
Phil. Trans. R. Soc. B (2012) 367, 247–258

doi:10.1098/rstb.2011.0178
Review
*Author

One con
ecology:
Incorporating uncertainty in predictive
species distribution modelling

Colin M. Beale1,* and Jack J. Lennon2

1Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
2The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK

Motivated by the need to solve ecological problems (climate change, habitat fragmentation and bio-
logical invasions), there has been increasing interest in species distribution models (SDMs).
Predictions from these models inform conservation policy, invasive species management and dis-
ease-control measures. However, predictions are subject to uncertainty, the degree and source of
which is often unrecognized. Here, we review the SDM literature in the context of uncertainty,
focusing on three main classes of SDM: niche-based models, demographic models and process-
based models. We identify sources of uncertainty for each class and discuss how uncertainty can
be minimized or included in the modelling process to give realistic measures of confidence
around predictions. Because this has typically not been performed, we conclude that uncertainty
in SDMs has often been underestimated and a false precision assigned to predictions of geographi-
cal distribution. We identify areas where development of new statistical tools will improve
predictions from distribution models, notably the development of hierarchical models that link
different types of distribution model and their attendant uncertainties across spatial scales. Finally,
we discuss the need to develop more defensible methods for assessing predictive performance,
quantifying model goodness-of-fit and for assessing the significance of model covariates.
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1. INTRODUCTION
The spatial (and temporal) distribution of a species
is one of the most fundamental pieces of ecological
information. Knowing what drives or constrains geo-
graphical distribution is pivotal for many purposes: for
example, for many macro-ecological questions search-
ing for pattern and process in aggregate distribution
statistics [1]; knowledge of the distribution of disease
vectors for targeting of health programmes [2]; predict-
ing spread of invasive species [3] and development of
successful conservation plans [4,5]. From origins in
conceptual models based on expert opinion and
reasoned extrapolation, the development of formal
species distribution modelling (SDM) using a variety
of statistical and machine-learning techniques has for-
malized the process. Distribution modelling is now a
major field of ecological research: between 2005 and
2010, there were over 850 publications in the Thomson
Reuters web of knowledge database (found by a search
for ‘species distribution mode*’ or ‘niche mode*’)
compared with only 79 between 1999 and 2004.

Many recent uses of SDMs are to make two types
of predictions of practical use to conservation: predic-
tions of where species may be present but unrecorded
(or indeed, where they might be found if human
for correspondence (colin.beale@york.ac.uk).
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activities had not eliminated them [6]), and predic-
tions of where species may be in the future as
environmental change alters distributions [7]. The
first predictions are essentially spatial interpolation
and extrapolation, whereas the second uses a space
for time substitution to make extrapolations into the
future, based on projections of climate (and/or land-
use) change. Both predictions have important uses,
particularly for conservation where predictions have
been used to identify spatial priorities for conservation
[8,9] and in attempts to assess risks from climate
change to particular species [10,11]. Given the interest
in predicting future distributions, it is unsurprising
that many methods have been developed. As with all
ecological models, different methods have advantages
and disadvantages, and are appropriate for different
questions. All methods, however, are subject to uncer-
tainty; an issue which, while not overlooked [12–15],
is often only partially considered.

Identifying uncertainty is important for two main
reasons. Firstly, without acknowledging sources of
uncertainty, it is hard to see where future improvements
can be made. For example, if there is uncertainty in a
particular parameter estimate, or if one covariate is
poorly measured, then future work on this will improve
prediction. Equally important is the confidence or
scepticism of the general public: many activities that
rely on SDMs are of high profile [16] and if scientists
are perceived as overstating problems or downplaying
uncertainty, then the public is likely to further lose
This journal is q 2011 The Royal Society
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confidence in scientists [17]. Indeed, although minim-
izing uncertainty (increasing precision) is worthwhile,
a whole field of theory has been developed to help
make decisions in the face of uncertainty, but this is
possible only when uncertainties are acknowledged
and quantified [18]. Instead of trying to eliminate
uncertainty completely, we suggest a pragmatic
approach that embraces uncertainty and seeks to make
accurate predictions with correctly identified precision.

Here, we review methods used to predict species
distributions and focus particularly on their associated
uncertainty, identifying where methodological devel-
opment can reduce prediction uncertainty, and other
areas where uncertainty is inherent.
2. DISTRIBUTION MODELLING METHODS
There are many distribution models in current use
[19–22]. Here, we seek not to review individual
methods, but to identify classes of distribution models,
discuss the assumptions they make and explore predic-
tions that are possible with each class. In classifying
distribution models, we recognize an axis from the
purely statistical that seek through correlation to
identify process (ecological niche) from pattern (geo-
graphical distribution), to methods that try to
determine directly the processes and ecological mechan-
isms that underlie pattern. Although individual models
fall anywhere on this continuum, for the purposes of
this review we split models into three classes: statistical
(and machine-learning) methods, called niche models;
process-based models at the opposite end of the
continuum, and an intermediate class such as meta-
population models that typically combine statistical
associations between climate and habitat variables with
demographic components to identify distribution and
range dynamics. Along this axis, there is a rapid increase
in the need for data and a concomitant decrease in the
practicality of application across many species.

