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One of the aims of ecology is to aid policy makers and practitioners through the development of
testable predictions of relevance to society. Here, we argue that this capacity can be improved in
three ways. Firstly, by thinking more clearly about the priority issues using a range of methods includ-
ing horizon scanning, identifying policy gaps, identifying priority questions and using evidence-based
conservation to identify knowledge gaps. Secondly, by linking ecological models with models of other
systems, such as economic and social models. Thirdly, by considering alternative approaches to gen-
erate and model data that use, for example, discrete or categorical states to model ecological systems.
We particularly highlight that models are essential for making predictions. However, a key to the limit-
ation in their use is the degree to which ecologists are able to communicate results to policy makers in a
clear, useful and timely fashion.
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1. INTRODUCTION
One main function of ecology is to understand how the
natural world operates; one function of models is to aid
the testing of this understanding by converting verbal
concepts into testable predictions. The process of
theory development, creation of predictions, testing
and then subsequent reassessment of theory in
response to the results is, of course, the basis of all
science, including ecology [1,2]. In informing manage-
ment and policy, models can be used to explore
different options, make predictions, as well as form
the basis for subsequent experiments.

One example of the iterative interplay between
models and practice concerns the use of genetically
modified herbicide-tolerant (GMHT) crops. Theoreti-
cal models using empirical observations and data showed
that these could have a marked impact upon weed seed
density and thus granivorous birds [3]. In response, it
was suggested that these crops could actually benefit bio-
diversity by allowing the delaying of spraying weeds to
grow that would otherwise be controlled; a field test of
delayed spraying [4] showed that delaying spraying did
benefit weeds and the associated arthropods. Freckleton
et al. [5] combined a review of weed phenologies with
a population model to show that few species will be
able to set seed before spraying and thus that any benefits
would be short-lived. The analysis of Freckleton et al. [5]
suggested that if spraying can be ceased earlier in
the season, then a viable population of late-emerging
weeds could be maintained. May et al. [6] carried out
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field trials and showed that, as predicted, early spraying
can enhance weed seed banks and provide benefits to
invertebrates but, significantly, did not reduce yield.

The development and the uptake of policy that
affects ecological systems are influenced by numerous
factors, and in this paper, we explore several of these.
We begin by highlighting that ecologists need to be
aware of the issues that are most relevant to the devel-
opment of policy; conversely, policy makers need to
ensure that the questions that are most important for
policy development have been clearly articulated and
formulated in a manner that can be addressed by
scientists [7]. Moreover, given the inevitable lag
between beginning a project to address a new research
question and providing an answer, it is desirable that
possible issues and research priorities are identified
as early as possible. Below, we describe the development
of one approach to do this based on horizon-scanning,
as well as collaboratively identifying key questions,
the options for management and policy and their
effectiveness.

Once a question has been identified, the possible
options explored and best course of management
decided upon, the next stage is to implement recommen-
dations. The next important issue we highlight is that the
uptake of any recommendation from scientists is depend-
ent on the political and social background. Continuing
the example of GM crops (see also below), GMHT
crops offer undoubted agronomic benefits [8]. However,
they are not grown in the UK at present, largely because
of the attitudes of the public [9]. Arguably, this is because
the research conducted on their use only focused on
agronomy and did not consider social reactions or
the wider environmental impacts from the outset, spe-
cifically the suggestions that these crops could harm
This journal is q 2011 The Royal Society
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biodiversity [3,10]. Public outcry, followed up with
limited ecological impact analysis [11,12], did not
change this view. The lesson is that applied scientists
cannot ignore the wider social impacts or perceptions
of their technology. We highlight that in developing
predictive ecology, interdisciplinary projects are crucial.

