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Abstract
Functional magnetic resonance imaging (fMRI) has become a popular technique for studies of
human brain activity. Typically, fMRI is performed with >3-mm sampling, so that the imaging
data can be regarded as two-dimensional samples that average through the 1.5—4-mm thickness
of cerebral cortex. The increasing use of higher spatial resolutions, <1.5-mm sampling,
complicates the analysis of fMRI, as one must now consider activity variations within the depth of
the brain tissue. We present a set of surface-based methods to exploit the use of high-resolution
fMRI for depth analysis. These methods utilize white-matter segmentations coupled with
deformable-surface algorithms to create a smooth surface representation at the gray-white
interface and pial membrane. These surfaces provide vertex positions and normals for depth
calculations, enabling averaging schemes that can increase contrast-to-noise ratio, as well as
permitting the direct analysis of depth profiles of functional activity in the human brain.
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1 Introduction
The human brain is a complex structure that exhibits neural activity on multiple spatial
scales. The majority of human brain imaging research focuses on the laminated structure of
the cerebral cortex gray matter. Cortical gray matter has a stereotypical 6-layer laminar
structure that forms a sheet of tissue 1.5—4-mm thick upon the white matter [1;2;3]. The
spatial structure of neural activity within cortex can be inferred from its hemodynamic
correlates using functional magnetic resonance imaging (fMRI) with blood oxygen-level
dependent contrast [4]. High-resolution fMRI can also be used to probe other laminated
brain structures such as the superior colliculus and lateral geniculate nucleus [5;6].

At standard spatial sampling, e.g., 3-mm, activity within cortical gray matter is not resolved.
Moreover, these resolutions engender blurring of activity across sulcal boundaries. Because
the convoluted shape of the brain brings regions with highly disparate functions into close
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proximity within the sulci, this kind of blurring can greatly diminish spatial localization.
High resolution is also advantageous because it reduces contamination of cortical activity
with noisy and mislocalized activity produced in superficial vascular regions adjacent to
cortex. Thus high-resolution fMRI can enhance localization and signal quality for reasons
that go beyond the measure of smaller sampling intervals.

In MRI, thermal signal-to-noise ratio varies linearly with voxel volume, so that high-
resolution imaging must typically operate in a higher-noise regime for individual images.
For example, a typical single T2

*-weighted functional image with 3-mm sampling will
typically have a signal-to-noise ratio (SNR) ~ 250 on a 3T MRI scanner, while at 1-mm-
sampling the same image would yield an SNR < 10. Although there are a variety of methods
available to improve the SNR, some measure of appropriate spatial averaging is generally
essential.

To deal with these issues, our high-resolution methods generally seek to reconstruct the
sampled signals into a very high-resolution (0.6- or 0.7-mm sampling) co-aligned reference
anatomy that is segmented to precisely delineate the location of the active brain tissue (e.g.,
cortical gray matter). Analysis can then be restricted only to those spatial regions within
cortex where we expect the best localization and signal quality. A smooth surface is
constructed at the inner boundary of the gray matter, where it meets the white matter. The
normal vectors provided by this surface are then utilized in two ways: depth averaging to
improve the quality of high-resolution measurements of the surface topography of cortical
activity, and to resolve depth variations of activity within a particular portion of the brain.

The gray matter of cerebral cortex is anatomically divided into a series of laminae (layers)
with varying thicknesses. The overall thickness of gray matter varies across the surface of
the brain, being typically thicker on the gyri and thinner in the sulci [2;3]. One approach to
dealing with these thickness variations is to assume that the laminae of the gray matter scale
in proportion to its thickness, as suggested by functional measurements [3]. Thus, we want
to define a depth coordinate that is normalized to the local thickness of the gray matter.
More precisely, we need a smooth function, D(x,y,z), defined in the gray-matter volume
between an outer surface S1 (i.e., the pia) and an inner surface (i.e., the gray-white interface)
such that D(S1) = 0 and D(S2) = 1 and the isosurfaces are approximately parallel to the
physical laminar structure. Since isosurfaces of D smoothly interpolate their geometry from
S1 to S2 in a similar fashion to cortical laminar structure, this seems likely to more
accurately represent the variations in thickness within the gyri and sulci of the brain’s
convolutions.