Uncertainty in predictions originates from many
different sources, and we follow others in identifying
three main areas where uncertainty occurs: data,
model and prediction uncertainty (table 1). Although
uncertainty from each area occurs in all models, not
all sources are relevant to all model types. In the sec-
tions that follow, we start with a brief description of
the model class, describe relevant sources of uncer-
tainty and conclude with our view of where future
development in each model class should focus to
adequately model uncertainty.
3. NICHE-BASED DISTRIBUTION MODELS
The majority of papers describing predicted species dis-
tributions fall into this class. A huge range of methods
have been developed to fit these models from statistical
regression methods, such as generalized-linear models
and generalized-additive models to machine-learning
approaches, including artificial neural networks and
implementations of genetic or other learning algorithms
[20]. Reviews of these methods that describe their
strengths and weakness are available and we do not
seek to repeat this information here. Instead, we focus
on the common properties of this class of method and
Phil. Trans. R. Soc. B (2012)
describe the uncertainties involved in predictions from
their application.

In general, niche-based models are straightforward
and efficient to fit. They rely on simple (primarily pres-
ence/absence records) and relatively little data (as few
as five observed data points have been suggested as a
minimum for some methods [23,24]); some methods
address cases where no information is available on
species absence. With such little information required
to generate output and the widespread availability of
software to fit even sophisticated models, it is unsurpris-
ing that many studies use these methods, including
numerous high-profile publications [8,16]. However,
the same reasons should provide warning that there is
considerable uncertainty in predictions from these
methods: all models are only as good as the data upon
which they are built.

As the name suggests, niche-based distribution
models implicitly focus on estimation of a species’
niche from the geographical distribution of species
[22,25]. Once the niche is estimated, then predictions
(in space and time) can be made by re-projection from
niche- to geographical space, provided data are avail-
able on the important niche dimension for the
locations or time for which predictions are required.

Data quality is an obvious source of uncertainty
and much can be undertaken to improve matters.
Unfortunately, knowledge of species distributions is
incomplete: many of the most biodiverse regions
remain poorly known, with discoveries of new species
regularly reported [26,27]. Species misidentifications
can also be common and individual observers vary
in their error rates (C. Beale 2011, personal obser-
vation). Even when species distributions are perfectly
observed, the raw data may still be a source of uncer-
tainty, e.g. some presence records refer to vagrants that
have dispersed away from their usual range, adding to
the error in modelling. Similarly, presence records may
refer to sink populations [28,29]: while including such
presence records is inevitable, it raises the unwelcome
possibility that the populations predicted to be present
at some time in the future may consist only of potential
sink populations that would not be viable on their own.

Unknown or incompletely known recording effort
is a pervasive and an important source of problems for
species data, as it is almost always spatially non-random
[30–32]. This can have unfortunate consequences,
because spatially systematic variation in effort (or indeed
habitat-specific differences in detectability) may match
some explanatory covariates, resulting in incorrect
estimation of niche [31]. Covariate quality is another
source of uncertainty. Typically, in large-scale analyses,
covariates are themselves predictions from models (e.g.
based on reflectance values of satellite-derived data
[33]), or interpolation of data measured from fewer
sample locations. These covariates are, therefore, uncer-
tain and incorporation of this within the modelling
process is desirable—for example, gridded climate data
are generated by interpolation from weather stations
using modelling methods that give estimates of precision
[34]; yet these uncertainty measures are not generally
used in SDM.

Because niche-based models focus on identification
of that part of a species’ ecological niche central to its



Table 1. Sources of uncertainty relevant to classes of species distribution model.

uncertainty

class uncertainty source niche-based models demographic models process-based models

data observed distribution data

(including recorder
effort)

relevant both to

model building
and model fit
assessment

relevant to model fit

assessment

relevant to model fit

assessment

current covariate (habitat
and/or climate) data

relevant to model
building and

model fit
assessment

may be relevant to model
building (if spatial

information on demography
is required), always to model
fit assessment

relevant to model fit
assessment

other data sources (e.g.

noise in demographic
data)

not relevant relevant to demographic data

for model building

relevant to model

building, e.g.
through
observations on
phenology

model model fitting methods

(generalized-linear
model, generalized-
additive model, etc.)

