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Abstract

Background: Many different microarray experiments are publicly available today. It is natural to ask whether
different experiments for the same phenotypic conditions can be combined using meta-analysis, in order to
increase the overall sample size. However, some genes are not measured in all experiments, hence they cannot be
included or their statistical significance cannot be appropriately estimated in traditional meta-analysis. Nonetheless,
these genes, which we refer to as incomplete genes, may also be informative and useful.

Results: We propose a meta-analysis framework, called “Incomplete Gene Meta-analysis”, which can include
incomplete genes by imputing the significance of missing replicates, and computing a meta-score for every gene
across all datasets. We demonstrate that the incomplete genes are worthy of being included and our method is
able to appropriately estimate their significance in two groups of experiments. We first apply the Incomplete Gene
Meta-analysis and several comparable methods to five breast cancer datasets with an identical set of probes. We
simulate incomplete genes by randomly removing a subset of probes from each dataset and demonstrate that our
method consistently outperforms two other methods in terms of their false discovery rate. We also apply the
methods to three gastric cancer datasets for the purpose of discriminating diffuse and intestinal subtypes.

Conclusions: Meta-analysis is an effective approach that identifies more robust sets of differentially expressed genes
from multiple studies. The incomplete genes that mainly arise from the use of different platforms may also have
statistical and biological importance but are ignored or are not appropriately involved by previous studies. Our
Incomplete Gene Meta-analysis is able to incorporate the incomplete genes by estimating their significance. The
results on both breast and gastric cancer datasets suggest that the highly ranked genes and associated GO terms
produced by our method are more significant and biologically meaningful according to the previous literature.

Background
Gene expression microarrays are a high throughput tech-
nique for measuring gene expression levels in thousands
of genes simultaneously, and have been widely used in
the study of cancer genomics. An important application
of gene expression microarrays is detecting differentially
expressed genes by statistical analysis. For example, the
classical t-test can be used to assess the statistical signifi-
cance of genes in terms of their ability to discriminate
samples from two phenotypes.
While many microarray experiments from different

laboratories have been performed with the same research
aim, the results of these experiments may differ from

each other in many aspects, e.g., the platform, the probe
sets or the characteristics of the samples. Consequently,
the significant genes identified by the same statistical
analysis from different experiments may be inconsistent.
To overcome these inconsistencies, the evidence from

multiple studies needs to be combined. Several papers
[1-3] directly integrated gene expression data by aligning
genes/probes and concatenating samples. Meta-analysis
[4] is another way of generating more robust and consis-
tent statistical results by integrating multiple datasets and
outputting an overall score, which we refer to as a meta-
score for each gene/probe across all studies. For example,
[5] integrated the p-values from the t-test, [6-8] integrated
the effect size based on the model of [4], [9] integrated the
ranks of genes, and [10] integrated the test statistics based
on a mixture model of the normal distribution by consid-
ering the concordance between two datasets.
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In addition, some papers used meta-analysis techni-
ques to discover significant gene functions. For example,
[11] applied meta-analysis directly to the functional
categories associated with each individual dataset, rather
than the expression data, in order to identify more sig-
nificant pathways; [12] used meta-analysis to predict
unknown functions of genes.
The integration of datasets from different platforms

can generate more statistically significant results by
reducing biases caused by specific platforms or experi-
mental conditions. The study in [13] first highlighted
the importance of the alignment between different plat-
forms as an issue for the meta-analysis of gene expres-
sion microarrays. More recently, the studies in [1,2]
applied meta-analysis to multiple platforms, and demon-
strated that more robust gene signatures could be gen-
erated from multiple platforms.
A challenge for meta-analysis in this context is that

microarray datasets from different platforms do not usually
possess an identical set of probes. Consequently, it is criti-
cal to fix a single set of probes as the candidates for statisti-
cal analysis. It is common to encounter incomplete
alignment of genes among different microarray experi-
ments, especially among those microarrays from different
platforms. For example, the study in [14] compared three
microarray platforms - one with short oligonucleotides,
one with long oligonucleotides, and a cDNA platform. The
three platforms have 6430 genes in common, but many
more genes are shared by a pair of platforms or by a single
platform, as shown in Figure 1. Similarly, many other
meta-analysis studies have used datasets from different
platforms, e.g. [5-7]. The overlap of genes among the three
gastric cancer datasets [15-17] used in our experiments,
which were independently generated by the research
groups from Australia, Hong Kong and Japan on different
platforms, is also shown in Figure 1. In addition, other rea-
sons can also cause missing replicates in microarrays.
However, to the best of our knowledge, all existing