A possible choice for D is a harmonic function that is obtained by numerically solving
Laplace’s equation, ∇2φ(x,y,z) = 0 with the above boundary conditions. However, the
magnitude of the gradient of a harmonic function varies with depth, especially in curved
areas. In fact, the harmonic function between two spherically symmetric isosurfaces goes
like 1/r. This means the isosurfaces of φ are artificially closer together near the inner
boundary of curvature. Though the harmonic function has been used successfully to
determine overall cortical thickness [7], it is not an appropriate depth coordinate.

Instead we want to produce a normalized gradient field, , that
defines streamline trajectories between the surfaces. We can then compute the distance
traveled along these trajectories as a measure of depth; this is a Lagrangian approach

We propose a novel method to compute D(x,y,z) starting from a function φ based on
interpolation of the signed distance function (SDF) calculated between the surfaces [8]. This
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method also provides estimates of tissue thickness values useful in the analysis of functional
activity observed in laminated brain structures.

We illustrate our method in two laminated tissues of the brain: superior colliculus (SC), a
small structure in the brainstem with critical functions in eye movements and orientation of
attention, and in early visual cortex, the part of cerebral cortex most immediately involved in
processing visual information.

2 Materials and methods
2.1 High-resolution structural imaging, segmentation, and surface generation

Imaging was performed on human subjects using a 3-Tesla scanner (General Electric Signa
Excite HD) using the product 8-channel head coil. Informed consent was obtained from all
subjects based on a protocol approved by the appropriate Institutional Review Board. They
were acquired using a three-dimensional (3D), inversion-prepared, radiofrequency-spoiled
GRASS (SPGR) sequence (minimum TE and TR, inversion time = 450 ms, 15° flip angle, 2
excitations, ~28-min duration). MRI parameters were chosen so that the structural reference
volumes were T1-weighted with excellent gray-white contrast. We used an isometric voxel
size of 0.6 or 0.7 mm so that the reference volumes would precisely delineate brain tissue
boundaries.

Because all structural image volumes were obtained using surface coil arrays, they exhibited
substantial spatial inhomogeneity on several scales. Therefore, volumes were preprocessed
using a custom-made software application written in MATLAB (MathWorks, Natick, MA).
An expert user scanned through the image volume, using a graphical user interface to
identify a number of points in the white matter near the gray-white interface on each slice.
Intensity values in white matter were then averaged in a 3 × 3 × 3 neighborhood around each
point, and these irregularly spaced samples were gridded onto a regular array. Points outside
the hull of sampled points were filled in using nearest-neighbor extrapolation. Estimates of
noise were also obtained at the sampled points, and this was combined with the interpolated
white-matter intensities to create a robust normalization mask that was applied to the brain
volume. We then utilized the Brain Extraction Tool (BET) provided in the FSL package [9]
to remove superficial non-brain tissue from the volume.

In SC, we segmented the tissue of the midbrain, brainstem, and portions of the thalamus
using a combination of automatic and manual methods provided by the ITK-SNAP
application [10]. Because the superficial surface of SC exhibits a strong contrast boundary
with the surrounding cerebrospinal fluid (CSF), this segmentation was straightforward.

On the other hand, segmentation of visual-cortex white matter was considerably more
difficult. We began by applying the FAST tool in FSL to provide an approximate
segmentation [9]. However, some regions exhibited residual inhomogeneity and/or low
gray-white contrast-to-noise ratio, and therefore were not accurately segmented. For these
regions extensive manual adjustment was necessary to achieve a satisfactory result.

