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Abstract
Continuum modeling of electrostatic interactions based upon the numerical solutions of the
Poisson-Boltzmann equation has been widely adopted in biomolecular applications. To extend
their applications to molecular dynamics and energy minimization, robust and efficient
methodologies to compute solvation forces must be developed. In this study, we have first
reviewed the theory for the computation of dielectric boundary forces based on the definition of
the Maxwell stress tensor. This is followed by a new formulation of the dielectric boundary force
suitable for the finite-difference Poisson-Boltzmann methods. We have validated the new
formulation with idealized analytical systems and realistic molecular systems.

I. Introduction
Solvation interaction is one of the essential determinants of the structure and function of
proteins and nucleic acids [1-5]. It has been shown that continuum electrostatics represents
an effective and physically sound approach to account for a number of phenomena involving
solvent electrostatic effects on the function of biological macromolecules [6-9]. Due to the
availability of high performance computing resources, continuum modeling of electrostatic
interactions, which is based upon the numerical solutions of the Poisson-Boltzmann
equation (PBE), has been widely adopted in biomolecular applications [3-5,9-11]. Among
the numerical solution methods for PBE, finite difference methods (FDM) [12-17], finite
element methods (FEM) [18-21], and boundary element methods (BEM) [22-28] are mostly
used.

A disadvantage of the numerical PBE methods is that it is conceptually difficult to
incorporate them into molecular mechanics algorithms, mainly because of the problem of
assigning solvation forces [19,29-34]. Along with other limitations, the numerical PBE
methods are mostly used for static conformations of biomolecules in practical applications.
To extend the application of these methods to molecular dynamics and energy minimization,
robust and efficient methodologies to compute solvation forces must be developed. It has
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been shown that solvation forces can be divided into two components: reaction field forces
and dielectric boundary forces [19,29-34]. Reaction field forces are straightforward to
compute, but accurate computation of dielectric boundary forces (DBF) is a challenge. To
date, it is still impossible to achieve energy-conserved molecular dynamics simulations
when the numerical PBE methods are used, especially at realistic spatial discretization
resolution of 0.25 to 0.50 Å.

Many efforts have been invested to calculate the DBF [29-32,34]. The “virtual work”
method is, in a sense, the most definitive [29]. In the “virtual work” method the electrostatic
energy G is recalculated for small displacements d of each atom in the x, y, and z directions,
respectively. The numerical force is then −ΔG / d for each direction. The limitation of this
approach, however, is that at least four full numerical calculations are required in order to
calculate each force vector. Apparently, this is only realistic for molecules treated as rigid
bodies. In addition, the numerical forces, defined as the negative finite-difference
derivatives, are very difficult to converge when the electrostatic energies are computed
numerically due to the cancellation of significant digits in the subtraction of two large
numbers.

Davis and McCammon proposed a DBF formulation by examining the integration of the
Maxwell stress tensor for the classical two-dielectric model. The DBF surface density was
shown as [29]

(1)

where εo and εi are the dielectric constants of the solvent and the solute, respectively, and Eo
and Ei are the electric field evaluated on the solvent and solute sides of the molecular
surface, respectively. Note that use of eqn (1) is difficult for the FDM solutions because the
grid potentials close to the solute/solvent dielectric interface are the least accurate. In
addition, it requires a numerical surface integration that can be very expensive within the
FDM. Recently Che et al. revisited the DBF calculation through a variational strategy in the
classical two-dielectric model [34]. Given the assumption that the normal surface field
contributes predominantly to DBF, they showed that the DBF surface density can be
formulated as

(2)

where ε∇φ represents the continuous normal dielectric displacement vector on the solute/
solvent dielectric interface.

The BEM is another promising approach to incorporate the continuum electrostatics into
molecular mechanics simulations [35]. The DBF calculation in the BEM using a polarization
charge method was first described by Zauhar [30], who showed that the DBF surface density
can be calculated as

(3)

where σ is the surface polarization charge density. This expression was derived from eqn
(1). Use of the surface polarization charge density is straightforward in certain types of BEM
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where the Poisson's equation can be solved through the iteration of the surface polarization
charge density. Cortis et al. also tried to compute the DBF via the Maxwell stress tensor for
their FEM leading to the same formulation as that of Zauhar [19].