methods of gene expression meta-analysis either only
consider those features that are assayed in all datasets
(which we refer to as complete genes), whereas the other
genes that are not measured in all datasets are discarded,
or simply ignore the missing replicates in the incomplete
genes. We refer to the genes that are not measured in all
datasets as incomplete genes.
However, the incomplete genes may also be significant

and should be considered as candidates, even though
their significance is not tested in all studies. In this
paper, we focus on developing a novel meta-analysis
method that takes complete and incomplete genes into
account simultaneously.
We propose a meta-analysis framework, called Incom-

plete Gene Meta-analysis (IGM), which is able to incor-
porate incomplete genes caused by cross-platform

integration or any other reasons for missing replicates.
IGM comprises three major steps: (1) Compute a statis-
tic for every replicate (each probe in each dataset) using
the Hedges’ g effect size [4]; (2) Impute the significance
of missing replicates, where the incomplete genes are
not measured in particular datasets, using the model of
a conditional probability distribution over the datasets;
(3) Generate an overall significance score (meta-score)
for each probe across all datasets using a variant of an
earlier linear model [4,6,18]. As a basis for comparison,
we also implemented other variants of this framework
by replacing its key steps, including a traditional
approach that does not consider the incomplete genes
and a method that simply ignores the missing replicates
in the incomplete genes.
We first tested IGM and the comparable approaches

on five breast cancer datasets with an identical set of
probes, for the purpose of distinguishing the binary
label of a given number of years to metastasis. We
simulated the incomplete genes by randomly removing
a subset of probes from each dataset. A gene ranking
was generated using each method and the false discov-
ery rate (FDR, [19]) was estimated using a permutation
test [6,20]). Our method consistently achieved the clo-
sest FDR to that of the gene ranking produced on the
original datasets without incomplete genes, which was
considered as the gold standard. We also conducted
experiments on three gastric cancer datasets, which
were generated independently by research institutions
in Australia [15], Hong Kong [16] and Japan [17], for
the purpose of discriminating diffuse and intestinal
subtypes of gastric cancer [21]. Using an enrichment
test for Gene Ontology terms in both groups of cancer
datasets, IGM identified more significant terms that
were closely related to a particular subtype of gastric
cancer than only using complete genes. The above
results show that the highly ranked genes produced by
IGM were statistically and biologically more significant
than those produced by the other methods.
In Section, we describe the IGM framework, the com-

parable methods and our evaluation metrics. In Section,
we present the experimental results on the breast cancer
and gastric cancer datasets. In Section, we discuss the
biological relevance of the results on the gastric cancer
datasets. Finally, we conclude the paper in Section.

Methods
In this section, we describe our framework called
Incomplete Gene Meta-analysis (IGM), which incorpo-
rates both complete genes and incomplete genes simul-
taneously by including the key step of imputing the
significance of missing replicates. We also propose sev-
eral other variants of this framework as a basis for com-
parison using three types of evaluation metrics.

Shi et al. BMC Bioinformatics 2011, 12:84
http://www.biomedcentral.com/1471-2105/12/84

Page 2 of 16



Notation
Before presenting our framework, we first introduce sev-
eral concepts and notations that are used in the follow-
ing sections. We are given k(k ≥ 2) gene expression
datasets GEj = (Gj, Sj), j = 1, ···, k, where the dataset GEj
comprises the gene set Gj and the sample set Sj. Let GI

and GU denote the intersection

GI =
k⋂

j=1

Gj = {g1, · · · , gnI }, nI = |GI| (1)

and union

GU =
k⋃

j=1

Gj = {g1, · · · , gnU }, nU = |GU| (2)

of all gene sets, respectively. If the gene gi Î GU is not
measured in the dataset GEj, j Î { 1, ···, k}, we call it a
missing replicate. A gene that has no missing replicates
is called a complete gene. Otherwise, it is called an
incomplete gene.
Note that the features are aligned by their gene sym-

bols between datasets. While there are other strategies
to align probes between studies, they are not the focus
of this paper. More details about the alignment can be
found in [22].
If multiple probes in one dataset correspond to a sin-

gle gene, the median expression level of these probes is
computed for each sample.