The CSF-tissue interface of the SC and the gray-white interface (S2) in visual cortex were
interpolated from the corresponding segmentation using isodensity surface rendering.
Aliasing artifacts corrupted this initial surface. To obtain a smoother representation of the
surface and a more accurate calculation of its associated surface normal vectors, we used a
deformable-surface algorithm [11;12]. The deformable surface is based on a curvature-
driven geometric evolution during a numerical time t, which yields a family of smooth
closed immersed orientable surfaces, {M(t): t · 0} in ℜ3, according to the solution of the
geometric flow,
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(1)

with M0 = M(0) defining the initial surface. Here p(t) is a surface point on the M(t), Vn(k1,
k2, p) denotes the normal velocity of M(t) based on the principal curvatures, k1,2 of M(t), and
N(p) is the unit normal of M(t) at p(t).

We then obtained connected representations of the laminated tissue by applying a
constrained dilation algorithm [13]. This representation is useful for subsequent flattening
operations that permit 2D representations of the functional activity measured within the
laminated tissue [14]

Next, we constructed an isodensity surface at the opposing boundary of the laminated tissue.
In SC, this surface is the inner boundary of the collicular tissue, while in cortex this surface
corresponds to the pial membrane. The new surface, S2, has topological inconsistencies, so a
combination of manual and automatic curetting techniques provided by the MeshLab
software package [15] were used to make this surface topologically simple (e.g., unity Euler
number). We then proceeded with the deformable surface algorithm stated above to remove
aliasing artifacts from the adjusted surface by mesh smoothing library of VolumeRover
(available for free download at
http://cvcweb.ices.utexas.edu/ccv/projects/project.php?proID=9).

We created two additional artificial surfaces by dilating each surface beyond S1 and eroding
it beyond S2. The innermost surface is then denoted S2+ and the outermost surface is denoted
S1+. These allow us to define depth outside of the laminar tissue, which can be useful to
analyze vascular responses in the adjacent tissues.

To remove aliasing artifacts in SC, satisfactory results required three iterations of the
deformable surface algorithm; cortex required six iterations. We evaluated the accuracy of
the refined surfaces by calculating nearest-neighbor distances between their vertices and the
vertices of the original surfaces; mean distances were typically <0.3 voxel units, and rarely
>0.7 voxels (Fig. 1). These surfaces provided a means to visualize the functional data, as
well as vertices and normal vectors used as a reference for the laminar calculations
described below. We also approximated the Gaussian curvature of the surface at each vertex
as:

(2)

where R is the signed distance between each vertex and the best-fit plane containing its
connected neighbors, and A is the area of all the triangles featuring that vertex. We used this
metric as an intensity overlay on our surfaces: positive curvature marking protruding
features (e.g., cortical gyri) appear at a light intensity, while negative curvature marking
intrusive features (e.g., cortical sulci) appear as a dark intensity. This binary curvature
overlay improves the 3D perception of the surface, and also provides a useful indicator of
aliasing artifacts.

2.2 Depth calculation
These calculations make use of the signed-distance function [8] computed upon the gray-
matter voxels separately with respect to both the outer and inner surfaces (S1 and S2,
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respectively). First, we compute the SDF from S1, with positive values increasing into the
gray matter. Next, we compute the SDF from S2, with negative values into the gray matter.
Both of these functions have a value of zero on their corresponding surface mesh.

We define the interpolated distance function:

(3)

where w is on the domain [0, 1], d1 is the SDF from S1 and d2 is the SDF from S2. I is a
weighted sum of signed distance functions from each boundary surface. Thus, variation of w
defines a set of surfaces that smoothly transition from S1 to S2.

Letting I(φIDF,x, y, z) = 0, we can define the pseudopotential

(4)

which can then be used to define intermediate surfaces in the tissue as isosurfaces of φIDF.
This pseudopotential is already a normalized map and may approximate D. The spacing of
these surfaces is not preferentially determined by any other properties except the definition
of the SDF and the shape of the boundary surfaces.