Gilson et al. presented a variational approach for the DBF [31], and it was further tailored
into a numerical algorithm for the FDM. Their expression for the DBF volume density can
be expressed as

(4)

where ε is the dielectric constant and E is the electric field. Note that the direction of the
DBF in eqn (4) is consistent with that in eqn (1) and its equivalent formulations because the
gradient of dielectric transition is in the normal direction of the dielectric interface. Im et al.
proposed a method equivalent to eqn (4) as [32]

(5)

where ϕ is the total electrostatic potential, r represents the atomic coordinates. Apparently
both eqn (4) and (5) require smoothly varying dielectric constants for stable numerical
performance [33]. This excludes the classical two-dielectric model where ∇ε is infinite on
the dielectric interface. Even if the harmonic average is used, direct numerical calculation of
∇ε is still unstable in molecular dynamics. This leads to large and unstable DBF that often
does not satisfy the “virtual work” principle. Numerical approximation of ∇ε may alleviate
the problem, but instability cannot be completely eliminated in molecular dynamics
simulations [31,36].

Even with these pioneer developmental efforts, the DBF calculation remains to be a
bottleneck that limits the wide application of numerical PBE methods in molecular
simulations. Nevertheless, these prior efforts have laid down the foundation for us to
develop more accurate and robust methods. In this study, we intend to resolve the challenge
within the FDM and classical two-dielectric framework, which, in recent comparative
analyses of PB-based solvent models and the explicit solvent models, can reasonably
reproduce the solvation electrostatic potential, energies, and forces simulated in the explicit
solvents for a wide variety of biomolecules [37-41]. However, the proposed method can also
be applied to other types of dielectric models with smoothly varying dielectric constants
[32,33,42]. In the following we first review the theory for the DBF calculation based on the
Maxwell stress tensor. This is followed by the development of a new algorithm particularly
designed for the FDM solutions. The performance of the new algorithm is then analyzed in
detail and is compared with the analytical method and the virtual work principle [29,31].

II. Methods
A. Theory

It is well known that the electrostatic force volume density (g) can be derived from the
divergence of the Maxwell stress tensor (P) as [43]

(6)
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where ρf is the fixed charge density, E is the electric field, ε is the dielectric constant, and
ΔΠ is the excess osmotic pressure [44], λ is the Stern layer defined so that it is 1 in the
regions accessible to the mobile ions and 0 elsewhere. This is consistent with the
formulation of Gilson et al. [31] derived from the variation of the total electrostatic free
energy. Here the second term of eqn (6) is responsible for the DBF

(7)

To remove the potential numerical instability in ∇ε and develop a new formulation that is
more suitable for the FDM, we utilize a revised PBE. In the vicinity of the dielectric
boundary ρf = 0, we have

(8)

Differentiation by parts of the left hand side of eqn (8) gives

(9)

The second term of eqn (9) can be rewritten as

(10)

where Ec is the Coulomb field and ERF is the reaction field. Since ∇·Ec = 4πρf = 0 in the
vicinity of the dielectric boundary, eqn (10) can be simplified as

(11)

where  is the polarization charge density on the dielectric boundary. With eqn
(9) and (11), ∇ε·E can be written as

(12)

To utilize the above conclusion to eqn (7), we first transform eqn (7) via a dot-product by E
on both sides

(13)

Since the direction of gDBF follows the gradient of the dielectric constant, i.e. the normal
direction of the surface (n ̂), the left hand side of eqn (13) can be further transformed as

(14)

where En is the normal component of the surface field. Therefore
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(15)

Thus gDBF can finally be written as

(16)

An equivalent form of eqn (16) is, by noting that D = εE and Dn = εEn,

(17)

B. Numerical algorithm
Because of the large jump in the dielectric constant between the solute and the solvent
(typically, in water the dielectric constant is about 80, and in molecules it is set to be 1 - 4),
the tangential components of the electric field are trivial and eqn (16)/(17) can be replaced
by

(18)

Eqn (18) also rules out the possibility of the large numerical error induced by a small
electrical displacement. Use of eqn (18) requires the electric field or the electric
displacement at the grid points, but in the FDM, they are defined on the grid edge centers,
equal to the finite difference derivative of the potential of neighboring grid points. There are
different ways of interpolating the electric field or the electric displacement. In the contact
region of the surface, we used the one-sided least-square interpolation method to interpolate
the electric field [45]. In the reentrant region, due to the indefinite variation trend of the
electric field between adjacent grid points, especially at coarser grid spacings, we used the
weighted summation of the electrical displacement at nearby intersection points of the
molecular surface and the grid edges.