Incomplete Gene Meta-analysis Framework
Our Incomplete Gene Meta-analysis framework com-
putes an overall score, called a meta-score, for each gene

across all datasets, by imputing the significance of miss-
ing replicates and integrating the statistical results from
individual datasets. The major steps are as follows (see
Figure 2).

1. Input - We are given k ≥ 2 gene expression
microarray datasets GEj = (Gj, Sj), j = 1, ···, k. In each
dataset, the samples are labeled with different phe-
notypes or clinical annotations, with respect to
which the differentially expressed genes can be
detected.
2. Candidate gene set - We have to select a candi-
date gene set G0 ⊆ GU if the gene sets differ between
datasets. Previous methods (e.g., [6,9,10]) only select
complete genes (G0 = GI ), but we select G0 = GU ,
so that all genes are considered as candidates. Let n
= |G0| denote the total number of candidate genes.
3. Individual scores - We apply a statistical test to
each replicate gi in dataset j, so that a score xij,
which could be the test statistic or p-value, is used
to measure the significance of the replicate. We let

X = [xij]n×k (3)

denote the score matrix for all n genes in k datasets.
The corresponding value of any missing replicate is
initially undefined.
4. Imputation - For each missing replicate, we
impute a value x′

ij for xij so that it has a valid score.
We estimate the scores of the missing replicates
using a probability distribution that is conditional on
the observable replicates, and also calculate the esti-
mation error for the imputed scores.
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Figure 1 Overlap between gene sets from different platforms. The overlap between the gene sets from different microarray platforms. Left:
Three platforms used in [14]. Right: Three gastric cancer datasets used in our experiments.
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5. Meta-scores - We compute a meta-score xM (i)
for every gene gi, characterising its overall signifi-
cance across all datasets.

In the following three subsections, we discuss the
details of steps 3 to 5.

Individual Scores
Many statistical tests could be used for measuring the
significance of the differential expressions of genes. In
the case of two phenotypes, we employ the Hedges’ g

effect size [4], which is defined as the standardized dif-
ference in the means between two populations. We first
briefly describe the general case of estimating the
Hedges’ g effect size from the two groups of samples for
one gene in one dataset. A biased estimator is given by:

g =
ē1 − ē2

s∗ (4)

where ē1 and ē2 are the mean values of the samples in
groups 1 and 2, respectively, and s* is the pooled

1 k
k

• • • • • •

x11
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xn1

xa1

x1k

xbk
xnk

xak

xM(1)

xM(n)
Figure 2 Incomplete Gene Meta-analysis. The process of Incomplete Gene Meta-analysis.

Shi et al. BMC Bioinformatics 2011, 12:84
http://www.biomedcentral.com/1471-2105/12/84

Page 4 of 16



standard deviation of the samples. Using g in Equation
(4), an unbiased estimator g* of the population effect
size is given by:

g∗ ≈
(

1 − 3
4(n1 + n2) − 9

)
g (5)

In addition, the variance of g* can be estimated using:

σ̂ 2(g∗) =
n1 + n2

n1n2
+

(g∗)2

2(n1 + n2)
(6)

where n1 and n2 are the numbers of samples in groups
1 and 2, respectively.
In our algorithm, we compute g* as the individual

score (Section) for each observable replicate gi in data-
set j:

xij = g∗ (7)

while the score for each missing replicate is initially
undefined.

A Variant of the Linear Model for Meta-scores
Our problem corresponds to the general problem of
estimating the population effect size from a given set of
measurements. We first recall an existing method for
estimating a population parameter used by [4,6,18]. The
observed statistic xij in Equation (7) for the replicate gi
in dataset j is hierarchically modeled as follows:

xij = μij + βij, βij ∼ N(0, s2
ij) (8)

μij = μi + αij, αij ∼ N(0, τ 2
i ) (9)