highly relevant for

niche identification

relevant for, e.g. identification

of demographic links to
weather

not (or minimally)

relevant

structural model
misspecification

highly relevant highly relevant highly relevant

parameter estimation relevant, but often
fewer in number
than more complex
models

highly relevant highly relevant and
often involving
large numbers of
parameters

uncertain model fit to true

niche/distribution

highly relevant highly relevant highly relevant

prediction uncertainties in covariate
data

highly relevant highly relevant highly relevant

no-analogue conditions highly relevant highly relevant not important
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geographical distribution, modelling this as accurately as
possible is important [25]. Before starting to fit a niche
model, there is uncertainty over which niche to model:
the fundamental niche or the realized niche? With
niche-based modelling, data are most directly available
on the realized niche (i.e. the environment where the
species currently occurs), yet the fundamental niche of
a species is often much wider than the realized niche
[35]. Using the realized niche to predict distribution is
probably appropriate when filling gaps in known distri-
bution owing to lack of observations, but introduces
considerable (and unmeasurable) uncertainty when pre-
dicting future distributions. Realized niches differ from
fundamental niches owing to dispersal limitation and
through interactions with other species [25,36,37].
Competitive exclusion of one species by another is
common and there are numerous examples of range
limits (or holes within distributions) determined by
known competitors [38,39]. Competitors, however,
may respond to environmental change in different
ways; this could result in currently competing species
sharing no future locations but instead interacting with
other species in different (and currently unobservable)
ways [40,41]. When competition (or facilitation) limits
distribution, predicting from the realized niche is subject
to inestimable errors, making predictions dependent
on the unrealistic assumption that newly interacting
species will have the same net interactions as current
interactions. Furthermore, if dispersal barriers (e.g. sea
crossings, mountains) exist and prevent a species from
filling its fundamental niche, then future distributions
Phil. Trans. R. Soc. B (2012)
are likely to be equally constrained in geography. Any
niche model excluding these constraints fails to identify
the limiting process and may incorrectly predict range
expansion. Similar arguments apply to problems associ-
ated with source–sink dynamics and historical events
that have constrained current distributions (e.g. glaci-
ation cycles and volcanism).

These issues notwithstanding, there is information in
current distributions that is useful for estimating the
fundamental niche—though there is no certainty that
sufficient information on niche limits exist in any given
dataset. Indeed, it seems unlikely that many species
have distributions suitable for full identification of any
niche, realized or fundamental: even for taxa with dis-
tributions completely within a study region, there is
no guarantee that all niche axes have limits within the
area. Equally, there is no certainty that species with
only partial ranges within a study area do not reach toler-
ance limits within the area (figure 1, cf. [42,43]):
geographical distribution and distribution within niche
space are different phenomena. Modelling the funda-
mental niche from geographical data is harder than
modelling the realized niche, but doing so avoids some
problems highlighted above. In practice, no matter
how sophisticated might the modelling method be, full
recovery of the fundamental niche is unlikely. Instead,
an approximation somewhere between the realized
and fundamental niche is likely, meaning that some
issues associated with the realized niche remain in pre-
dictions from models of the fundamental niche. For
prediction, however, further problems are generated:
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Figure 1. A graphical demonstration that there is no necessary correlation between endemicity within a study area and ability to
fit niche-based models. (a) Hypothetical temperature gradient across a square continent, with the eastern three-quarters
(unmarked) being within the modelling area. (b) Hypothetical rainfall gradient across the same square continent, hashes

again indicate portion of the continent outside the study area. (c) Niche-space within the continent—black rimmed circles
fall within the surveyed area; plus symbols (‘þ’) within the unsurveyed space. Fill indicates presence of two hypothetical
species: dark or medium grey. (d) Geographical projections of the niches indicated in (c) for the two hypothetical species.
Note that while panel (d) shows that the medium grey species’ range falls completely within the surveyed area, it is impossible
to identify upper niche limits for temperature for this species, while the dark grey species is not endemic to the study area, but

all four niche limits can be identified from the data availability in panel (c).
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consider a species where most of its geographical range
is limited by competition. For the region of niche space
occupied by this competitor, no accurate prediction is
possible (though simultaneously modelling both species
makes this feasible). Acknowledging this prediction
uncertainty is preferable to confidently asserting that
areas with such environmental characteristics will
always be unsuitable, even if the competitor’s distri-
bution changes. Thus, methods that identify the
fundamental niche in preference to the realized niche
are preferable, despite the greater uncertainty associated
with their predictions, because the narrower precision
of the realized niche model probably underestimates
uncertainty.