Horizon scanning and social integration can identify
problems, pitfalls and possible solutions. However,
models are required in order to determine the magni-
tude of the problems and its impact in different
locations. Similarly, solutions can be suggested and
research can show that these can be successful, but
again research is needed to determine the level of inter-
ventions needed at different locations to achieve a given
objective. The final point we highlight relates to provid-
ing such prediction. The models developed by
ecologists are frequently very intricate, and modellers
are now capable of developing extremely complex simu-
lations and analytical models, incorporating a wide
range of processes. Complex models of this sort have
been extremely successful, for example, in climate
change modelling [13], forest models [14,15] and in
understanding the ecology and evolution of disease out-
breaks, e.g. Grenfell et al. [16]. It is no coincidence that
these are all systems for which there are enormous
amounts of data, and that have been studied extensively
for many years. If extensive data are not available, then it
is not possible to parametrize complex models; however,
models can still be developed and predictions generated,
e.g. Taylor & Hastings [17]. Our final point is to high-
light that policy-relevant models have been developed
over relatively short periods, but by using simpler for-
mulations that sacrifice detail for ease of development:
where feasible, and for systems, where large amounts
of data are available.

There are greater calls for the closer integration
of science and policy. In this paper, we will examine
these three ways in which this process could be
improved: exploring means of identifying the research
issues of greatest utility to policy makers and practition-
ers (hereafter ‘policy makers’), integrating ecological
models with social science models including those of
economics and, finally, exploring means of improving
the speed of model development and the transparency
of model presentation.
2. MEANS OF IDENTIFYING PRIORITY
ECOLOGICAL ISSUES FOR POLICY MAKERS
AND PRACTITIONERS
Although much of the justification for conducting scien-
tific research is that the information gained can be used
by policy makers and practitioners, in practice, many
decisions are made without the use of the scientific litera-
ture [18]. An alternative approach is to collaborate with
policy makers to identify key issues and priorities. These
methods are described in Sutherland et al. [19]. Thus,
each of the methods described below acts to set another
component of the possible research agenda.

(a) Horizon scanning

For predictive models to be useful, the information
has to be available at the appropriate time in the pro-
cess of decision making. In some cases, such as the
Phil. Trans. R. Soc. B (2012)
response to the decision to extend the use of biofuels,
much of the critical research was completed well
after the key decisions were made [20,21]. A review
identified the general problem that the policy process
tends not to involve science sufficiently early [22]. A sol-
ution is horizon scanning, the systematic search for
incipient trends, opportunities and risks that may affect
the probability of achieving management goals and
objectives [23]. Horizon scanning has been used by
business to identify forthcoming opportunities [24], the
military [25] who aim to identify useful technologies
and threats at as early a stage as possible and medicine
to identify possible beneficial technologies [26].

This approach has subsequently been used for
identifying issues relevant to conservation in the UK
[27]. Following the success of that exercise, the decision
was made to establish a global team to carry out an
annual exercise of horizon scanning [28,29]. This
comprises professional horizon scanners, experts in par-
ticular topics, such as coral reefs, wetlands, diseases and
invasives, representatives from large conservation organ-
izations, such as the Nature Conservancy, Wildlife
Conservation Society and Birdlife International, with
wide concerns in different subjects and regions, plus
some academics with wide interests. That exercise exam-
ines changes in technology, attitudes, spread of invasive
species and the rise of diseases. A gap was a comprehen-
sive examination of legislative changes that may impact
upon ecology and conservation, so an additional annual
exercise was established that examined the forthcom-
ing or possible legislation in the UK, in the European
parliament and global measures [30].
(b) Identifying priority questions

Although one of the practical applications of ecology is
to answer questions of importance to society, it is
remarkable that policy makers have rarely been con-
sulted in suggesting priority areas for research.
Perhaps, the best approach is to express this as the
research questions that policy makers would most
likely answer. The first attempt was to identify the
100 ecological questions of greatest interest to UK
policy makers [7].

This approach has been widely used. The methods
are broadly similar, but have evolved especially with
the objectives of making them more rigorous and
more transparent. The completed exercises include
an assessment of the 100 questions of greatest import-
ance to the conservation of global biological diversity
[31], the top 40 priorities for science to inform conser-
vation and management policy in the United States
[32], the top questions of importance to the future
of global agriculture [33], UK forestry [34] and
Canada [35], identifying the big ecological questions
inhibiting effective environmental management in
Australia [36], identifying the major conservation
policy issues that need to be informed by conservation
science [37] and identifying the ecological research
needs of business [38]. While the outputs of such exer-
cises are dependent on the people involved, methods
have been developed to try to ensure the process is
democratic and transparent, so reducing the risk of
undue influence of particular individuals.
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There has been a call for others exercises to identify
priority questions such as to enhance fisheries and
aquatic conservation, policy, management and research
[39], and a number of similar exercises have been
completed, are being planned or are being discussed.