In this model, μi is the unknown population effect size
to be estimated for gene i. A key challenge in this esti-
mation problem is how to account for the variation
within each study (modeled by bij) as well as the varia-
tion between studies (modeled by aij). We now consider
each of these terms.
First, many factors, such as different microarray plat-

forms or samples of different ages and regions, may
affect the measurements and result in variations of the
population effect size between studies. This is modeled
by the error term aij in Equation (9), which follows a
normal distribution with 0-mean and τ 2

i − variance. The
term μij is the study-specific population effect size.
Second, the other error term bij in Equation (8) repre-

sents the variation in measuring μij due to the finite
number of samples in each study. This term’s variance
s2
ij is estimated by Equation (6).
An unbiased estimator of μi is given by the semi-

weighted mean [4,6,18]:

μ̂i =
k∑

j=1

wijxij/
k∑

j=1

wij (10)

wij = 1/(τ̂ 2
i + ŝ2

ij) (11)

where τ̂ 2
i and ŝ2

ij are estimates of the population para-

meters τ 2
i in Equation (9) and s2

ij in Equation (8),
respectively.
When there is no variation between studies, which

indicates τ 2
i = 0, every study has the identical population

effect size μij = μi. In this case, the model is called a
Fixed-Effects Model (FEM). Otherwise, the model is
called a Random-Effects Model (REM), in which τ 2

i > 0.
The test for FEM or REM and the estimate of τ 2

i in
Equation (9) can be found in [4,6,18,23].
Thus, when incomplete genes are absent, we can

directly use this estimate as the meta-score:

xM(i) = μ̂i (12)

To incorporate the imputation step described in Sec-
tion, we propose a variant of the above model. In our
case, some of the xij are unobservable. As a conse-
quence, the imputation of the scores for these missing
replicates (x′

ij in Section) will lead to an additional
source of variation, which can be accounted for by
introducing a new error term eij in the model:

x′
ij′ = xij + eij = μi + αij + βij + eij (13)

For all observable replicates, eij = 0. This indicates that
the new error term is only introduced for the missing
replicates. We extend the semi-weighted mean in Equa-
tion (10) to a form involving eij as follows:

μ̂′
i =

k∑
j=1

w′
ijx′

ij/
k∑

j=1

w′
ij (14)

w′
ij = 1/(τ̂ 2

i + ŝ2
ij + σ̂ 2

eij
) (15)

where σ̂ 2
eij
is the estimated variance of eij, which is

determined by a specialized method of imputation.
Thus, when incomplete genes are present, we use this
estimate μ̂′

i of the semi-weighted mean as the meta-
score:

xM(i) = μ̂′
i (16)

We can explain the impact of the error term eij as fol-
lows. First, if the expectation of the error term E(eij) =
0, which implies the estimate of the score of a missing
replicate in Equation (13) is unbiased:
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E(x′
ij) = E(xij + eij) = xij (17)

The estimate μ̂′
i in Equation (14) is again an unbiased

estimate of μi. Otherwise, μ̂′
i could overestimate or

underestimate μi. depending on the method of imputa-
tion. Second, intuitively, the imputed scores will have a
smaller weight w′

ij in Equation (15), due to the inclusion
of the estimated variance σ̂eij of the new error term.

Imputation using Conditional Probability
The imputation step enables the incomplete genes,
which are usually neglected in previous studies, to be
included in the meta-analysis.
We use a conditional probability distribution (CPD)

for imputation. When detecting differentially expressed
genes in multiple datasets with respect to the same type
of sample labels (e.g., tumor vs. normal), the scores
between datasets are usually positively correlated, which
reflects the consistency between datasets in terms of sig-
nificant genes. Otherwise, the meta-analysis is pointless.
Intuitively, a gene that is observed to be differentially
expressed in most studies is also expected to be signifi-
cant in the studies where the gene is missing. Based on
this, we can estimate the unobservable scores condi-
tioned on the observable scores of the same gene in
other studies.
1. Distribution model
For the score matrix X = [xij]n × k in Equation (3), we
denote xi., i = 1,···, n, as the vector of the ith row (fea-
ture), and x.j, j = 1,···, k, as the vector of the jth column
(dataset).
In our model, the row vector xi. follows a k-dimen-

sional normal distribution across k datasets:

xi ∼ Nk(μ, �) (18)

where the dimensions (columns x.j) are usually posi-
tively correlated.
We denote pi ⊂ {1, ···, k} as the set of indices of the

unobservable dimensions (missing replicates), and qi ⊂
{1, ···, k} as the set of the observable dimensions, so that
|pi| + |qi| = k and pi ∩ qi = Ø. For gene i, the distribu-
tion of the unobservable sub-vector xipi conditional on
the observable sub-vector xiqi