Another source of modelling error in niche models
involves identifying niche dimensions. Trivially, exclud-
ing an important covariate leads to a poor model and
poor prediction. Equally, including redundant variables
reduces the accuracy of parameter estimation, particu-
larly, if unnecessary covariates correlate with useful
variables [44]. Furthermore, addition of numerous
redundant covariates increases the probability of over-
fitting. This is of particular concern because many
Phil. Trans. R. Soc. B (2012)
niche-based models use automated fitting methods
with minimal or no selection of variables: it is not unu-
sual for models to be built with ca 13 highly correlated
covariates [45,46]. This problem is only one form of
statistical model misspecification, all forms of which
reduce prediction accuracy, while exaggerating pre-
cision. A further example is misspecification of the
error term: many modelling methods either have no
such term, or implicitly assume spatially independent
errors when a model of spatially structured residual
errors is appropriate (though leads to apparently less-
precise predictions, as they do not overestimate precision
[44]). Other often overlooked sources of uncertainty
relate to the functional form of the niche model: to fit
a plausible model requires considering the likely shape
of the niche and, if necessary, constraining the statistical
model to a biologically plausible form. It is, for example,
unlikely that any real species has a fundamental niche
that includes temperatures of 10–158C, excludes
16–208C but includes again 21–258C, so fitting a uni-
modal model is better than one that is more flexible
[19,47]—although additional flexibility may be prefer-
able if modelling the realized niche [12]. Structural
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model misspecification also results in misidentification of
covariates when a multi-model or covariate selection pro-
cess is undertaken because the model likelihoods (and/or
Akaike’s information criterion (AIC)) will be wrong.
When predicting, it is important to remember that
fitted distributions are smoother than real distributions:
they are more strongly autocorrelated than real distri-
butions and generally have fewer isolated patches of
presence. While inevitable (correct classification of pres-
ence and absence is weighted towards the main presence
and absence areas, rather than correct classification of
peripheral populations), this is important where small
and isolated populations may be valuable. For example,
calculating extinction risk requires knowing when
the last population goes extinct: smooth modelled
distributions with no outliers are more likely to predict
total extinction than a real distribution with populations
existing beyond the main climate envelope.

An important additional source of uncertainty in
niche-based distribution models is in the assessment
of model performance and goodness-of-fit [12,48,49].
Ultimately, all models must be assessed for performance
and predictive ability, but this is not as straightforward
as implied by many papers in this field. Typically, assess-
ment is undertaken by comparison of observed with
predicted distribution for current conditions. Apart
from the problem of making genuinely independent
predictions of distribution when these data (or at best
a highly autocorrelated subset of test data) are used
in model building [19], measures assessing pattern
match are not without problems. Measures such as the
area under the receiver-operating characteristics curve
(AUC), or the true skill statistic are typical, but do not
offer unbiased measures of pattern-matching ability
[12,50,51] and are applied without penalization for
model complexity, resulting in risks of over-fitting,
which greatly reduces predictive ability [48,52]. A prob-
lem not generally noted is that increasing the study area
by including additional unsuitable areas always results
in an increased AUC or similar score, though the
model is neither better nor worse than before: these
scores are not a true goodness-of-fit statistic and do
not explain how well a model predicts distribution,
rather they estimate how well a prediction fits a par-
ticular dataset; a subtle, but important distinction.
Furthermore, measures that assess overall significance
of a model are not necessarily suitable for determining
how much variation is explained by the model: statistical
significance means neither biological significance nor
strong predictive power. Moreover, models estimating
the fundamental, rather than realized niche, are far
harder to assess using simple pattern-matching: a geo-
graphical projection of the fundamental niche may be
substantially larger than that of the realized niche, so a
perfect model may have a relatively poor match to the
current observed distribution, which reflects the real-
ized niche. This source of uncertainty in ability to
assess model fit applies to all classes of SDMs.

Prediction uncertainty of niche-based distribution
models also occurs from the covariates used to predict
future distribution. Such projections rely on the output
of climate models and can be extremely uncertain,
particularly for precipitation-related variables [53].
Moreover, not all variables are available as output
Phil. Trans. R. Soc. B (2012)
of climate models, and projections of future values of
covariates may be lacking. The availability of these
future data can restrict initial covariate choice, despite
the knowledge that factors for which future predictions
are unavailable may be important [54]; i.e. models
may be deliberately misspecified to reflect data avail-
ability, rather than for ecological reasons. Such
sources of error are compounded when the uncertainty
of climate predictions is ignored. Another source of
prediction uncertainty comes from ‘novel climates’:
future climates may have no analogues within the
study area and accordingly the species response to
this new environment cannot be known [55].

Many causes of uncertainty can be addressed by stat-
istical methods that, while not eliminating uncertainty,
allow correct assessment of precision. Usually, correctly
modelling precision reduces apparent certainty in the
output of SDMs because many exiting niche-based
models give overconfident predictions with false pre-
cision. Suitable tools to improve uncertainty estimation
are available for all stages of the modelling process.
Many errors associated with distribution data can be
incorporated within occupancy models to provide esti-
mates of niche unbiased by observer ability [56,57].
Similarly, hierarchical models can explicitly incorporate
uncertainty in covariates (both in input variables and in
predicted future values where available), through resam-
pling of plausible covariate values and model refitting
[58]. The novelty of future climates may be a source of
irreducible uncertainty for model extrapolations.

