems approach might,
unfairly, be regarded as woolly thinkers who oversimplify
things. In contrast, those studying processes might,
equally unfairly, be regarded as reductionists who
cannot see the big picture. In reality, a good ecologist
Phil. Trans. R. Soc. B (2012)
or systems scientist needs to be able to function in
both roles. Without an understanding of the underlying
individual processes, one cannot hope to understand
the system; and without understanding the wider
system, the processes lack context, and significant inter-
actions might be missed. So there is no dichotomy here:
as ecologists, we need to understand the processes and to
understand how they interact in the whole system.
(c) Examples of systems approaches from

biogeochemical and global change modelling

The authors mainly work in the fields of biogeochemical
and global change modelling. As ecology and ecosystem
science are examples of systems science, we regard bio-
geochemical and global change modelling as a form of
predictive ecology. As evidenced in §1a,b, categorizing
areas of science does not always perform a useful func-
tion. Since the topic of systems approaches in
predictive ecology is vast, here we describe just a few
examples of the use of systems approaches in global
change and biogeochemistry research, with the aim of
demonstrating the potential transferability of the
approaches to other areas of predictive ecology.
2. AN EXAMPLE OF MULTI-DISCIPLINARY
SYSTEMS SCIENCE AT THE CONTINENTAL
SCALE
During the early 2000s, the Advanced Terrestrial Ecosys-
tem Analysis and Modelling (ATEAM) project attempted
for the first time to assess potential impacts of global
change on ecosystem services at the scale of continental
Europe [4]. The multi-disciplinary team of modellers,
including physical, biological, ecological and social scien-
tists, put together driving datasets of climate, soils and
land cover, constructed scenarios of change in climate
and land use over the coming century, and used a range
of numerical models to assess the impact of these possible
futures on a range of ecosystem services. The project har-
nessed an enormous range of expertise. Figure 1 shows
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Figure 2. Projected changes in cropland SOC in the EU 1990–2080 (a) if considering only direct climate impacts on soils
and (b) if considering also changes in net primary production (NPP) and technology. Reproduced from data presented in
Smith et al. [5].
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the various disciplines, models and inputs necessary for
the project to deliver projections of changes in just one
ecosystem service, soil organic carbon (SOC; [5,6]). In
this project, ecosystem service specialists took a systems
approach to examine ecosystem service provision in a
changing world.

From figure 1, it is clear that specialists could not
have undertaken this work by themselves, or without
a full consideration of the whole system. Such multi-
disciplinary approaches are becoming ever more
common. The study found that projected changes in
climate and land use delivered both positive and nega-
tive outcomes for ecosystem service supply. Some,
such as forest area and productivity were projected
to increase, but other changes increased vulnerability
as a result of a decreasing supply of ecosystem ser-
vices, such as declining soil fertility, declining water
availability and the increasing risk of forest fires,
especially in the Mediterranean and mountain regions
[4]. In terms of SOC, increases in productivity largely
balanced speeding decomposition under warmer
temperatures, such that SOC stocks under cropland
and grassland were projected to remain rather constant
to 2080. By improving land management technology,
SOC stocks could also be increased. Figure 2 shows
cropland changes in SOC considering only direct cli-
mate impacts on soils and considering also changes
in net primary production (NPP) and technology
[5]. The changing age-class structure of European for-
ests was projected to increase forest SOC stocks to
2080 [6]. Overall though, when land-use change was
accounted for, a modest loss of SOC was projected
for Europe as a whole.

The importance of this example is to show that all
of the characteristics of systems science (e.g. inter-
disciplinary, holistic view of the system, complex
interactions in biological systems and discovery of
emergent properties) were already being applied at
the continental scale 10 years ago or earlier in
Phil. Trans. R. Soc. B (2012)
biogeochemical and global change research. This
field has grown stronger through adopting systems
approaches; indeed, many of the advances would not
have been possible without them.
3. NUMERICAL METHODS IN SYSTEMS SCIENCE
In this section, we present some examples of the
numerical methods used in modelling biogeochemistry
and global change impacts. Many of these numerical
methods are applicable across disciplines, and can be
used with most systems models. Our aim here is to
show how the methods have been applied in our
particular field, to encourage synergies with other dis-
ciplines within predictive ecology described elsewhere
in this issue.