= b is given by:

fxiPi —xiqi =b(xipi
— xiqi

= b) ∼ N|pi|(μ̄, �̄) (19)

μ̄ = μpi
+ �piqi

� - 1
qiqi

(b − μqi
) (20)

�̄ = �pipi
− �piqi

�−1
qiqi

�qipi (21)

where

μ =
[

μpi

μqi

]
, � =

[
�pipi

�qiqi

�qipi
�piqi

]
(22)

More details of the conditional multivariate normal
distribution can be found in [24]. Note that the approxi-
mate normality of the real datasets used in our experi-
ments is shown in the Additional File 1.
2. Parameter estimation
The above parameters μ and Σ are computed from all
complete genes using maximum likelihood estimation.
Consequently, we can obtain the conditional probability
distribution in Equation (19).
3. Imputation
Given the CPD in Equation (19), the most likely score
for the missing replicates is given by the mean of the
distribution. Thus, the score x′

ij for missing replicate gij
in Equation (13) is imputed as an element of the sub-
vector:

x′
ipi

:= μ̄, j ∈ pi (23)

where μ̄ is computed in Equation (20).
However, the CPD allows other possible values for

estimating the scores of missing replicates, which leads
to the variation of imputation. The variance of this esti-
mate, which is modeled by the error term eij in Equa-
tion (13), is given by the diagonal elements of the
covariance matrix �̄ in (21) of the CPD:

σ̂ 2
eipi

:= diag(�̄), j ∈ pi (24)

where �̄ is computed in Equation (21).
Consequently, the imputed scores x′

ij for missing repli-
cates in Equations (13) and (14) and the estimated var-
iance of imputation σ̂ 2

eij
in Equations (13) and (15) can

be obtained using our strategy, and are used to compute
the meta-scores.
In summary, the intuition of the CPD strategy is to

impute the scores of missing replicates based on the
positive correlation between datasets, which is also the
basis of meta-analysis. We discuss the reasons why we
employ such an imputation strategy here.

1. Choice of distribution: Assuming a multivariate
normal distribution for data is a typical way to esti-
mate missing values in incomplete data, even if the
real distribution is not exactly normal [25]. The mul-
tivariate normal assumption enables the use of a
tractable conditional probability model and captures
the correlation between datasets, which is usually
present and positive when we apply statistical tests
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to multiple datasets with respect to the same type of
clinical annotation.
2. Unbiased estimation: Under the proposed model,
the imputation provides an unbiased estimate of the
scores for missing replicates (Equation (23)), which
is desirable for an accurate estimate of the popula-
tion effect size (E(eij) = 0 in Section).
3. Variation of imputation: A critical aspect of impu-
tation is how to model the instability of estimating
missing values, which is reflected as the variance of
imputation (Equation (24)). In the survey of [26], two
types of imputation, “model-based imputation”
[25,27] and “multiple-imputation” [28] dealt with this
problem by using the EM algorithm and estimating
multiple values for missing entries, respectively. How-
ever, since our model itself provides an estimate of
the imputation variance based on the CPD, this var-
iance can thus be directly used in the linear model in
Equation (13). This strategy, which includes the var-
iance of imputation as part of the model, avoids the
iterative procedure in the EM algorithm, which can
be costly for large-scale studies. Moreover, it also
avoids repeatedly applying the downstream analysis
to the multiple versions of imputed datasets that
would arise in multiple imputation. Overall, our
imputation is considered to be a “composite method”
comprising “model-based imputation” and “cold deck
imputation” [26] with a strategy of embedding the
variance in the meta-analysis model.