In the FDM, the surface polarization charges can be regarded as being located at the
dielectric boundary grid points [46]. They are computed using the Gauss's law and the grid
potential obtained from the FDM. It will be shown below that the grid-based polarization
charges are very good numerical representations of the dielectric interface polarization
charges and converge very well. Their errors are particularly small when typical grid
spacings, i.e. 0.25 ~ 0.50 Å, are used. Given this numerical representation of the polarization
charges and eqn (18), the total DBF in the solution system, GDBF , can be computed
numerically as

(19)

where nbnd is the number of the solute/solvent dielectric boundary grid points where the
polarization charges are located. Of course the polarization charges are zero on all other grid
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points where there is no dielectric variation. , Dn,i, En,i, and n ̂i are, respectively, the
polarization charge, normal electric displacement, normal surface field, and surface normal
unit vector at dielectric boundary grid point i.

C. Computational details
The PBE methods require the surface definition that seperates the solute in atomic details
from the continuum solvent. In the solvent excluded surface definition, the surface is defined
as the union of atomic spheres and probe spheres. The accuracy of the finite-difference
Poisson-Boltzmann method at a certain finite difference grid spacing can be improved by
increasing the number of probe centers, and the probes that are in concurrent contact with
three atoms and are responsible for the spherical triangles in the reentrant region are of
particular importance to achieving high accuracy in surface areas, electrostatic energies, and
forces. We always guarantee the inclusion of the probes in contact with three atoms no
matter what density of the probes is. In the case of probes in contact with more than three
atoms, the associtated reentrant region is divided into multiple spherical triangles, each of
which is dealt with its own probe.

The numerical force elements need to be assigned to atoms. If the force element is exerted
on the contact region of the surface, it can be directly assigned to the atom which the contact
region belongs to. If the force element is exerted on the reentrant region of the surface, we
can apply the singular value decomposition (SVD) method to assign the force to the atoms
that form the reentrant region. When the probe contacts two atoms, the SVD method is
equivalent to the method introduced by Gilson et al. [31], i.e., the force component that is in
the plane defined by the centers of the probe and the two atoms is retained and distributed to
the two atoms according to the parallelogram law, while the force component that is out of
the plane is left out. When the probe contacts three atoms, the force element is distributed to
the three atoms by solving a complete linear system.

An issue important for stable dynamics simulations is the numerical uncertainty of solvation
forces when the finite-difference grid is randomly positioned. Sensitivity of grid positions
with respect to the solute molecule has been a particularly annoying limitation in current
numerical FDM solutions. If not specified otherwise, a total of 96 randomized rotations and
translations were used to reduce the numerical uncertainty.

The dielectric constant outside was set as 80.0, and the dielectric constant inside was set as
1.0. The probe radius was 1.4 Å. The grid spacing was chosen from 1/2 Å to 1/16 Å. The
finite-difference convergence criterion was set to be 10-9. The PBE was solved with the
charge singularity removed [47]. All molecular structures were first processed with Leap in
AMBER 10 [48] and the modified Bondi radii were used except the radii of all hydrogen
atoms were changed to 1.0 Å. No electrostatic focusing was used. Other parameters were set
to be default as in the PBSA program [17,49,50] of AMBER 10.

In the test section, we will compare the new formulation with the virtual work principle.
Both methods were used to compute the force on a base of a base pair. The virtual work
force was calculated in the following way. First, the total electrostatic energy was computed
by the numerical reaction field energy at given grid spacings plus the analytical Coulomb
energy in small distance increments between the two bases. Next the discrete electrostatic
energy was processed with spline curve fitting. The electrostatic force on one of the two
bases was obtained by taking the first derivative of the smoothed electrostatic energy with
respect to the distance between the two bases. Then the van der Waals force was computed
using the 6-12 Lennard Jones fomula. Finally the nonbonded virtual work force was the
summation of the electrostatic forces and the van der Waals forces.
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III. Results and discussion
A. Model systems

We first used a well-studied testing system, a single dielectric sphere imbedded with point
charges, to study the validity of the new formulation. The radius of the sphere is 2.0 Å,
about the size of a united carbon atom, centered at (0, 0, 0). Three typical situations are
considered: (a) charged system with a unit positive charge positioned at (0.5, 0, 0); (b)
dipolar system with two unit charges located at (-0.5, 0, 0) and (0.5, 0, 0), respectively. (c)
quadrupolar system with four unit charges located at (-0.5, 0.5, 0), (-0.5, -0.5, 0), (0.5, -0.5,
0) and (0.5, 0.5, 0).