(a) Quantification of model error

Across disciplines, there are different cultures with
respect to model testing. Many theoretical models in
ecology (e.g. the Lotka–Volterra equations describing
predator–prey interactions [14,15]) are intended to
conceptualize and explain ecological phenomena
[16]. Some such models are ‘thought experiments’
and were never developed to predict observable
phenomena directly, and so are not always compared
with measured data. In engineering and in the physical
sciences, models are tested rigorously against
measured data [17]. In biological sciences, there are
a range of approaches, ranging from plotting model
outputs on the same graph as measurements, com-
paring by eye and making subjective comparisons of
model performance, through partial quantification
of performance (e.g. quoting an R2 value of modelled
versus measured values), through to rigorous statisti-
cal analysis across a range of model performance
metrics [18]. For many models used for global
change and biogeochemistry research, it is highly
desirable to assess model performance quantitatively.
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Smith et al. [18] collated a range of statistical metrics
to compare model outputs with measured data and
these are available within a spreadsheet as ModEval
v. 2.0 [16]. Depending on the quality of the measured
data available, the statistics provided allow the model
error to be quantified, as well as bias (consistent
under- or over-prediction), association, coincidence
and the separation of error owing to the model from
that inherent within the measurements.

The statistics presented in ModEval v. 2.0 have
been used many times in model comparisons ([18]
had been cited 337 times on 10 March 2011; [19]),
most recently in a comparison of the performance of
agro-ecosystem models in simulating components of
the European cropland carbon budget [20]. Quantitat-
ive methods for model comparison are now widely
available, and can be used in all aspects of model
development for predictive ecology.
(b) Sensitivity and uncertainty analysis

When building a numerical model, one needs to test
how the model outputs vary with changes in the
model inputs or internal model parameters. This is
done through sensitivity analysis and uncertainty
analysis. Sensitivity analysis identifies which model
components exert the most influence on the model
results. It compares changes in simulated values
against changes in the model components: these com-
ponents could be input variables or internal model
parameters. Sensitivity analysis determines how
highly correlated the model result is to the value of a
given input component: does a small change in the
input cause a significant change in the output? If this
is the case, the model is termed sensitive to the input.
Uncertainty analysis determines how the variability
in the input is propagated through the model and
quantifies how this is translated into variability (uncer-
tainty) in the model output. If this is the case, the
input is termed important. A sensitivity analysis and
an uncertainty analysis do not necessarily identify the
same inputs. A model is always sensitive to the import-
ant inputs that contribute most to model output
uncertainty, since the variability will not appear in
the model output unless the model is also sensitive
to the input. However, an input to which the model
is sensitive is not necessarily important: it does not
necessarily contribute to output uncertainty since its
value may be known precisely [16].
(i) Sensitivity analysis
With simple models, the sensitivity of a model can be
tested either by changing, one at a time, an input vari-
able (or internal model parameter) within a range and
examining the effect on model outputs, or all variables/
parameters can be varied within the range simul-
taneously (the latter is termed global sensitivity
analysis). The ratio of the change in input variable
(or internal parameter) to the change in the output
variable indicates the model sensitivity to that input
variable (or internal parameter; [16]).

For more complex models, however, the process
can be trickier. Figure 3 shows a sensitivity analysis
of the ECOSSE model [21,22], which is used for
Phil. Trans. R. Soc. B (2012)
simulating soil carbon and nitrogen turnover and
greenhouse gas emissions from soils. Two thousand
Monte Carlo simulations were run using a weather
generator [23], varying 40 soil and crop parameters
within realistic ranges. Twenty response variables
were examined. Owing to the complexity of the
model, the relationships between inputs and outputs
are somewhat unclear (figure 3a shows the depend-
ence of the decomposable plant material (DPM)
SOC fraction on variations in a range of internal
model parameters and input variables). To elucidate
the relationships from the output, the data were
binned (i.e. grouped within fixed ranges of the par-
ameter values) and a smooth spline was fitted
through the means of the bins, making the relationship
clearer. The degrees of freedom in the spline were
chosen to reduce scatter, but also to allow nonlinearity
(figure 3b). From this, the most important sensitivities
in the model can be determined, where the sensitivity
index is the variance in the smooth spline through the
bins/total variance (note: sum of sensitivities no
longer ¼ 100%; figure 3c). This method demonstrates
that sensitivity analysis is possible even for complex
models, and that metrics are available for comparing
relative sensitivity. The method is applicable to a
range of numerical models.