(c) Identifying policy options

Whether research will have an impact partly depends on
the policy context, so that identifying options for policy
development can help identify options for making
research relevant. Thus, a group of policy makers,
policy informers and academics identified the options
for the development of policy within the UK [40].
This included habitat banking, which is being devel-
oped by the current government, and measures to
develop and maintain ecologically coherent networks,
which became a major theme of a review of conserva-
tion strategy [41], and is a key component of the
UK government’s white paper on the environment.

(d) Option scanning

For science to have an impact upon society requires
that interventions are implemented. A possible initial
stage is to list the possible range of interventions. Of
course, this is less satisfactory than an assessment of
the effectiveness of each intervention, but is enor-
mously cheaper, and thus we suggest it as a good
starting position. Jacquet et al. [42] used this approach
to attempt a comprehensive list of all the interventions
related to the major marine problems.

(e) Evidence-based conservation

Medicine has been revolutionized by the collation and
analysis of the effectiveness of interventions. Sutherland
et al. [18] suggested that the same changes could
be made to conservation practice. The bee synopsis
book [43] (also available for free on the conservation
evidence.com website) outlines the evidence for the
effectiveness of all the different known options for
enhancing and maintaining bee populations. This is
equivalent to the book Clinical evidence that has greatly
improved the access to medical knowledge. Such a
synopsis can also be used to identify the areas where
knowledge is weakest.
3. COMBINING ECOLOGICAL MODELS WITH
SOCIAL AND ECONOMIC MODELS
Answering many applied problems requires incorpor-
ating social or economic components. For example,
Watkinson et al. [3] provided a model of the likely
impact of GM crops on the abundance within fields
of overwintering skylarks. This considered the likely
impact of GMHT crops on the weed populations
and the aggregative numerical response of the skylarks
in relation to seed density. However, this model
showed that the critical unknown relationship was
between the uptake of GM technology and seed den-
sity. There are two contradictory forces: farmers with
numerous seeds could be those in greatest need of
the technology and so most likely to use it or, alterna-
tively, those with high weed abundance may have
different social or ethical considerations (for example,
they may reluctant to adopt new technologies or be
Phil. Trans. R. Soc. B (2012)
organic farmers) and thus least likely to adopt the
technology. As seed abundances are highly skewed
across fields, and the aggregative response is such
that field use by skylarks is particularly high where seeds
are abundant [44], the pattern of uptake by farmers
is critical; however, this key aspect is unknown [3].

Cooke et al. [45] examined how social and ecological
concepts were integrated within models by reviewing all
the published integrated models from 2003 to 2008 in
27 journals that publish agricultural modelling research.
This found 36 papers that integrated social and ecologi-
cal concepts in a quantitative model. All these papers
used one of four different approaches to integration.
Private profit models are pure profit models at the
single landholder level aiming to maximize profit from
the use of natural resources, such as the impact of for-
estry decisions [46] or rangeland management [47]. In
private conservation models, there are two components
to utility: from profits and from ecological benefits,
although the latter are typically beneficial to the society
and typically an externality to the farmer [48]. Collective
management models typically determine the conse-
quences to individuals of a change in the configuration
of the landscape or of a change in policy with landscape
consequences. These models do not consider the indi-
vidual behaviour of landholders. In constrained policy
models, the decisions of landholders are influenced by
policy and these either consider different land-use pat-
terns resulting from different policies [49] or optimal
policy decisions, such as the payment levels necessary
to optimize the benefits from different subsidies to
delay mowing [50].

The review of Cooke et al. [45] showed that there is a
huge literature on the ecological or social aspects of land
use, but there are far fewer models that integrate them.
In an example of how it is possible to integrate econ-
omic, social and ecological models to study the
ecological and social responses to changes in agricul-
ture, Cooke et al. (I. R. Cooke, E. H. A. Mattison,
E. Audsley, A. P. Bailey, R. P. Freckleton, A. R. Graves,
J. Morris, S. A. Queenborough, D. L. Sandars, G. M.
Siriwardena, P. Trawick, A. R. Watkinson & W. J.
Sutherland 2011, unpublished data) adopted the strat-
egy shown in figure 1. The whole farm model [51]
uses mixed integer programming to determine the
profit-maximizing agricultural decisions given the con-
straints of farm size, soil type and climate, as well as
the existing regulations, and the prices of commodities,
inputs and staff costs.

