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Abstract
Markov State Models provide a framework for understanding the fundamental states and rates in
the conformational dynamics of biomolecules. We describe an improved protocol for constructing
Markov State Models from molecular dynamics simulations. The new protocol includes advances
in clustering, data preparation, and model estimation; these improvements lead to significant
increases in model accuracy, as assessed by the ability to recapitulate equilibrium and kinetic
properties of reference systems. A high-performance implementation of this protocol, provided in
MSMBuilder2, is validated on dynamics ranging from picoseconds to milliseconds.

1 Introduction
Conformational changes such as myosin procession,1 protein folding,2 and ligand binding3

have long occupied the attention of biophysicists. A predictive, first-principles
understanding of conformational dynamics could elucidate these processes in atomic detail,
with broad applications in engineering and medicine. Many biophysical experiments probe
the fundamental states and rates of a system. For example, the dominant conformational
state of a biomolecule can be determined experimentally by NMR spectroscopy4 or X-ray
crystallography,5 while the existence of intermediate states can be demonstrated by kinetic
studies.6,7 Even at the single-molecule level, dynamics between multiple conformational
states can be tracked by monitoring observables (e.g. FRET)8 that report on the
conformational details of a molecule. Conformational states and their rates of
interconversion remain a unifying paradigm of biophysical studies.

Discrete-time Master equations, or Markov State Models,9–11 formalize this paradigm. In a
Markov State Model, one defines a set of conformational states and models the dynamics
between them as a Markov jump process on that state space. Predicted conformational states
and rates can be extracted from atomistic molecular dynamics simulations of biomolecular
dynamics under ambient conditions.12–14 Here we describe an improved protocol for
constructing Markov State Models from an ensemble of molecular dynamics simulations.
This enhanced protocol has been implemented as version 2.0 of the freely available
MSMBuilder software package, available at https://simtk.org/home/msmbuilder. The
improvements in MSMBuilder2 include more accurate state definition through hybrid k-
centers k-medoids clustering, improved estimates of kinetic and equilibrium properties via a
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reversible maximum likelihood estimator,9,11 and an extensible Python implementation
allowing facile customization. We validate and benchmark the protocol on proteins spanning
a range of timescales and sizes.

2 Theory
A Markov State Model9,10,15–17 consists of a set of state definitions and a transition
probability matrix characterizing the kinetics on this state space. In this work, we adopt the
following conventions. States are labeled integers {1,2, …,n}. Transition matrix entry ij
gives the conditional probability of jumping from state i to state j during a time interval
(lagtime) τ:

(1)

where σ(x) is a function mapping the conformation x onto the state space. Equilibrium
conformational dynamics are expected to satisfy detailed balance: that is, πiTij = πjTji, where
πi is the equilibrium population of state i. Because of the symmetry of the detailed balance
equation, we define a symmetric matrix Xij = Xji = πiTij. This matrix gives the counts
between states i and j at equilibrium, normalized such that ∑ijXij = 1. With this definition,
the transition matrix can be expressed as T = D−1X, where D = diag(π) is a diagonal matrix
of equilibrium populations.

The eigenvalues and eigenvectors of a transition matrix have special significance. Let (λi, vi)
be an eigenvalue-eigenvector pair for T (e.g. Tvi = λivi). By comparison to the eigenvalues

 of a continuous-time master equation rate matrix K, one can show that the eigenvalues
of a transition matrix are related to the relaxation timescales (τi) of a master equation via λi =
exp(−τ/τi), where τ is the lagtime use to estimate the transition matrix.15,18 For systems
satisfying detailed balance, the eigenvalues λi must be real, as the eigenvalue equation can
be written as a symmetric generalized eigenproblem: Xvi = λiDvi. We point out that a recent
work9 provides an excellent review of the theory of MSMs; another review covers both
theoretical and experimental aspects as applied to protein folding.19

To estimate a transition matrix, one must fix a lagtime, which we signify by writing
transition matrices with explicit lagtime dependence T(τ). Because they describe physical
observables, relaxation timescales should be insensitive to changes in lagtime. However,
projecting dynamics onto a finite state space results in dynamics that are only approximately
Markovian. Thus, a common test of model consistency is to calculate the relaxation
timescales for a sequence of lagtimes.9,10,18 In practice, discretization error manifests itself
as erroneously fast timescales for short lagtimes. Indeed, it has been shown9,20 that
increasing either the number of states or the lagtime will lead to more accurate models;
however, finite sampling and computational resources place limits on the number of states
and lagtime.