φIDF can become very large if the denominator in (4) becomes small due to segmentation
imperfections. This can be an issue when attempting to find the isosurfaces of φIDF. To
avoid this, we set w to a sequence of values between 0 and 1 in (3). For example, let wi = {0,
1/N, …, (N−1)/N, 1}, where N−1 is the number of intermediate surfaces with each
represented by

(5)

We then compute the distance trajectory between two adjacent intermediate surfaces Mi,

Mi+1 as follows. For each point  where j indicates the jth point of surface Mi, j ∈ {1,
…, L}, and L is the total number of points on the surface. We compute the corresponding

point  by solving the following evolution equation

(6)

where  [16]. The stopping criteria are , or the iteration
number exceeds some predefined threshold value. Then the depth for point pj in S1 to the
intermediate point p′ is
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(7)

We also impose a degree of smoothness on I by first fitting cubic B-splines to I. This
reduces some of the numerical errors in the calculation of the gradient of I. The
corresponding layers of tissue between the surfaces will more accurately follow the
thickness variations in laminated tissue than layers obtained by morphological approaches
such as dilation because we avoid discretization error.

In the limit of an infinite number of surfaces, the depth trajectory is smooth and we get a
precise definition of tissue depth based on the total Euclidian distance traveled by a point on
the curve moving from one boundary surface along the pseudopotential. In practice, we
make as many surfaces as are necessary for our desired precision, which is typically half the
spatial sampling interval of the anatomical data. In our examples, 16 surfaces were
satisfactory. We then interpolate the discrete depth values Dj,k onto the grid points. Thus, we
define depth as the distance traversed by a trajectory curve from one surface to another that
is continuously normal to any intermediate surface (Fig. 2). The tissue thickness is then
approximated by the sum of the lengths of the line segments in the piecewise trajectory.

The algorithms used in this paper were written in C++ using VolumeRover libraries
developed in CVC at The University of Texas at Austin. It will subsequently be ported to
VolumeRover for public use.

2.3 Functional MRI
We illustrate our methods with functional image sets obtained in two brain regions: SC and
early visual cortex. In SC, we again used the product head coil array to obtain time series of
images on eight 1.2-mm-thick quasi-axial slices (170-mm field-of-view [FOV]) with the
prescription oriented roughly perpendicular to the local neuraxis. In visual cortex, we used a
custom-made 7-channel surface coil array packaged in a flexible former so that it could be
closely positioned against the subject’s head. This array produces images with an SNR
advantage of 2—4 over the product coil, depending upon depth. By choosing a tangential,
quasi-coronal orientation at the back of the head, we could limit our FOV to 90—100 mm.
Use of the surface coil and smaller FOV enabled imaging with 0.7 or 0.8-mm sampling. We
obtained 8—12 such slices oriented approximately perpendicular to the calcarine sulcus

The SC experiments used travelling-wave techniques to map its retinotopic coordinate
representation of the visual field. Stimulus was a 90° wedge of moving dots that rotated
slowly (24-s period) around a fixation mark (Fig. 3A). The entire stimulus rotated 9.5 times
around fixation with a period of 24 seconds while subjects maintained fixation. Many MRI
runs (14—18) were obtained using this stimulus presentation in each 2-hour-long scanning
session.

The visual cortex experiments used a stimulus designed to activate substantial portions of
posterior early visual cortex. Subjects viewed a high-contrast grating within an annular mask
(Fig. 3B) that alternated (18-s period) in position from small eccentricity (0.5—1.25°) to
larger eccentricity (1.5—2.5°). This alternation was repeated 10.5 times to create ~3-min
duration runs. Typically 8—12 runs were collected for each scanning session.