From interviews, literature review and a focus
group, it was possible to identify 16 farm-management
objectives followed by interviews with utility of each
assessed using multi-criteria decision analysis [52].
Satisfaction curves gave the relationship between util-
ity and objectives, such as their liking of profit, and
their dislike of risk and crop complexity. This allowed
the derivation of the optimal solution for farmers
allowing for their responses and showing how attitude
to, say, risk changes the farming decisions made.

The impact of crop type and landscape features upon
breeding birds was determined using transect data
of over two thousand 1 km2 areas and relating to land-
scape compositions, field boundary features and crop
type [53]. While landscape was the most important
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Figure 1. The links between components of the models to describe the agricultural system.
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determinant, crop type had an influence in most species,
which allows the impact of crop type on bird abundance
to be quantified. This example shows that it is possible
to integrate social, economic and ecological models;
such an approach is likely to be increasingly important.
4. STATE-STRUCTURED MODELS
(a) Problems with detailed process-driven

models

As our understanding of a system improves, or with
the development of new modelling tools, it is possible,
and indeed desirable, to create more sophisticated pre-
dictive models [54]. Sophisticated models are often
necessary: for example, in predicting how a change in
climate will impact upon bird populations where there
may be impacts on sea level, predators, prey and para-
sites, the model would need to be relatively complex
[55]. However in developing such models, there are
several problems, the most important of which are:

(i) In terms of policy, the most important problem is
that results are frequently required very quickly,
if they are to be of immediate use. If data are lack-
ing, then it is not possible to parametrize models
and the consequence is that key parameters have
to be guessed, inferred from the literature or
sensitivity analysis used to explore a range of
parameter values. These latter approaches are
commonly used, the drawback being that when
this is done, it is usually not possible to generate
a true estimate of model precision.

(ii) The populations being studied in policy-relevant
applications are frequently pests, pathogens or
species of conservation relevance. The regions
of parameter space that are of greatest interest
are usually those that relate to an eradication or
extinction threshold, i.e. at low density. For
species with high rates of population increase,
models can be extremely unstable in such regions
of parameter space as at lowdensities, theeffectsof
stabilizing mechanisms (e.g. density-dependence)
are typically weak [56]. These problems can
be extreme: for example, a single plant of
the weed Chenopodium album can produce
250 000 seeds [57]; if a population is to be
Phil. Trans. R. Soc. B (2012)
stable, then the total lifetime survivorship
must be 1/250 000 ¼ 4 � 1026. In this species,
survivorship has to be estimated to at least
the sixth decimal place in order for a model
to be accurate, and small errors in estimates
of parameters can yield enormous impacts on
predictions of population size. As the number
of parameters in a model increases, the effect
becomesmultiplicative unless the new parameters
are used to model new stabilizing processes [56].

(iii) The accuracy of the model is limited by both our
understanding of the biology of the system,
together with our ability to model populations.
Prevailing paradigms for modelling can be impor-
tant in determining how models are structured.
As an example, it is only over the past decade
that the importance of Allee effects has been
recognized [58–60]. In formulating models, it
is now routine to consider the likelihood of
this, as well as other processes, such as density-
dependence. However, prior to the realization
that Allee effects are important—a significant
component of population dynamics—this effect
may well have been ignored in detailed mechanis-
tic models. One way to deal with this is to use
purely empirical approaches: phenomenological
models fitted to data [61,62] can characterize
population dynamics and make fewer assump-
tions about the underlying processes. However,
these obviously lack a mechanistic basis, and of
course rely on large amounts of high-quality
data. Although, it is possible with such models
to predict outside the bounds of observation (as
we frequently need to do with models), the down-
side is that without a mechanistic basis, the
confidence we might have in the robustness of
those predictions could be low.

To a great degree, these problems arise from a focus
on classic demographic measures as state variables in
many ecological models, as well as trying to include
more processes than the data can accommodate. The
typical state variable in an ecological model would be
a continuous measure, such as the numbers of indi-
viduals in a population, the mass of individuals or
the cover of a species. The underlying models are
then either difference or differential equations.
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(b) Empirically driven models

One solution is to simplify the system, so that instead
of aiming for exact parameter estimates or exact out-
puts (such as the population abundance of a weed or
the change in coastal communities), there are just a
limited set of states (different levels of weed abundance
or different areas of saltmarsh) and the model output
is the likelihood of ending in that state.