(ii) Uncertainty analysis
There have been a number of recent advances in asses-
sing uncertainty in model outputs. One of these
techniques, Bayesian calibration, is discussed further in
§3c, so will not be further discussed here. Gottschalk
et al. [24] used Monte Carlo techniques to examine the
role of measurement uncertainties in assessing estimates
of net ecosystem exchange (NEE) in European grass-
lands, using the PaSim model [25]. Global uncertainty
[16] was compared across 2 years and across sites. The
analysis revealed considerable variation in global uncer-
tainty from site to site and between years, indicating
that output uncertainty does not depend solely on absol-
ute input uncertainties, and suggesting that case specific
uncertainty analysis is required. Hastings et al. [26]
quantified uncertainty propagation through the DeNitri-
fication DeComposition (DNDC) model on a cropland
site, finding that the overall impact of uncertainty in
input parameters on predicted biogenic greenhouse gas
emissions was relatively small. Indeed, the study
suggested that the 95% CI of the DNDC predictions
of NEE were smaller than the error associated with the
eddy-covariance measurements (figure 4).

Other developments in uncertainty analysis include
methods to combine uncertainties, including, for
example, expert judgement of error (measurement),
analytical uncertainty (measurement), sampling uncer-
tainty (measurement), conceptual uncertainty (model)
and scenario uncertainty (model; [27]). Other categoriz-
ations of the components of uncertainty have been
proposed, and schemes to combine these different
uncertainty components have been developed [28]. As
computing capacity has increased in recent years, and
techniques for comparing components, and partitioning
the sources, of uncertainty in numerical models have
improved, so has the quantification of uncertainty in
model outputs.
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(c) Recent advances in model-data comparison

The traditional way to build numerical environmental
and ecological models is to construct a model based on
data or on theoretical relationships between variables,
to parametrize them using more measured data, and
then to apply them and test them against independent
data, as described in §3a,b [16]. This process has
served numerical environmental and ecological model-
ling well in the past [18,29] and continues to be
effective. In recent years, however, new ways of using
measurements have evolved, which use the measured
data to update the knowledge captured by the
models. Three examples of such techniques are Bayes-
ian calibration, model data fusion and optimal
fingerprinting, some examples of which are described
in the following subsections.

(i) Bayesian calibration
Bayesian calibration methods have been used increas-
ingly to calibrate ecosystem models [30]. Bayesian
methods rely on the knowledge encapsulated in a
model, in terms of its structure and in terms of the prob-
ability distributions of model parameters [31]. The
technique combines prior probability distributions of
model parameters, based on assumptions about their
magnitude and uncertainty [32], with estimates of the
likelihood of the simulation results, by comparison with
observed data. Bayesian methods also quantify the uncer-
tainty in the updated posterior parameters, which can be
used to perform an uncertainty analysis of model output
[32]. The technique has been applied in a number of set-
tings in biogeochemistry and global change research.
Reinds et al. [32], for example, used 182 intensively
monitored forest sites in Europe to calibrate a very
simple dynamic (VSD) soil acidification model; [33].
The VSD model was calibrated using data from 122
plots, with the remaining 60 plots used to validate the
calibrated model. Markov Chain Monte Carlo tech-
niques were used, with the exercise greatly reducing
the posterior parameter uncertainty for most parts of
Phil. Trans. R. Soc. B (2012)
the model, but also revealing areas requiring further con-
sideration (e.g. of the interactions with nitrogen;
[32]). Earlier biogeochemical applications of Bayesian
techniques are described elsewhere [28,34,35].

Bayesian calibration methods have also been used to
initialize SOC pools in ecosystem models, a subject
that has driven many different approaches including
the use of radiocarbon [36], statistical methods [37]
and soil fractionation [38,39]. Yeluripati et al. [40] per-
formed Bayesian calibration using soil respiration
measurements to initialize the SOC pools in the
DAYCENT model [41,42]. They found that the
model pools could be effectively initialized using soil
respiration data, which is especially important when
trying to model at sites (or large-scale spatial model
runs) where land-use history is unknown. Without
Bayesian calibration, it would be difficult to use soil
respiration measurements in this way [40].

(ii) Model data fusion
Bayesian calibration uses measurements to improve
model parameters through calibration, but there are
other ways of using measured data to improve the pre-
dictive capacity of models. In a process often referred
to as ‘data assimilation’ or ‘model data fusion’,
models are combined with datasets from a variety of
sources to allow the data to be assimilated into the
model, so that its predictive ability improves as
more data are included. Williams et al. [41] outlined
a process whereby data from a global network (FLUX-
NET) of eddy-covariance towers measuring NEE of
carbon, energy and water fluxes could be linked to
land-surface models (figure 5).