It is clear that in all three test cases the DBF distributions converge to the analytical values
as the grid spacing is reduced from 1/2 Å to 1/16 Å. Note too that the DBF distributions
deviate noticeably from the analytical values at the coarsest grid spacing of 1/2 Å, and the
deviation is reduced as the grid spacing is reduced. More quantitatively the average standard
deviations and average root-mean-squared (RMS) deviations (between the mean and the
analytical forces) of the DBF decrease with a factor of 2 – 4, as the grid spacing is reduced
by half (Table 1).

B. Molecular systems
Atomic polarization charges—We used two salt-bridging amino acid side chain pairs
RD and KD to analyze the convergence of the atomic polarization charges. This is an
important issue in our “charge-based” approach. The average deviations (versus the values
at 1/16 Å) in Table 2 indicate that the mean polarization charge on each atom converges
with reducing grid spacings. It is interesting to note that the mean polarization charge is
already quite accurate at the grid spacing of 1/2 Å. Average standard deviations of the
atomic polarization charges are also analyzed and shown in Table 2.

Convergence of Atomic dielectric boundary forces—We selected additional
hydrogen-bonding base pairs (GC and AT), together with the two salt-bridging amino acid
side chain pairs (RD and KD), to test the new DBF formulation. Figure 1 plots the
correlations between the atomic DBF at relatively coarse grids (1/2 Å, 1/4 Å, 1/8 Å) and
those at 1/16 Å for the four pairs. The relative errors in atomic dielectric boundary forces are
a few percentages at 1/2 Å, except the forces on several hydrogen atoms, which are as high
as 10% mainly because of the small radius of the atom, 1 Å, and the low ratio of 2 between
the radius and grid spacing. At the grid spacings of 1/4 Å and 1/8 Å, the atomic DBFs are
quite consistent with the forces at 1/16 Å, suggesting a rapid convergence of the DBFs
computed by the new formulation.

Comparison with the virtual work principle—Next we used the GC dimer test case to
assess the agreement between the new method and the virtual work principle in reproducing
the total nonbonded force between the two bases. Figure 2 plots the total nonbonded force
on base G versus the base pair distance (the distance between N-1 of guanine and N-3 of
cytosine). The forces by the new formulation were computed at 1/4 Å and 1/16 Å,
respectively. Clearly, there is an overall high level of agreement between the new method
and the virtual work principle, and the figure also shows the rapid convergence of the new
formulation because the results change very little when the grid spacing is changed from 1/4
Å to 1/16 Å.

Singularity removal in field interpolation—Finally, we would like to highlight the
importance of the charge singularity removal with a test on the salt-bridging side-chain pairs
(RD and KD). Table 3 shows that the standard deviations of the computed forces are smaller
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with singularity removal than those without singularity removal, indicating a more stable
algorithm performance. In addition, RMS deviations and correlation coefficients (CC) of the
forces at coarser grid spacings with respect to the forces computed at the grid spacing of
1/16 Å clearly converge faster with singularity removal than those without singularity
removal.

C. Limitations of the new formulation and future directions
As we have discussed in the methods, there is no need to worry about the infinite derivative
of the dielectric constant in the new formulation that utilizes the dielectric boundary charges.
The test results have demonstrated high level of agreement between the new formulation and
the analytical method as well as the virtual work principle. However, use of the surface
charges has a disadvantage, that is, its scaling, in the order of O(Natom × Nbnd), is clearly
worse than O(N2

atom) because there are always far more dielectric boundary grid points than
atoms. Fortunately, the pairwise interaction between the atoms and boundary grid points
only needs to be computed once for both the reaction field force and the DBF. Nevertheless,
the total cost of the numerical forces can exceed that of the numerical FDM solution in
dynamics simulations if a well-optimized solver is used. This shows that better-scaled
methods are still needed.