In this spirit, Taylor & Hastings [17] introduced a
density-structured approach for modelling the popula-
tion dynamics of an invasive grass, Spartina alterniflora.
The state variable in this model was a discrete density
variable: juveniles, low-density individual clones and
high-density meadows. The justification for doing this
was that the behaviour of populations in these states is
qualitatively different: for example, individuals in low-
density populations suffer reduced fitness owing to
pollen limitation, whereas in high-density populations,
space limitation is important. Although density is a con-
tinuous variable, the coarse difference in process and
dynamics between high- and low-density populations
means that this distinction is effective in characteriz-
ing the population. Given this basic formulation, it
is then possible to phenomenologically model a suite
of processes that include both Allee effects, and
density-dependent control efficacy.

Being phenomenological, this is not a fully process-
driven model. Although some processes are modelled
explicitly (e.g. effects of management on different
stages), much of the detail is simplified and measured
as simple transitions, with the densities being simpli-
fied to coarse states. Because the scale of the
variables considered is relatively large (whole popu-
lations are in one of three density states), a
considerable number of processes are not modelled
explicitly and averaged over. While sacrificing detail,
the approach does permit ready parametrization and
analysis, compared with what would be required to
parametrize a demographic model.

This model is a particularly relevant example for
illustrating how population models can link to policy:
the objective of the modelling in Taylor & Hastings
[17] was to predict optimal strategies for removal
and control of Spartina. The population modelling
was linked to an economic model and then a genetic
algorithm used to find the optimal solution (in the
sense of optimizing combined objectives in terms of
economics and ultimate plant density). The outputs
included the optimal strategy as well as costs and riski-
ness. Similarly, Hanson et al. [63] formulated a model
for coastal erosion in which the options for manage-
ment and their outcomes were modelled as discrete
states. The model then estimated transitions probabil-
ities between these states. Figure 2 gives an example of
how an ecological demographic model can be framed
as a state-structured model.

There are a number of advantages to the approach
of considering categories for data or outputs:

— Although this approach seems less precise, model
precision is often spurious and the exact result
can be taken too seriously. This is particularly the
case if estimates of model uncertainty are not
given. Using categories can then be more honest,
Phil. Trans. R. Soc. B (2012)
accurate and realistic. With usual models, the
assumptions or parameter estimates may change
and it is then necessary to reconsider the conse-
quences of the model output with, say a 45.2 per
cent rather than a 58.1 per cent change in weed
abundance or coastal habitat. If the output is in
broad categories then, as the responses are to the
state they remain the same. Thus, they may be a
suite of consequences related to high levels of loss
of intertidal habitat and this change then says
that it is more likely that these will be realized.

— Another advantage is that these models may be
more transparent in that they largely consist of
the probability of moving between states. This
is probably easier to understand, communicate
and question than a full mechanistic model. If
the processes influencing rates of transition are
understood, even only qualitatively, the effects of
changing different management options can be
explored. Taylor & Hastings [17], for example,
were able to do this to model how different
management strategies would influence rates of
transitions between density states.

— Data collection can be very much more straight-
forward for such models. In the case of arable
weeds, Queenborough et al. [65], for example, show
that this method can be used to characterize farm
scale weed distributions accurately and repeatedly,
whereas to do this using conventional detailed demo-
graphic counting would be prohibitively labour
intensive or time consuming.

— Such models are not an approximation or second rate
alternative. For example, Freckleton et al. [66] show
that it is possible to take a continuous, fully stochastic
population model and convert it to a density-
structured model without loss of accuracy (as in
figure 2). Indeed, it is also possible to go the other
way and convert models for discrete data into
continuous parameters [66]. The assumptions under-
lying these models are no more restrictive than those
made for other state-structured models in ecology
(e.g. age and stage-structured models; [64]).

— State-structured models are numerically stable
and require no assumptions about the underlying
functional forms of many processes. The density-
structured models explored in Freckleton et al.
[66] yield a stable density-state distribution,
and can accommodate a wide range of forms
of density-dependence. In these models, the form of
density-dependence is determined empirically
rather than assumed.