The model outputs are linked with the measured
data using error weightings, with the outcomes produ-
cing better models with quantifiable uncertainty.
Since multiple combinations of parameters can produce
similar outputs (termed ‘equifinality’), the fusion of
independent and orthogonal data can be used to mini-
mize this problem [43]. As with Bayesian calibration,
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Figure 5. A conceptual diagram showing the main steps and iterative nature of model data fusion. Reproduced from Williams

et al. [43].
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posterior probability density functions of the model par-
ameters can be compared with those before the fusion,
to examine the success of the model data fusion. The
methods outlined [43] were expanded and applied
recently to compare a network of arctic NEE measure-
ments to model predictions using a signal processing
filter [44]. Covariance between model parameters
allows un-measured variables to be updated through
time. Since the estimates evolve through time, a signal
processing filter was used to estimate dynamic variables,
which also allowed the embedded model to be tested,
and for the reconciliation of persistent deviations
between observations and model predictions. Model
data fusion can assimilate and integrate a wide range
of spatial and temporal data, at differing scales,
to improve model performance and to allow data gaps
to be automatically filled [44].

(iii) Attribution of observed patterns to different drivers
In another example of large datasets being used to inter-
pret model outputs, climate models have been used to
attribute observed global changes (such as polar warm-
ing [45], and continental run-off [46,47]) to different
potential drivers. By comparing spatial model outputs
with measured data, the difference between the mod-
elled and measured spatial pattern is examined, and
the best spatial fit allows the contribution of different
drivers to be determined. This process has been
termed ‘optimal fingerprinting’ [46,48]. This is a
formal detection and attribution technique developed
to isolate the causes of observed change. Tett et al.
[41] and Gedney et al. [46] used ecosystem models
and optimal fingerprinting statistical techniques to attri-
bute observed changes to different potential causes.
The models were run with all factors included, and
allowed to vary within set ranges. The models were
then run again, fixing one potential driver at a time.
By comparing the model outputs to the observations,
the distinct spatio-temporal patterns of the response
serve as ‘fingerprints’ that allow the observed change
to be separated into contributions from each factor
Phil. Trans. R. Soc. B (2012)
[46]. In other examples using similar techniques,
Smith et al. [5,6,49] used an ecosystem model to attri-
bute future changes in soil carbon to changes resulting
from direct impacts of climate on soils, indirect effects
via changes in productivity, changes in land use and
improved management/technology. Spatial data provide
many new opportunities in ecological and ecosystem
modelling to improve the predictive and explanatory
capacity of our models.
4. TRANSFERABLE METHODS FOR SYSTEMS
ECOLOGY AND CONCLUDING REMARKS
The advances in numerical modelling methods in
global change and biogeochemistry presented here
only scratch the surface of a vast field of research,
and the examples have been selected to demonstrate
how systems approaches are relevant across discipli-
nes. All of the numerical methods outlined above
are transferable between disciplines, and there are
many parallel developments in predictive ecology,
as described elsewhere within this issue. Grimm &
Railsback [50], for example, describe the application
of detailed numerical techniques in individual-based
models, while Moorcroft [51] stresses the importance
of evaluation and sensitivity and uncertainty analysis in
the development of ecosystem models for simulating
disturbance history. Orzack [52] stresses the import-
ance of quantitative model evaluation in ecology,
and others describe the importance of numerical tech-
niques in ecological [53] and model systems [54], and
in systems biology [54]. Bayesian techniques show
some promise in uncertainty analysis and for model
calibration, and new methods are available for quanti-
fying and attributing uncertainty in model outputs.
Model data fusion offers new approaches to better
combine models with diverse and complex datasets
[55], while optimal fingerprinting using spatially and
temporally explicit data will allow us to use models
to attribute observed global changes to different
drivers [51], which is of the utmost importance if
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we are to manage our planet to mitigate adverse
impacts and to maximize benefits. As we increasingly
employ systems approaches, and conduct research in
multi-disciplinary teams, the transfer of skills, tech-
niques and ideas across disciplines offers exciting
opportunities for predictive ecology.

This work was prepared for a conference, ‘Predictive
ecology: systems approaches’ held at the Royal Society in
London on 18–19 April 2011. P.S. is a Royal Society–
Wolfson Research Merit Award holder.
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