3 Methods
This paper presents the recent advances in MSMBuilder2. Below, we discuss these
advances, both in terms of the nature of the improvement as well as its motivation. We
propose the following new protocol for MSM construction, which shares some
characteristics with ones previously developed by ourselves and others.9,11,21
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1. Cluster molecular dynamics trajectories using a hybrid k-centers k-medoids
algorithm.

2. Restrict data to its maximal ergodic subgraph.

3. Estimate transition and count matrices (T(τ), C(τ)) using a maximum likelihood
reversible estimator.

While this protocol is similar to previous approaches in broad strokes, these key refinements
make the approach more quantitative without increasing computational cost. We note that
MSMBuilder2 also allows non-reversible maximum likelihood estimation for systems where
reversibility is not desired.

3.1 Hybrid k-centers k-medoids clustering
The first step in MSM construction is to identify conformational states. Because MSM
accuracy depends on the quality of state decomposition, enhanced clustering is a natural way
to improve MSM methods. In MSMBuilder2, as in other MSM methods, it is vital to
achieve kinetic clustering–that is, states sufficiently fine so as to be free from internal kinetic
barriers.

Previous work9,11 used an O(kN) approximate k-centers clustering,22 where k denotes the
desired number of clusters and N denotes the number of conformations. That algorithm can
be viewed as an approximate solution to the problem:

(2)

Here, σ(x) is the “assignment” function that maps a conformation to the nearest cluster
center. d(x, y) is the distance between two conformations x and y, measured via the RMSD
metric.23 The minimization occurs over all clusterings (σ) with k states, subject to some
choice of initial center. Finally, the max is taken over all conformations in the dataset.

The k-centers approach minimizes the worst-case clustering error, as quantified by the
objective function fmax(σ) = maxid(xi, σ(xi)). Considering only the worst-case clustering
error is problematic for conformational dynamics, particularly in protein folding, as the
worst-case error is often determined by extended (unfolded) conformations with very small
populations. Furthermore, cluster centers generated by this algorithm are often non-central,
that is, they often do not represent the geometric center of their associated data.

Alternatively, k-medoids clustering24 approximately minimizes .
With sufficient sampling, constant temperature molecular dynamics draws Boltzmann-
weighted conformations; thus, by averaging over all conformations, fmed(σ) is an objective
function that penalizes the (approximately) ensemble-averaged deviation from cluster
centers. The resulting clusters tend to be centrally located within their respective data–i.e.
they are medoids.25 However, for folded proteins, strict Boltzmann weighting yields few
unfolded states, often leaving unfolded conformations assigned to folded states. This
deficiency can be explained in terms of fmax(σ). A clustering that minimizes fmed(σ) may in
fact be worse when evaluated by fmax(σ); conversely, minimizing fmax(σ) could increase
fmed(σ). For accurate kinetic clustering of biomolecule dynamics, one should consider both
the worst case (fmax) and average case (fmed) clustering error.
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Simultaneously optimizing both the average and worst-case error can be achieved by
combining the k-centers and k-medoid algorithms. Let ε be some desired worst-case
clustering error. Define the set

(3)

Thus, S(ε) is the set of all clusterings that have worst-case errors of ε (or better). We now
apply a k-medoids clustering algorithm, but restricted to the set S(ε). In practice, we use a
two step approach:

1. Apply approximate k-centers to return initial clusters gi, terminating when fmax(σ)
≤ ε.

2. Apply approximate k-medoids to the result, but rejecting all moves that increase
fmax(σ).

For (2), we employ a modification of the Partitioning Across Medoids algorithm.24 For each
cluster gi, we randomly select a conformation xi assigned to that state. The clustering errors
(fmed, fmax) are calculated and compared to the values that would be obtained were xi instead
the cluster center of that state. If fmed is improved and fmax is improved (or unchanged), the
move is accepted. In practice, fmax decreases insignificantly during this process, but fmed
decreases dramatically over a handful of iterations. As described, the hybrid algorithm tends
to preserve the overall distribution of clusters, essentially refining k-centers to be more
“central“; this is desirable because k-centers is known22 to provide a reasonable partition of
conformation space.