Functional images were acquired during the stimulus presentations using the following
imaging parameters. A 6.4-ms windowed-sinc pulse was used to provide sharp slice-select
resolution. We used a three-shot outward-spiral acquisition [17;18] for all imaging. In SC,
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echo time was 40 ms, while in cortex we used 30 ms because we measured a
correspondingly longer T2

* in SC tissue (~60 ms) than typically observed in cortical gray
matter (~45 ms). Acquisition bandwidth was limited to 60 kHz to reduce peak gradient
current that causes unwanted heating on our scanner. We chose TR = 1 s, so that a volume
was acquired every 3 s.

The multiple shots were combined together after correction by subtracting the initial value
and linear trend of the phase. Image reconstruction was done by gridding with a Kaiser-
Bessel kernel using 2:1 oversampling. TE was incremented by 2-ms on the first frame to
estimate a field map from the first two volumes acquired, and this map was used for linear
correction of off-resonance image artifacts [19]. Concomitant field effects arising during the
readout gradients were corrected with a time varying phase [17]. Reconstructed images had
a SNR of ~20 in both experiments.

In all imaging experiments, a set of T1-weighted structural images was obtained on the same
prescription as the functional data at the end of the session using a 3D SPGR sequence (15°
flip angle, 0.7-mm pixels). These images were used to align the functional data to the
segmented structural reference volume.

We estimated in-scan motion using a robust scheme [20] applied to a boxcar-smoothed (3—
5 temporal frames) version of the fMRI time-series data. Between-scan motion was
corrected using the same intensity-based scheme, this time applied to the temporal average
intensity of the entire scan. The first scan of the session was used as the reference. After
motion correction, the many runs recorded during each session were averaged together to
improve SNR.

The intensity of the averaged data was spatially normalized to reduce the effects of coil
inhomogeneity. The normalization used a homomorphic method, that is, dividing by a low-
pass filtered version of the temporally averaged volume image intensities with an additive
robust correction for estimated noise. A sinusoid at the stimulus repetition frequency was
then fit to the normalized time series at each voxel, and from this fit we derived volume
maps of response amplitude, coherence, and phase. The coherence value is equivalent to the
correlation coefficient of the time-series data with its best-fit sinusoid. Functional data were
then aligned and resampled to the reference volume [20].

2.4 Laminar analysis
A distance map was calculated for tissue voxels using the methods described previously. We
used these distances to measure laminar position (i.e., depth, s) in the reference volume.
Thus, the functional data (e.g., complex amplitudes) at each volume voxel were now
associated with a depth coordinate.

These associations were used to calculate laminar profiles of functional activity within small
disk-shaped regions (1.6—2.4-mm-diam) regions across the surface of the activated portion
of the brain. Within these regions, we obtained the complex amplitude as a function of depth
for all runs averaged together [3]. A boxcar-smoothing kernel was convolved with the
average complex amplitude data as a function of depth; the magnitude of this convolution
was the laminar profile.

For each profile, we define the functional thickness, sf, from spatial moments of the laminar
amplitude profilers, A(s):
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(8)

(9)

(10)

where smin and smax are the boundaries of the laminar segmentation. Typically, we chose an
interval of [−2, 5] mm. Note that the subtraction of the depth centroid, s ̄, makes sf less
sensitive to alignment errors. Thus, we associate the functional thickness with every vertex
on the surface, enabling the display of functional thickness as a colormap overlay on the
rendered surface.

For the SC data, we also used the laminar segmentation process to enable depth averaging
that improves the quality of data. For each point on the surface, the associated disk-shaped
segmentation was used to average the functional time-series data over a particular depth
range. Sinusoids were then fit to the depth-averaged time series data to obtain complex
amplitudes and coherence values, as described above. As part of our mapping process, we
generally extracted the phase values from the mean complex amplitudes, and displayed these
at the corresponding vertex of the surface.