Additionally, appropriate spatial error models can
be incorporated during model building [12,19,41]. It
is more challenging to ascertain how to model inter-
actions between species given the complexity seen in
even simple food webs and the analytical challenge
presented by multi-species spatial data. Yet, methods
such as Bayesian network tools are developing that
allow complex interaction networks to be inferred
from distribution data while simultaneously estimating
the influence of covariates [59,60]. Ultimately, new
methods will develop that incorporate this full range
of statistical advances, allowing credible estimation of
uncertainty.
4. DEMOGRAPHIC MODELS
In this category, we identify two main types of model.
First, there are classic metapopulation models explain-
ing local patch occupancy as a dynamic process of
birth, death, immigration and emigration models
linked by dispersal [61]. Such models can be paramet-
rized by correlating demographic components with
weather and then used for future prediction using cli-
mate projections [62]. Second, models have been
developed that again correlate demographic com-
ponents with climate or weather, often identifying
intermediate linkage via food availability but are not
patch-based [63–66]. In reality, models of both types
fall on a continuum from the purely statistical to
those that include climate links to physiology and/or
intermediate processes such as food availability that
tend towards process-based models.

Metapopulation models of the stochastic patch occu-
pancy type would be excellent tools for modelling
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fragmented species distributions (species interactions
aside). They can accommodate patch structure, fine-
scale habitat fragmentation and landscape architecture,
population density and Allee effects, local adaptation
and evolution, local environmental conditions, and
even the behaviour of individuals [67]. Metapopulation
models can predict future distributions using two
approaches. Firstly, future environments may modify
the availability of suitable habitat patches, with some
patches becoming unsuitable, and others becoming
suitable as the environment changes [62,68,69]. Alter-
natively, demographic parameters within patches may
be adjusted according to climate-related processes
measured in the field or laboratory. For example,
temperature-related hatching success is widespread
among many insect species to which metapopulation
models have been applied [70]. Clearly, the patch loss
and demographic shifts are not mutually exclusive and
both can be incorporated into the same predictive
model. Uncertainty in these models is explicitly recog-
nized in their stochastic nature, provided variation in
demographic components is accurately measured.

While useful when applied to particular species at
the landscape scale (but see [71,72]), in reality these
models require intensive fieldwork to parametrize
and are typically practical only for small proportions
of a species range [71], thereby limiting their useful-
ness to meet the challenge of global environmental
impacts on biodiversity. Furthermore, metapopulation
models are criticized for their difficulty in dealing with
landscapes other than simply suitable patches within a
matrix of unsuitable (though maybe permeable) habi-
tat, and also have little to offer when biotic interactions
(beyond direct host–plant relationships) are important
in determining distribution limits [67,71].

The second type of model within the class which we
call demographic models is less well-defined. At base,
these models use information on breeding and survival,
correlate these with weather variables and from this
generate a simple demographic model [64]. When this
statistical model is embedded in a geographical grid
with cells with different climate conditions, estimates of
the intrinsic rate of population change become spatially
explicit, generating an SDM. Complexity (and further
realism) can be added by identifying the mechanism
linking weather and demographic components. Typ-
ically, this involves the linkage between weather and
food availability, which, in turn, is linked to breeding
success. For example, Both et al. [66] describe how cli-
mate change is likely to alter the distribution of pied
flycatchers (Ficedula hypoleuca) through generating a
temporal mismatch between timing of the bird’s breed-
ing and the peak spring availability of their caterpillar
prey, resulting in reduced breeding success in areas
where early spring has rapidly advanced. Similar studies
of other birds also identify range-margin populations
under pressure from climate change [65]. So far, there
are few examples of this model type and particularly
their projection into geographical distributions. To
date, those that have use only mean estimates from
estimated relationships [65] and therefore underesti-
mate the uncertainties in predictions, yet there is no
reason why future predictions may not be generated
stochastically to quantify uncertainty appropriately.
Phil. Trans. R. Soc. B (2012)
In general, demographic models are appealing as
SDMs, as they are explicit about the demographic
hypotheses involved and offer transparent estimation
of uncertainty. Unfortunately, geographical predic-
tions from these methods are accurate only if the
demographic model correctly identifies the important
factors determining population limitation. As these cor-
relative methods implicitly (but often incorrectly)
assume that the demographic impacts of weather and
climate are identical, model misspecification errors
may be large. For example, consider that many upland
birds are restricted in geographical range to places
with cool, wet climates [73]. While these species may
struggle in a warm, dry climate, many of them show
higher breeding success and better survival in warm,
dry years than in the typical conditions they usually
experience [74–76]. Clearly, demographic models
would predict a more widespread population than
their preferred upland habitats, suggesting that while
warm, dry weather may be good, a warm, dry climate
would not. Instead, the distribution of these species
relates to climate via potentially complex interactions
with other species which, if this class of model is to be
correctly specified, must be simultaneously modelled.