3.2 Improved Estimators for Reversible Transition and Count Matrices
Since equilibrium conformational dynamics obeys detail balance, it is important for MSMs
to satisfy detailed balance (also called reversibility). A positive reversible MSM guarantees
positive real eigenvalues λ, which can be interpreted as relaxation timescales through the

relation . Previous work11 has used the symmetrized counts–so called because

the count matrix is symmetrized via the equation –to estimate a reversible
count matrix. Though the resulting MSMs satisfy detailed balance, this estimator can
introduce artifacts in both equilibrium and kinetic properties;15,21 this error is pronounced
for short trajectories started from a distribution far from the system’s equilibrium. A recent
work21 recommends estimating a transition matrix using the unsymmetrized counts after
restricting the data to its maximal ergodic subgraph. Thus, after clustering, one must first
identify the maximal ergodic (i.e. strongly connected) subgraph–that is, a (maximal) set of
states M such that if i ∈ M and j ∈ M, then there exists a path from i → j and from j → i.
That approach eliminates artifacts in equilibrium estimates, but yields transition matrices
that may not satisfy detailed balance. To enforce detailed balance while preserving accurate
estimation of equilibrium properties, we have implemented the following protocol:

1. Apply Tarjan’s algorithm,26 restricting data to the maximal ergodic subgraph.

2. Estimate a reversible count matrix using a maximum likelihood estimator.

The theory of reversible estimation has been discussed previously;9,11,16,27,28 however,
several implementation issues have limited its general use. First, the reversible MLE
estimator is only well-defined for ergodic MSMs, so the trimming procedure is critical.
Second, the iterative procedure sometimes converges slowly for many-state models; in
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Appendix 8.2, we discuss an efficient implementation that allows scaling to biological
systems with tens of thousands of states.

4 Results
We now validate the revised MSM protocol. First, we show that improved clustering results
in more self-consistent models, as measured by either relaxation timescales or correlation
function analysis. Second, we show that improved transition matrix estimators result in
improved ability to recapitulate kinetic and equilibrium properties of a known reference
model.

4.1 Hybrid k-centers k-medoids clustering improves state definitions
Projecting onto a finite state space results in dynamics that are only approximately
Markovian. One way to evaluate model consistency is by calculating the relaxation
timescales for a sequence of lagtimes; as observables, these timescales should be
approximately lagtime-independent. As compared to models constructed with k-centers
clustering, hybrid clustering yields relaxation timescales that are slower (Figure 1a) and less
lagtime-dependent. For models with few states (fmax = 5.5 Å – 7.5 Å; Table 1), hybrid
clustering performs considerably better than k-centers. In particular, a hybrid model with a
fixed number of states (e.g. 176 states, or fmax=7.5 Å) performs comparably with a k-centers
model with considerably more states (e.g. 806 states, or fmax=6.5 Å). In the limit of many
states, hybrid and k-centers perform comparably, as eventually both k-centers and hybrid
yield 1 state per sampled conformation; however, statistically accurate estimation is
impossible when the number of states approaches the total number of available
conformations. For this reason, it is desirable to achieve accurate models with as few states
as possible.

The lack of a true reference value makes relaxation timescales an incomplete validation of
MSM kinetics. Correlation function analysis offers an orthogonal check with a known

reference value. The RMSD correlation function is given by , where s(t) =
r(t)− < r(t) > and r(t) is the RMSD to a reference structure, here taken to be the native
conformation. For the MSM calculation, the transition matrix was used to first calculate a
pseudo-trajectory of 100,000 lagtimes (9,000,000 ns). For each frame in the pseudo-
trajectory, an RMSD value was randomly selected from the collection of RMSD values
observed for that state. This approach models intrastate dynamics by the random selection of
each RMSD value.