3 Results
3.1 High-resolution structural imaging, segmentation, and surface generation

We present two examples of the high-resolution MRI data. In SC, the images clearly
delineate the strong contrast boundary at its superficial dorsal surface. The segmentation,
which includes nearby portions of midbrain, thalamus, and brainstem, is shown by a blue
overlay (Fig. 4A). The boundary of this segmentation was rendered as a surface, upon which
a binary curvature map is overlaid, with a light shade indicating positive curvature and a
dark shade negative curvature. The fine-scale structure evident in the curvature overlay is
caused by aliasing artifacts in the initial surface (Fig. 4B). After application of the
deformable surface algorithm [12], the curvature artifacts largely disappear, leaving only the
actual gross features of the anatomy (Fig. 4C).

For visual cortex, we segment the entirety of the cerebral hemispheres, but pay particular
attention to manual adjustment of the initial segmentation in the occipital lobe (Fig. 5A).
The initial isodensity surface once again shows extensive aliasing artifacts, visible as a fine
stipple in the curvature overlay (Fig. 5B), that are again greatly reduced by application of the
deformable surface algorithm [12] (Fig. 5C). Similar results are obtained for the pial surface
representation that is constructed upon the gray-matter segmentation (Figs. 5D—E). Note
the dearth of negative (inward) curvature upon the superficial aspects of this surface; regions
of negative curvature are hidden in the tight folds of the sulci.
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3.2 Depth calculation
We calculated depth in the laminated tissues of the colliculi and the occipital lobe of
cerebral cortex (Fig. 6A, B). In the occipital lobe, the depth map is complex because of the
intricate folding of the sulci. Cortical thickness, the maximum value of the depth coordinate
evident along the pial surface, varies over the anatomically reasonable range of 1.5—4.5
mm. The variations in depth occur smoothly and generally appear to be anatomically
reasonable.

3.3 Functional MRI
For the SC visual field-mapping experiments, we are principally interested in the phase of
the sinusoidal fits, because it measures the polar-angle position of the corresponding visual
stimulus. Typical data from one slice of the acquired fMRI data, thresholded at a coherence
of 0.3, is shown as a color overlay upon its corresponding MR anatomy image (Fig. 7). The
color wheel shows how the phase angle is related to visual field angle. Note the phase
progression across the superficial surface of the SC, as well as in posterior visual cortex. The
corresponding time-series data is then transformed into the reference volume for that
subject, so that it can be depth averaged, fit with a sinusoid, and the phase of the fit is then
mapped onto the associated surface representations.

3.4 Laminar analysis
The SC data was analyzed in two ways. First we performed the disk-like segmentation
described above, averaged the complex amplitudes through a depth range of 0—1.8 mm,
and then extracted the phase. This procedures produces high-quality visual field maps (Fig.
8A), despite fairly low response magnitudes (~0.3% modulation with respect to the mean
intensities). Phase maps prepared without the laminar segmentation and depth averaging are
much noisier, as can be quantified by calculating session-to-session correlations. We also
used our depth-mapping techniques to form laminar profiles of the SC activity in three
regions-of-interest (ROIs) that span the surface of the SC from lateral to medial (Fig. 8B).
These profiles show that activity is evident principally in the superficial 2 mm of the SC
tissue, which is known to correspond a preponderance of visually responsive neurons. The
data also show significantly thinner profiles for the medial ROI than for the lateral and
central ROIs, which is consistent with the known anatomy of human SC.

The visual cortex data was analyzed to calculate the functional thickness metric, which was
visualized as a color overlay upon surface renderings of the posterior portions of the left
hemisphere of a brain (Fig. 9A). This data can then be compared to structural measurements
of the actual gray-matter thickness visualized in the same fashion (Fig. 9B). The functional
and structural thickness data are strongly and significantly correlated. Both show the
characteristic pattern of gray matter thickness: thicker on crowns of the gyri and thinner in
depths of the sulci.