Predictions of future distribution from metapopulation
models are clouded by uncertainties in determining
patch suitability for currently unoccupied patches. This
has been attempted using statistical models of habitat
quality (with some success [77]), but the uncertainties
in determining unoccupied patch suitability are rarely
quantified. As with niche-based models, there is also a
problem extrapolating to future conditions when
expected conditions exceed the variability sampled in
current data: wherever relationships between climate
and demography are based on observation, extrapolations
are subject to large but unmeasurable uncertainties.

Looking forward, it seems likely that the fundamental
components of demographic models will not change
greatly, but there will continue to be refinement of indivi-
dual models as data on additional mechanisms accrue.
We expect that these models will be fitted to more species:
usable data are routinely collected in existing monitoring
schemes for many more species than so far modelled.
As these models are developed further, the same
uncertainties about measures of model fit that affect
niche-based model predictions will become important.
5. PROCESS-BASED MODELS
This third and final class of SDM takes an approach
opposite to that of niche-based models. Instead of
building a statistical model of niche from geographical
distribution, process-based models instead determine
niche physiology and then reconstruct geographical
distribution from this. This is a relatively new field,
with comparatively few working models. Examples of
the genre include models for trees that identify niche
using aspects of phenology (e.g. PHENOFIT [78]),
which assumes that a species can survive only if all
components of its life cycle are completed within a
calendar year: producing leaves while avoiding frost,
growing flowers, setting seed, etc. Similar approaches
for animals may be possible, but the best examples
focus on determining whether animals meet energetic
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demands [79]. Kearney et al. [80] describe a model of
the greater glider (Petauroides volans) using assess-
ments of energetic and evaporative costs converted
to units of milk. They identify the physiological
niche where sufficient milk can be produced to suc-
cessfully raise young and project this to geographical
space. Similarly, Kearney et al.’s [81] model of the
cane toad (Bufo marinus) measures the impacts of
temperature on movement, reproduction and survival,
then projects this to geographical distribution. At an
even more fundamental level, there are models of
plants that use the chemistry of photosynthesis and
physiology of water-stress to model tree responses to
global change (indeed, some argue that only models
based directly on physiology should truly be described
as process-based models, all other approaches being
descriptions of the relationship between climate and
demography). Functioning at this level means such
models can incorporate processes such as responses
to changing CO2 levels [82].

Process-based models often require numerous
parameters (e.g. timing of phenological events, or sen-
sitivity of activities to climate), each of which carries
uncertainty. Correctly assessing uncertainties in pro-
cess-based models involves identification of sources
of variation for each parameter, including individual
variation and population differences caused by local
adaptation. It is simple to incorporate this variation
into output through resampling of observed variation
and re-running the model, though to date most
models discard information on variation and instead
use averages [78] or at best undertake sensitivity
analyses [81]. More complex models have more par-
ameters and suffer more from parameter estimation
uncertainty, as error propagation results in increasingly
imprecise estimates as complexity increases. Indeed,
creating geographical predictions from the output of
the most complex process-based models is problematic
as, for example, tree growth rates (raw output from
some physiological models) must be translated into
population dynamics [82].

As with niche-based models, a further source of error
in process-based models is the challenge of identify-
ing the important niche axes. Although niche-based
models use pattern-matching to identify likely niche
components, process-based models rely on an under-
standing of the species’ ecology to identify important
niche axes. Where direct impacts of temperature or
water-stress are important, experiments can measure
tolerance and identify limiting factors [78,81]. Often,
however, the interaction between environment and
organism is complicated and experiments are impos-
sible or unethical: it is hard to justify using temperature
chambers to identify stressful environmental conditions
on many animal species, especially rare ones. In such
cases, tolerance must be measured differently [80] with
increasing errors. Moreover, identification of climate
impacts on life-history components is challenging,
requiring detailed knowledge of the ecology of the
target species: once options are identified, the only
appropriate test is to run the model and see how
well predicted matches observed distribution. This
comparison is even more challenging than for niche-
based models because the prediction is based on the
Phil. Trans. R. Soc. B (2012)
fundamental niche (though if dispersal is incorpora-
ted within the model, the prediction can be expected
to be closer to the realized niche), while the geogra-
phical distribution is formed by the realized niche:
over-prediction is virtually guaranteed.