As compared to the reference (calculated from the raw data), MSMs with few states show
erroneously fast kinetics (Figure 1b); hybrid clustering partially mitigates this error. With
sufficiently many states (e.g. fmax ≤ 4.5), the dynamics is accurately captured by the MSM.
Both raw and MSM RMSD correlation functions decay on a timescale comparable to the
folding-unfolding dynamics of the protein. Further increasing the number of states is not
feasible due to increased statistical uncertainty (Appendix 8.5). We observe similar results
for Alanine dipeptide (Appendix 8.6).

In addition to enabling kinetic calculations, clustering provides an important tool for
exploratory data analysis, which benefits from cluster centers that are representative of their
associated data. Yet, with k-centers clustering, the fmax objective function is inherently
insensitive to local or average structural properties. This leads to state definitions that tend to
be useful only as partitions of conformation space–in particular, minimizing fmax does not
ensure that cluster centers are central within their associated data. When applied to
simulations of the WW protein, hybrid clustering decreases the average clustering error
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significantly, as quantified by the fmed objective function (Table 1). The hybrid clusters
show less structural heterogeneity (Figure 2). Furthermore, the k-centers cluster center lacks
a critical proline contact (sticks) that defines the native fold; the hybrid cluster center retains
this key structural feature.

4.2 Improved Estimators for Reversible Transition and Count Matrices
The reversible MLE yields improved estimates of equilibrium and kinetic properties. As a
preliminary control, the MLE and symmetrized estimators are compared on a dataset
consisting of two trajectories that are long (100 µs) relative to the folding and unfolding
timescales (≈ 10 µs); as expected, the resulting free energies show good agreement (Figure
3).

In a more demanding test, we generate an ensemble of two-state folding trajectories from a
model with a folding timescale of 100 steps and an unfolding timescale of 1000 steps (see
Appendix 4). This approximates the scenario of running MD simulations from an ensemble
of unfolded conformations. Because the trajectory length is comparable to the folding
timescale, the symmetrized estimator biases results towards the starting distribution of
conformations, which in this case is entirely unfolded.

Using the model data, transition and count matrices were estimated using the MLE and
symmetrized procedures (Figure 4). The reversible MLE accurately estimates the kinetic (a–
b) and equilibrium (d) properties of the reference model. However, the symmetrized
estimator shows equilibrium properties that are biased towards the unfolded state (d).
Furthermore, the symmetrized unfolding timescale is erroneously high (c). This
symmetrization bias reduced the accuracy of some previous MSMs, as pointed out in;29

reversible estimation eliminates this bias.

4.3 Improved Scaling and Performance
MSM construction relies on the clustering and analysis of vast simulation datasets. For the
clustering algorithms in this work, RMSD evaluations are rate limiting; further inspection
shows that RMSD is bottlenecked by a matrix multiplication involving an m × 3 matrix of
atomic coordinates, where m is the number of atoms in each conformation. Using an SSE3-
optimized matrix multiply routine30 with OpenMP parallelization, we have accelerated
RMSD and clustering calculations by 20× over the previous versions of MSMBuilder.
MSMBuilder2 has been successfully applied to systems spanning a broad range of
timescales and sizes; Table 2 reports the computational cost of MSM construction for
various protein systems. In all cases, the cost of the MD simulations is considerably greater
than the cost of MSM analysis.

5 Discussion
5.1 MSMBuilder2 Protocol

As shown above, the protocol validated in this work presents several clear advantages over
previous methods. These advances are evolutionary in nature, building upon previous work.
The overall MSM construction protocol has retained the following key steps: perform
molecular dynamics simulations, cluster data, and estimate a transition matrix. We continue
to work with the RMSD metric, as its simple distance interpretation provides a physically-
motived state decomposition. RMSD is a widely used distance metric for comparing
biomolecular conformations;23,31,32 this common use allows a biophysical intuition for
RMSD, which is one reason for our choice of this metric. Furthermore, previous work found
that, for alanine dipeptide, RMSD-based state decompositions yielded models that paralleled
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ones based on manual state decompositions.10 We note that some systems may benefit from
other metrics; the MSMBuilder2 framework is extensible to such situations.