However, the CPD model has a potential limitation due
to the assumption of the multi-normal distribution in
Equation (18). In this assumption, the effect sizes of all
genes follow a multi-normal distribution with the same
mean (μ). This assumption may not always hold because
the effect sizes of differentially and non-differentially
expressed genes may come from different distributions.
On one hand, the number of differentially expressed
genes is relatively small in practice, and we demonstrate
its validity for imputing incomplete genes in Section 3.
On the other hand, this issue has been considered in
[10], where a mixture model was proposed for differen-
tially and non-differentially expressed genes. Thus, the
integration of a mixture model for refining the imputa-
tion stage will be investigated in our future work.
Another potential limitation of this imputation method

is the lack of modeling of the dependence between stu-
dies when estimating the true effect size in Equation (14).
Although this model has assigned a smaller weight to the
imputed effect sizes in order to compensate the variability
of imputation, the dependence caused by the CPD in
Equation (19) has not been taken into account. A topic
for future research is to establish a model that incorpo-
rates this inter-study dependence.

Comparable Methods
In addition to the algorithm described above, we have
also implemented several other methods to evaluate the
importance of including incomplete genes and properly
imputing their significance. The Hedges’ g effect size [4]
is used in all methods to compute the individual scores,
and the model described in Section is used to compute
the meta-scores. The comparable methods that we have
implemented are as follows.

1. INTERSECTION: All incomplete genes are dis-
carded as in earlier meta-analysis methods. Thus,
the candidate gene set G0 is the intersection of the
gene sets in all datasets (GI). The imputation step is
not necessary. In this case, IGM is equivalent to the
method of [6].
2. IGNORE: Both complete genes and incomplete
genes are taken into account, by simply ignoring the
missing replicates in the incomplete genes. Meta-
scores are computed based only on the observable
replicates in the incomplete genes. A typical example
of this type of method can be found in [29].

These comparable methods are designed for different
purposes. By comparing with the INTERSECTION
method, we can show the importance of including
incomplete genes. The Ignore method is also considered
because it is the simplest way of incorporating incom-
plete genes.

Evaluation Metrics
In order to evaluate the statistical significance of the dif-
ferential expression of genes, we use the false discovery
rate estimated by the permutation test [6,20] as our
metric. We also use the Gene Ontology [30] to assess
the significance of the biological processes that are
enriched in the significant genes identified by our meth-
ods. In the Additional File 1 we also consider the effect
of incomplete genes on classification accuracy.
False Discovery Rate
The false discovery rate [19] is defined as the ratio of
the number of false positives to the number of features
declared significant according to a specific ranking of
features. However, when the gold standard for the true
positives is not available, the FDR is usually estimated
from the data. In our experiments, we employed the
permutation test used by [20] and [6] to estimate the
FDR.
The idea behind this method [6,20] is to estimate the

number of false positives at a given significance level by
randomly permuting the labels of samples. We assume
that we need to estimate the FDR at the significance
level of xM (i), which is the meta-score of gi and is
ranked Ri from the most to least significant. In the bth
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permutation, the labels of samples are independently
permuted in every dataset, ensuring that the number of
samples in each class is unchanged. We then repeat the
process of meta-analysis, and produce a vector of meta-
scores xb

M(i) in this permutation. For the unpermuted
meta-score xM (i) associated with gi, the number of false
positives is estimated as the number of permuted meta-
scores greater than or equal to xM (i) in this permuta-
tion. After a total number of B permutations, the
Expected number of False Positives (EFP) is computed
as the average number of false positives across all per-
mutations. Consequently, the FDR at xM (i) is the ratio
of EFP to the number of genes declared significant at
the threshold of xM (i), which is the rank Ri.

EFP(i) =

∑B
b=1 #{xb

M(i) ≥ xM(i)}
B

(25)

FDR(i) =
EFP(i)

Ri
, i = 1, · · · , n (26)

Gene Ontology Significance
To assess the ability to identify significantly over-repre-
sented GO terms, we compute the significance of GO
terms associated with each subset of significant genes
ranked by our methods. A p-value is computed for each
GO term using Fisher’s exact test, where a small p-value
implies that this term is significantly over-represented.
In our experiments, we only consider the Gene Odon-
tology branch “Biological Process.”