An important advantage of process-based models is
that true prediction into conditions beyond observed
conditions (e.g. into areas with novel climates) is possible
[82], and can incorporate appropriate uncertainty.
Moreover, genetic evolution can be included within
process-based models, enabling this potentially import-
ant mechanism to be incorporated [83]. Indeed,
models containing competitive interactions with other
species are possible, though have not yet been attempted.
Without such multi-species modelling, however, the
same problems with lack of interactions remain for
process-based models as other distribution modelling
approaches.

Distribution models based on physiology can be
further abstracted to generic trait types and not for indi-
vidual species. Such models predict not species, but
collections of plant functional types defining vegetation
classes, such as biomes. They are termed dynamic
global vegetation models (DGVMs; [84,85]) and not
usually considered as SDMs, but their conceptual and
mathematical similarity to single-species process-based
models makes it appealing to consider their use along-
side more standard distribution models. In contrast to
single-species models, DGVMs explicitly model vege-
tation assemblages and the boundaries between major
community types from basic plant physiology, using
plant functional types to define communities [47].
Most DGVMs are run only for single or small sets of
parameter values, providing sensitivity and not uncer-
tainty estimates, but increased computer power will
soon enable uncertainty assessments [86]. Other refine-
ments, such as the incorporation of additional traits, will
follow [47]. Assessment of DGVM accuracy, like that of
typical SDMs, lies in the match between predicted cur-
rent distribution and that of observed distribution
[84,85]. As with all models, this comparison is subject
to uncertainty in the observed distributions (usually
assessed from satellite imagery), but also in the defi-
nition of plant communities: many biomes do not have
clear edges, but rather grade from one to another
through intermediate states, and boundary choice is
arbitrary and introduces uncertainty. Unlike single-
SDMs, however, DGVMs are not subject to uncertainty
from interactions, as the competition between biomes
and associations between species are explicitly included
in the models. There are, however, uncertainties in this
for those systems where factors other than climate drive
biome limits, such as grassland–forest interfaces
mediated through herbivory and fire [87], only the
latter of which is sometimes incorporated into
DGVMs. Furthermore, current DGVMs are subject
to uncertainties from the lack of explicit modelling of
dispersal [88]. Despite these uncertainties, however,
DGVMs are remarkably accurate in their overall predic-
tion of global vegetation communities [85]. It seems that
sacrificing information on species identity makes it poss-
ible to improve predictions about collections of species
as vegetation types. This may be because community
or local assemblage membership rules operating via
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species interactions combine with environmental filters
acting on species traits to make the average properties
more predictable than specific presence or absence of
individual species.

Uncertainty in process-based models can easily be
incorporated into predictions. However, uncertainties
from the modelling process are not the only sources of
uncertainty, as predictions are generated from an
assumed model of the niche. Using a process-based
model, one cannot quantify the uncertainty that occurs
owing to missing niche components. For example, if
Kearney et al. [81] had not measured mobility and
assumed only reproduction and survival were tempera-
ture-sensitive they could have built a process-based
model including full uncertainty from the variability in
temperature and demography—but their model would
have been less accurate than the uncertainty thus derived
supposes. Unfortunately, this uncertainty is irreducible
and the only test of the model is to compare observed
with modelled distribution, with all the problems this
involves. So far, few process-based models have been
published and it remains unknown how difficult it is to
identify niche parameters—studies published to date
have been successful, predicting current distributions
similar to observed patterns [79]. However, it is unlikely
that process-based models which do not predict current
distribution well will be publishable, when one cannot
determine if it is the model that is misspecified, or if real-
ized and fundamental niche are simply too different [89].

Thanks to their bottom-up approach and the ability
to predict distributions independent of the data used
to generate them, process-based models have an im-
portant contribution to make in this field. Models
of individual species will become increasingly well-
defined, as information accrues about niche dimensions
and physiological responses to temperature and water-
stress are better understood. There is little doubt that
models will be developed for more species and new soft-
ware is becoming available to assist the process. We
suggest, however, that the requirement for detailed,
species-specific information (often involving laboratory
experiments) means that process-based models will
never be available for the number and diversity of species
that are required, for example to make global assess-
ments of species sensitivity to climate change. Instead,
we suggest that an abstraction is likely, similar to that
of DGVMs, where species identity is ignored and trait-
based analyses develop that allow sensitivity to be
assessed based on readily available trait information.
6. DISCUSSION
From this overview, it is clear that multiple sources of
uncertainty apply to all model types. Data uncertainties
in environmental covariates affect output from all
models, and should always be incorporated in model
predictions but this is rarely done [90]. Uncertainties
in species distribution data present particular challenges
to niche-based models, but also need considering when
validating predictions from all model types using
observed data—another issue often overlooked. Predic-
tion uncertainty of future climate from climate models
needs to be considered in predictions from all model
types; e.g. rather than using median outputs for each
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climate model variable, individual realizations should
be used. Parameter uncertainty should be estimated
and recorded, whether using a niche-based model, or
a model of fundamental niche based on laboratory-
measured physiological tolerance. And all examples
are subject to uncertain influences of biotic interactions.
Other sources of uncertainty are specific to model
class: niche-based models are subject to uncertainty
from having no mechanism to include dispersal and
source–sink processes, whereas mechanistic niches
modelled in process-based models never reflect true
complexity of biological systems. Although most
sources of uncertainty have been previously identified
and occasionally measured [15], we know of no example
where all known sources of uncertainty have been
measured. As many sources of uncertainty have multi-
plicative effects, it is inevitable that uncertainty in
SDMs is generally underestimated. Indeed, once appro-
priate measures of prediction uncertainty are available,
we expect that for many species our best models are
completely uninformative.