The procedure of kinetic clustering, whereby one leverages fine structural clustering to
produce states free from kinetic barriers,9,10,15 benefits from the improved clustering
algorithm. In kinetic clustering, it is critical to validate state decompositions using kinetic
metrics; here, we have applied tests based on both relaxation timescales and correlation
functions. Another key motivation for the hybrid algorithm is performance. Hybrid
clustering achieves improved clusters with only 10× worse computational cost than the
simple k-centers algorithm; this cost is more than offset by the accelerated RMSD
calculation.

The reversible MLE protocol builds upon previous work9,11,21 to build accurate reversible
models. Besides enforcing reversibility, the reversible MLE has other subtle benefits. First,
reversibility improves statistics; because a reversible MSM is defined by a symmetric matrix

Xij, the number of possible parameters drops from n2 to . Second, the counts matrix
X can be visualized to gain intuition on the connectivity properties of a system. Previously,
this has typically been done using transition path theory (TPT).33 However, TPT requires a
priori definition of initial and final states, while visualizing the counts matrix can be done in
a hypothesis-free manner.

5.2 MSMBuilder2 Implementation
MSMBuilder2 is implemented as a library using the Python34 language and achieves high
performance by using optimized libraries (Numpy,35 Scipy, Pytables36) whenever possible.
The rate-limiting step in clustering, the 3 × n matrix multiply, is written as a small C library
with Python wrappings. This design framework allows both flexibility and performance;
indeed, benchmarks30 suggest that the clustering code approaches the published peak
efficiency of the benchmark machines. We suspect that the MSMBuilder2 library will be a
useful starting point for other researchers interested in methods development. For
researchers interested in applying MSMBuilder2 to analyze their simulations, the current
protocol is captured by a set of command-line scripts and tutorial at
(https://simtk.org/home/msmbuilder/).

5.3 Future Challenges
The advances in MSMBuilder2 represent significant advantages over previous methods;
however, future work will likely lead to further improvements. Clustering remains a
compromise between accuracy and speed. For full protein datasets (≥ 100,000
conformations), performance worse than O(kN) will generally be unacceptable, but other
methods may further improve the results shown here. Estimation of reversible transition
matrices may benefit from a Bayesian framework;16,27,28 accelerating such schemes for use
in biological systems remains a key challenge. In addition to incremental improvements in
the current protocol, more drastic changes have also been explored. In particular, other
groups have shown some success working with incomplete partitions of conformation space
and continuous time (Master Equation) modeling.15,18 Finally, existing frameworks consider
clustering, ergodic trimming, and model estimation as three distinct steps. However, these
steps are coupled and jointly contribute to modeling uncertainty. Methods that consider
model accuracy and finite sampling statistics during all stages of model construction may
further reduce modeling error.
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6 Conclusion
Although modeling conformational change at atomic resolution remains challenging, the
MSMBuilder2 protocol yields significant improvements in model accuracy, structural
insight, and computational performance. With system sizes ranging from 22 atoms to 1258
atoms and timescales ranging from 10 picoseconds to 2 milliseconds, the model systems
considered here suggest that MSMBuilder2 may facilitate simulation studies of previously
inaccessible biomolecular systems.
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8 Appendices

8.1 Simulation Details
Alanine dipeptide was simulated using using Gromacs 4.5.337 with the AMBER96 force
field and GBSA implicit solvent. One trajectory of length 50ns was analyzed; snapshots
were stored every 200fs.

The WW domain38,39 simulations were described previously;12 the authors of that work
have graciously provided the trajectories on their web site. Simulations were performed
using the AMBER99sb-ILDN40 force field at 395K. For MSM construction, data were
stored at every 1ns; two trajectories of length 100 µs were analyzed.

The HP35 dataset includes more than 600 simulations (minimum length 700ns) at 300K.
Simulations were performed using Gromacs 4.5.3 with the Amber99sb-ILDN force field and
TIP3P water. Conformations were stored at 1ns intervals. Conformations were started from
more than 600 different folded and unfolded conformations.
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The λ-repressor simulations have been described previously.41 More than 700 simulations of
minimum length 600ns were analyzed; conformations were stored at 1ns intervals.
Simulations were performed at 370K, using the ff03 force field with TIP3P water.