4 Discussion
We have presented a set of surface-based methods for the analysis of high-resolution fMRI
data. The analysis requires the acquisition of a high-resolution structural volume that is
segmented to obtain a relevant tissue interface. This interface, in turn, is used for the
generation of a set of smooth surfaces that provides a geometric reference, in the form of
vertices and surface normals. We utilize an interpolated SDF calculation to measure depth
within the tissue. We make use of this anatomical geometry by transforming fMRI time-
series data into the reference volume. Specifically, we can construct depth profiles of the
functional activity, or average the data along the surface to improve signal quality and
enhance our visualization capabilities.
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The use of surface representations to analyze and visualize brain tissue has a long history.
Most methods have focused on structural analysis. For example, it has become common to
measure cortical thickness from MR image volumes, e.g., [21]. This data is frequently used
to assess pathological changes, e.g., [22;23;24]. These approaches typically utilized 1-mm
voxel sampling, so that the local precision of the depth estimates was not particularly
important; relevant results were obtained from group data. Surface-based approaches have
also been developed for application to fMRI data, e.g., [25;26;27;28;29]. However, these
methods generally assume that the functional data is only coarsely resolved, and therefore
make no effort to resolve variations in the depth of the tissue.

There have been several methods developed to measure depth in brain tissue, usually in
cortex. In [7], φ is defined to be a harmonic function that satisfies Laplace’s equation.
However, they used numerical methods to find φ that require gridded data. Therefore, the
boundary surface location had to be rounded to grid points, which introduces error. In
another approach [30], mesh-to-boundary voxel distances were included in the thickness
calculation, but they used an Eulerian PDE method that does not produce the explicit
trajectories necessary to produce a depth map. (Boundary voxels are those grid points in the
volume located closest to a surface.) In [31], a nonconservative gradient vector field is
computed directly from the volume image intensity data or from the boundaries alone,
which was then used to find trajectories. However, the nonconservative nature of the fields
means that there is no set of isosurfaces for which it is continuously orthogonal.

These procedures can essentially be viewed as a solution to a classic digital reconstruction
problem: converting data sampled in one coordinate system to another. Specifically, here we
take regularly sampled MRI data, and resample them into the natural coordinates of the
segmented brain-tissue boundary. This procedure is particularly useful for fMRI data, which
can be subject to artifacts and mislocalization associated with superficial vascular artifacts
[3;32]. The surface based methods become particularly attractive at high spatial resolution,
where the Cartesian-space sampled data begin to resolve brain function in 3D, including
both the transverse extent along the brain surface as well as in its laminated depth.
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Figure 1.
Vertex position errors introduced by the mesh refinement procedure.
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Figure 2.
Typical trajectories between two boundary surfaces in a section of human brainstem
including superior colliculus.
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Figure 3.
Visual stimulus configurations: A) rotating wedge of moving dots to map polar angle visual-
field variation in SC; B) alternating annuli to stimulate portions of early visual cortex.
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Figure 4.
Human brainstem including superior colliculi: A) segmentation, including adjacent
midbrain, thalamus, and brainstem structures; B) initial surface; C) refined surface.
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Figure 5.
Segmentation and surface rendering of human cerebral cortex: A) high-resolution MRI
anatomy with overlay of white-matter segmentation (blue); B) initial gray-white surface; C)
refined gray-white surface; D) segmentation including gray matter (green); E) initial pial
surface; E) refined pial surface.
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Figure 6.
Depth maps of human cerebral cortex: A) sagittal slice of depth map in brainstem; B)
coronal slice of depth map within cortical gray matter; C) enlargement of cortex showing
features within a deep sulcus.
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Figure 7.
Functional MRI phase data as color overlay on inplane structural MRI (left) and transformed
into reference volume (right). Color wheel shows relationship to visual field angle.
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Figure 8.
Analyzed data from human SC: A) Visual field maps on the surface of the SC, with quality
enhanced by depth averaging. Boundaries of SC are indicated by the black outline. B)
Profiles of SC activity as a function of depth within the tissue for three ROIs (lateral: solid,
central: long dashes, medial: short dashes). Inset shows the locations of the depth-profile
ROIs: lateral, central and medial (left to right).
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Figure 9.
Data from human visual cortex: A) functional thickness; B) structural thickness.
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