We have further identified gaps where research
can reduce the uncertainties associated with current
SDMs. Primary among these is an appropriate measure
of model fit. Analysts have relied heavily on internal
cross-validation and AUC measures of predictive per-
formance, but this approach can misidentify over-fitted
models as well-fitting and strongly predictive. Until we
know with confidence how well a model performs on
independent datasets, we remain fundamentally uncer-
tain about predictions of all SDMs. Such a measure
must identify how well predictions fit observed data
(dealing appropriately with the uncertainty in the obser-
vations themselves) while penalizing for model
complexity, and should remain unaffected by both auto-
correlation in the observed pattern [51] and prevalence
[50]. Ideally, models should be tested against indepen-
dent data, such as in an introduced range [91,92],
through use of historic [93] or palaeontological [47]
datasets to retrodict distribution, and through the use
of simulated data where the ability of the model to
recover known processes is a measure of performance.

Measures appropriate to many uncertainty sources
are already available, both through mechanisms to
incorporate uncertainty into the modelling framework
(e.g. hierarchical models allow estimates and errors to
propagate through various submodels [57]) and
through those designed to increase accuracy. In the
latter class fall ensemble forecasts which average
across many alternative models [94]. However, while
averaging is useful for increasing precision, it does
not affect the accuracy and current implementations
of ensemble modelling do not preserve measures of
uncertainty through the averaging process. Neverthe-
less, comparisons of multiple models are useful for
reducing uncertainty and examples exist where com-
parisons have been made between different classes of
distribution model, allowing differences and similarities
to be identified. Notably, Kearney et al. [80] compared
niche-based models and a process-based model of the
distribution of the invasive cane toad in Australia.
They showed that while some niche-based models give
different outputs, one method in particular (maximum
entropy [95]) gave a similar predicted distribution to
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the process-based model. By contrast, Keenan et al. [82]
comparedniche-based models and process-based models
for three tree species and found that if impacts of increas-
ing CO2 are ignored, then both niche- and process-based
models give qualitatively similar predictions, but if CO2 is
incorporated into the process-based model, the predic-
tions are reversed: the effect of CO2 is overwhelmingly
important, but cannot be identified by niche-based mod-
elling methods. Other comparisons report similarly
disparate results, and in cases of disagreement, we suggest
the more fundamental insights coming from a good
process-based model should be preferred to those of a
pattern-based approach. These comparisons are import-
ant because they allow uncertainties from different
sources to be identified, and the potential magnitude of
mistakes to be estimated.

While comparisons are useful, they are not the
only way multiple model types can be combined:
different model types can be joined statistically, in
similar ways different types of climate models have
been linked to generate localized predictions [96].
For example, niche-based models and demographic-
or process-based models could be integrated across
spatial scales in a hierarchical framework [97], or
more simply, DGVM output could feed into SDMs
to better predict species reliant on particular biomes.
These methods could further be linked to network
recovery tools to estimate and incorporate the impacts
of biotic interactions. Implementing such ‘second-
generation’ SDMs will require further statistical
research developing methods to identify biotic inter-
actions and to develop specific hierarchical models
relevant to this problem. The bases for such models
are already available [59,60], and progress in these
areas will likely be rapid: any attempt to move models
from a simple pattern-based approach to a more funda-
mental understanding of ecological processes is to
be welcomed.

Returning to the use of SDMs to inform manage-
ment decisions, the final area for further development
is in the incorporation of uncertainty into decision-
making frameworks. Decision theory is a well-developed
field, but has only recently appeared in the ecological
management literature [98–100]. Perhaps ironically,
for many of the species of most interest to conservation
(often those with small ranges), modelling uncertainty
will always be large. Indeed, not only may uncertainty
be great, but also some sources are unquantifiable,
such that we are uncertain about the degree of uncer-
tainty in many distribution models. We argue that it is
just as important to quantify uncertainty in model
predictions as to make the predictions themselves, yet
the importance of prediction uncertainty is rarely
emphasized. By correctly identifying the existence and
sources of uncertainty, even if in the worst case predic-
tions are impossible, advice and management actions
will be better informed than if based on false certainty.
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