8.2 Maximum Likelihood Estimator for Reversible MSMs
Suppose one has observed a matrix of counts Cij; this is typically output from the clustering
and assignment stages of model construction. To estimate a general (possibly non-
reversible) transition matrix T, one formulates the log-likelihood function

(4)

Maximizing this likelihood (e.g.9) leads to the following MLE estimator of the transition
matrix:

(5)

Suppose one knows that the underlying data is reversible. In that case, there exists a
symmetric count matrix Xij = Xji such that

(6)

Inserting this equation into f(T) yields a likelihood function for X, where the row sums of X
are defined as Xi = ∑j Xij and the row sums of C are defined as Ni = ∑jCij:

(7)

To maximize this function, one requires the partial derivatives with respect to parameters
Xij, which are given by (a ≠ b)

(8)

(9)

Setting partial derivatives to zero:

(10)
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(11)

This expression can be used in an iterative update procedure. While others9 have suggested
an approach using the quadratic formula, we find that the current formula is effective
because it can be expressed entirely as simple vector and (sparse) matrix operations. In
practice, we typically see convergence within 100000 iterations; we terminate iteration when
‖πk+1−πk‖ ≤ 10−10.

For situations with limited data, MLE estimation may require some regularization or prior to
avoid overpopulating states that are strongly metastable but have been inadequately
sampled. Methods to achieve regularization are discussed in the following section.

8.3 Incorporating prior pseudocounts into the reversible MLE
It is sometimes useful to perform estimation with some nonzero prior; in practice, this
involves adding a uniform matrix of pseudocounts to the observed count matrix:

. This procedure generally destroys sparsity structure, preventing its use for large
systems. Below we show a method to maintain sparsity while incorporating prior
pseudocounts.

The update equation can be expressed in terms of the observed counts Cab, the observed row
sums Na, the prior pseudocount (α) added at each matrix position, and the number of states,
n.

(12)

(13)

To simplify the computation, define two intermediate variables Qab and Rab:

(14)

(15)

The update formula is now

(16)

The key is that Qab is sparse, and Rab has a simple functional form that is the result of vector
operations. Furthermore, the iterative update does not require each Rab, but rather ∑iRib.
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In practice, we find that this protocol remains limited by computational performance. As an
alternative, the following regularization scheme appears to work well in practice.

Starting with the matrix Cij of counts, we construct a matrix Sij such that Sij = 1 if Cij > 0 or
Cji > 0. Thus, S is a sparse matrix with ones for every count that was observed in either
forward or reverse direction. When performing the MLE estimation, we use the matrix C′
=C+αS. The effect of this is to prevent transitions with limited statistics from being too
strongly favored in one direction. In practice, α must be chosen such that α ∑ijSij ≤ ∑ijCij;

for the datasets in this work, α ≈ 0.1 leads to . The advantages of this
regularization are threefold. First, the data remains sparse, which allows scaling up to
hundreds of thousands of states. Second, transitions that are nearly irreversible but
inadequately sampled are smoothed. Third, this method adds pseudocounts only to
transitions that were observed in the data (albeit in either the forward or reverse directions);
thus, this method cannot introduce artifactual pathways.

8.4 Two State Model for Comparing Transition Matrix Estimators
The two state model in Figure 4 is based on the transition matrix

(17)

where p = 0.99 and q = 0.999. Thus, folding (100 timesteps) is approximately 10× faster
than unfolding (1000 timesteps); this is similar to the fast-folding variants of HP3542 under
mildly denaturing conditions (with 1 timestep corresponding to 10ns). Using this transition
matrix, 100 trajectories of length 200 were generated and used to estimate transition and
count matrices using either the symmetrized or reversible MLE protocols.