Another difficulty in the DBF calculation comes from the geometric complexity of the
widely used molecular surface definition: i.e. there are two types of surface, contact surface
from the van der Waals hard sphere surface and reentrant surface from the solvent probe.
There are two consequences resulted from the complexity. The first consequence is its
unsmooth nature, i.e. the surface curvature is not always continuous. Indeed, discontinuity
always occurs where the contact surface joins the reentrant surface. Even more seriously, the
curvature does not exist when the reentrant surface is reduced to a point in some geometric
arrangements. When the numerical integration of the DBF is evaluated on such a surface,
certain loss of numerical stability can be expected even if the new formulation is used.

An apparent possibility is to implement our algorithm for the smooth dielectric transition
models that allow surface derivatives to be defined. However there is indeed good physics in
the solvent excluded surface definition as recent literatures have suggested. Given these
considerations, we are exploring to revise analytical/differentiable molecular surface
definitions so that they are consistent with the solvent excluded surface definition.

IV. Conclusion
Numerical PBE methods have been shown to be successful in a wide range of biomolecular
applications, but their applications are quite limited in molecular mechanics simulations, in
part due to the difficulty in the calculation of the DBF. In this work, we first review the
theory for the DBF calculation based on the Maxwell stress tensor. Then a new algorithm is
developed for the FDM solutions based on the concept of polarization charges. The
performance of the new algorithm is then analyzed in detail and compared with the
analytical method and the virtual work principle.

Our analysis shows that the mean polarization charges converge well. We then tested the
new DBF formulation with multiple small molecules. The results show that the new
formulation is consistent with the analytical method and the virtual work principle. The
advantage of the new method is its fast convergence of atomic forces at coarser grid
spacings. We also analyzed the effect of charge singularity removal in the computation of
the DBF and noticed a significant improvement when the charge singularity is removed.
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It should be pointed out that the pleasant numerical behavior of the new formulation comes
at a cost, that is, its scaling, in the order of O(Natom × Nbnd, is clearly worse than O(N2

atom)
because there are always far more dielectric boundary grid points than atoms. Nevertheless,
the pair-wise interaction between the atoms and boundary grid points only needs to be
computed once for both the reaction field force and the DBF.
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• Existing methods to compute dielectric boundary forces (DBF) are reviewed.

• New formulation of DBF suitable for the finite difference method is proposed.

• The new method is validated with tests on idealized systems and real molecules.
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Figure 1.
Correlations between atomic dielectric boundary forces (kcal/(mol Å)) computed at the grid
spacings of 1/2 Å, 1/4 Å, and 1/8 Å, respectively, and those at the grid spacing of 1/16 Å for
the GC dimer and AT dimer.
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Figure 2.
Total nonbonded force (kcal/(mol Å)) on base G of the GC dimer with respect to the N-N
distance (the distance between N-1 of guanine and N-3 of cytosine). The results of this work
are shown in red triangle, and the results of the virtual work method are shown in blue star.
The error bar means the standard error of the means. The data were collected with the grid
spacings of 1/4 Å (top) and 1/16 Å (bottom).
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Table 1

Convergence of dielectric boundary forces (kcal/(mol Å)) in the spherical analytical systems. σ and rmsd are,
respectively, the average standard deviations of dielectric boundary forces and average root mean squared
deviations of dielectric boundary forces from analytical values. Both σ and rmsd are computed over the 30
bins used to divide the spherical surface.

1/h This work

σ rmsd

single-charged

2 0.334 0.117

4 0.101 0.023

8 0.036 0.009

16 0.013 0.005

dipolar-charged

2 0.285 0.060

4 0.083 0.011

8 0.031 0.008

16 0.012 0.006

quadrupolar-charged

2 0.215 0.322

4 0.042 0.042

8 0.015 0.011

16 0.005 0.006
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Table 2

Convergence and uncertainty of atomic polarization charges (e) for salt-bridging amino acid side chain dimers
RD and KD. σ and rmsd are, respectively, the average standard deviations of atomic polarization charges and
the average root mean squared deviations of atomic polarization charges from those computed with the finest
tested grid spacing.

1/h σ (×10-3) rmsd (×10-3)

RD

2 2.74 2.28

4 1.02 1.45

8 .379 .659

16 .142 NA

KD

2 3.30 1.69

4 1.20 .794

8 .473 .501

16 .168 NA
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