As with any method, there will obviously be limitations
to using such approaches. The key issue is that in state-
structured models, the underlying processes are not
explicitly modelled. As noted above, this is advan-
tageous in that the form of some functions does not
have to be assumed, but is determined empirically.
However, the models lack explicit parameters driving
specific processes: instead the effects of new conditions
or management are included by modifying transitions
between states. However in some cases, the only
knowledge we have is qualitative, and more explicit
parametrization may not be possible. For example,
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we may know that one form of management may
increase the likelihood that a population will move
from a low density to a high one, whereas another
might have no impact. Even if we do not have a
mechanistic model, the effects of this increase can be
explored by simply modifying probabilities of growth
transitions in the model, and without having to
explicitly model the effect of management at the
individual or population level.
Phil. Trans. R. Soc. B (2012)
Although state-structured models are relatively
infrequently used in applied ecology, the theory for
such models, particularly stage-structured models,
which are closely related, is well developed and
used frequently [64,67]. Stage-structured models are
an approximation to population dynamics in which
individuals are grouped according to size categories,
and these are a long-established tool in population
modelling. Markovian state models are used in
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models of succession, for example, vegetation or in
marine rocky coast communities [68–70]; however,
these approaches could certainly be adapted for a
wider range of applications.
5. CONCLUDING REMARKS
The first two issues we have highlighted are important
elements in prediction, although they do not directly
concern models or predictive tools. The important
point is that ecologist’s predictions will not be influen-
tial unless they are tailored to address the issues that
are policy relevant. This requires ecologists to commu-
nicate with policy makers in order to indentify key
questions, as well as requiring policy makers to frame
questions in a form that are tractable. For example,
in the exercise reported in Sutherland et al. [7] over
1000 questions of possible policy relevance were
reduced to 100. Many of the initial 1000 questions
had already been answered, and throughout the pro-
cess there was a tension between generic and specific
questions. Policy makers often required generic
answers, whereas ecologists are often better equipped
to answer specific ones.

Although the Discussion Meeting has focused on
models as tools for predictions, and how better
models can be developed, it is worth noting that pre-
dictions can be made in a range of forms, and
generic predictions are useful and influential.
Although it is natural to think of predictions in terms
of quantitative models for specific systems or popu-
lations, it is possible to use very general models to
generate principles that can be used in informing
policy. A good example of this is metapopulation
theory, which became influential during the 1990s.
Although there are good examples of where fully par-
ametrized metapopulation models have been used to
guide conservation, such as the spotted owl in North
America [71], arguably the main impact of this
model has been in promoting the realization that
populations do not exist in isolation but are linked:
for instance, the need for linkage was a major com-
ponent of the Lawton review of biodiversity [41] and
the conclusions of that review were incorporated
in the UK government’s white paper on the environ-
ment. In this example, a general lesson or prediction
of theory has influenced policy recommendations,
but not through a specific modelling exercise.

Predictive ecology will only succeed in influencing
policy if its creators realize that there is a wider
social and economic context. Scientists who ignore
wider context are likely to have little impact. The
lesson from the debate surrounding GMHT crops is
that although the scientific case may be reasonably
straightforward, poor communication of the risks and
options can lead to the science being overwhelmed
by other agendas.

We have suggested that simple-structured models
may be useful tools in predictive modelling. In doing
so, we do not wish to imply that sophisticated
process-based simulations are not desirable or useful.
We believe, however, that simply formulated models
can be used to model otherwise extremely complex
systems. The examples we have given include a
Phil. Trans. R. Soc. B (2012)
landscape-scale model for an invasive grass, which
includes different management options and economic
consequences [17] and a geomorphological model
including management and mitigation options at a
regional scale [63]. It is worth noting that global
circulation models (GCMs), in many ways the ‘flag-
ships’ for predictive modelling, are usually reliant on
‘box models’. These are simplifications in which the
box is assumed to be an area in which all processes
are homogeneous. The analogy relevant to ecology is
that GCMs do not try to model every drop of rain,
or even every rainfall event, in order to make useful
predictions, so ecological models may not require the
fate of every individual in a population, or every
process operating, to be considered.
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