8.5 Balancing Kinetic Accuracy and Statistical Reliability
Discretization error in MSM construction is reduced by increasing either the number of
states or the lagtime.9 However, these solutions lead to statistical uncertainty due to
increasing the number of model parameters or decreasing the amount of independent data,
respectively. Thus, accurate model construction requires a careful balance between
discretization and statistical error. A useful test is to consider the equilibrium properties of a
sequence of models (Figure 5). We have calculated the ensemble average RMSD to native,
which gives a smooth estimate of the stability of the folded state. For the WW protein, well-
folded conformations typically show RMSD values of 0–4 Å, with unfolded conformations
ranging from 5 to 10 Å. Models with few states (fmax ≥ 4.5 Å) appear near the folding
midpoint, with an ensemble average RMSD of 5.54 ± 0.05 Å; models with more states (fmax
= 3.5,4.0) appear considerably less folded, with an RMSD of 6.98 ± 0.1 Å. In general, state
decompositions that are too fine will lead to spurious irreversible transitions and inaccurate
equilibrium estimates. For the present dataset (200,000 conformations), the 3.5 Å model has
47,684 states and lies well-within the data-poor regime. The lack of agreement with coarser
models leads us to reject the 3.5 and 4.0 Å models. The 4.5 Å model is the best model for
the WW data, as measured by relaxation timescale consistency (Figure 1a), correlation
function analysis (Figure 1b), and equilibrium robustness (Figure 5). Constructing a
sequence of models with increasingly many states helps identify models that minimize both
discretization and statistical error.

Beauchamp et al. Page 12

J Chem Theory Comput. Author manuscript; available in PMC 2012 October 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



8.6 Relaxation Timescale Analysis of Alanine Dipeptide
We present a relaxation timescale analysis (Figure 6) of a single (50 ns) alanine dipeptide
simulation at 300K in GBSA implicit solvent. In this example, the hybrid clustering
provides improved performance for all choices of clustering diameter. Furthermore, the
high-resolution models (ε ≤ 0.45 Å) converge to a slowest relaxation of 200 ps. The hybrid
clusterings approach this value at shorter lagtimes, particularly for the lower-resolution
models (ε ≈ 0.65 Å). The second-slowest timescale also suggests improved performance by
the hybrid clustering.
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Figure 1.
(a). Relaxation timescales of models constructed with k-centers and hybrid clustering. (b).
RMSD correlation functions as calculated by different clusterings. MSMs in (b) constructed
with 90 ns lagtime. MSMs constructed from simulations of the WW protein; see Appendix
1.
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Figure 2.
Cluster centers (opaque) and randomly sampled conformations (transparent) are displayed
for the most populated state from models based on the k-centers and hybrid clustering
algorithms. Both models are based on simulations of the WW domain. The hybrid clusters
(b) were constructed by improving the initial k-centers clustering in (a). Both clusterings
have 806 states (fmax = 6.5Å).
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Figure 3.
Simulations of the WW protein12 were used to compare the performance of the symmetrized
and MLE protocols. Folding free energies calculated using a two-state approximation

, show good agreement (Δ ≤ 0.03 kcal / mol) between models
constructed using the symmetrized and MLE protocols, as expected for long trajectories.
The near-zero folding free energy is expected, as the simulations were performed near the
melting temperature;12 the exact free energy depends weakly on how one defines the folded
state. Here, the folded state is defined as all states with an RMSD (to crystal structure)
below some cutoff value; the unfolded state is defined as the remaining states. The large
RMSD values observed are due to the large conformational fluctuations observed in the high
temperature (393 K) simulations.
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Figure 4.
Simulated two-state folding simulations generated from a reference transition matrix (a)
were used to estimate transition matrices. The MLE reversible procedure (b) shows good
agreement with the reference transition matrix, while the symmetrized procedure (c) shows
poor agreement with the reference. Furthermore, as compared to the symmetrized estimate,
the MLE estimate better recapitulates the reference equilibrium properties (d).
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Figure 5.
Ensemble average RMSD to native is calculated for a sequence of models constructed from
WW simulations.
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Figure 6.
The two slowest relaxation timescales for alanine dipeptide are plotted as a function of
lagtime.
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Table 1

Models constructed from WW domain simulations were used to compare structural properties of k-centers and
hybrid clusterings. The number of states for each model was determined by k-centers convergence based on a
pre-specified fmax; hybrid clusterings use the same k-centers clusters and iteratively improve them by the
algorithm described above.

Model # States fmax (Å) fmed(Å)

k-centers 26104 4.5 2.97

hybrid 26104 4.5 2.21

k-centers 5135 5.50 4.21

hybrid 5135 5.50 2.97

k-centers 806 6.50 4.76

hybrid 806 6.48 3.60

k-centers 175 7.48 6.03

hybrid 175 7.47 3.97
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