Results
In this section, we first summarise the IGM algorithm
whose details are described in Section. We then apply
the IGM algorithm as well as the other approaches in
Section to three separate sets of gene expression micro-
arrays: five breast cancer datasets generated on the same
platform, three gastric cancer datasets from different
platforms and eleven different types of cancer datasets
from the same platform. By comparing their perfor-
mance in terms of the false discovery rate and the Gene
Ontology terms, we show that compared with the other
approaches IGM is more able to identify significant
genes and GO terms that have been proven to be closely
related to these cancers by the previous literature.
While our aim is to support meta-analysis across dif-

ferent microarray platforms, we first need to test the
accuracy of our approach under controlled conditions.
We achieve this in Section by analysing five breast can-
cer datasets from the same platform, where we can
simulate incomplete genes by randomly removing genes
from each dataset. In this way, we can validate the accu-
racy our method by comparing the results of meta-

analysis with and without the incomplete genes. Having
evaluated the accuracy of our approach under controlled
conditions, we then evaluate its performance on three
gastric cancer datasets that were generated on different
platforms in Section. Finally, we test our method on a
larger scale of 11 cancer datasets.

IGM Algorithm
We summarise the key steps of the IGM algorithm as
follows.

1. Input - k (k ≥ 2) gene expression microarray data-
sets GEj = (Gj, Sj), j = 1, ···, k.
2. Alignment - Calculate the union set of features in

all studies GU = ∪k
j=1Gj, n = |GU|

3. Effect sizes - Compute the effect size xij of each
feature i in study j for all features in GU .

X = [xij]n×k

4. Imputation - Impute the statistic of the missing
replicates in the above score matrix X using the
CPD method in Section. The scores matrix with
imputed significance is denoted as:

X′ = [x′
ij]n×k

5. Meta-score - Compute the meta-scores xM (i) for
all features based on the score matrix X’ using the
model in Section.

In our implementation, we have also provided an
option to filter out the features with only a small pro-
portion (e.g., 30%) of observable replicates in order to
avoid unstable imputation.
In addition, we also implemented the INTERSEC-

TION and IGNORE methods in Section by specifying
different options in the framework in Section. These
two methods are the basis of comparison with our
method in the evaluation. The main IGM program was
implemented in Matlab and the source code is provided
in the Additional File 2.

Controlled Evaluation of Accuracy in Breast Cancer
Datasets
As a first step, we need to evaluate the accuracy of our
IGM. However, this raises the question of how to mea-
sure accuracy in the absence of any ground truth of the
significance of each gene, especially for incomplete
genes. In order to generate such a ground truth for a
controlled evaluation, we have simulated missing
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replicates in five breast cancer datasets from the same
platform. In this way, we can compare the accuracy of
the meta-scores generated for each gene with simulated
missing replicate(s), by making a comparison with the
meta-scores generated where all replicates are present in
the original datasets. The meta-scores from the original
datasets with no missing replicates thus become a “gold
standard” for our evaluation, since using more samples
leads to more reliable results. The results of our evalua-
tion are presented in Section and.
Breast Cancer Datasets
We used five public breast cancer datasets from NCBI
GEO [31]: GSE2034 [32], GSE4922 [33], GSE6532
[34,35], GSE7390 [36], and GSE11121 [37], all on the
Affymetrix HG-U133A platform. The phenotype was a
binary label (< 5, ≥ 5) years to metastasis.
Simulating Missing Replicates
Assuming that the probes are missing in each dataset
independently, we randomly removed a proportion of
probes (30% in the following experiments) from each
dataset to simulate missing replicates. We then tested
each meta-analysis approach on these datasets with
simulated missing replicates. Subsequently, by compar-
ing the results with the gold standard (the gene ranking
generated on the original datasets), we can evaluate the
ability of the approach to estimate the significance of
incomplete genes.
FDR Comparison
In this section, by comparing the FDR between different
methods, we demonstrate that IGM is able to better
estimate the significance of incomplete genes than the
INTERSECTION and IGNORE methods. We first
applied the framework in Section to the original five
datasets without any missing replicates (hence, imputa-
tion is not necessary) to generate a gene ranking, and
computed the FDR using the permutation method in
Section as the gold standard for comparison. In this
case, IGM is equivalent to the method in [6]. We then
generated 100 groups of datasets with simulated missing
replicates using the approach described in Section. For
each group of datasets, we generated a ranking of all
probes using IGM as well as the other methods, and
computed the average FDR across the 100 groups of
datasets for each method. The resulting FDR (in log
scale) versus the number of probes declared significant
for the “gold standard”, IGM and the comparable meth-
ods, are shown in Figure 3. In addition, the 5% and 95%
quantiles of the FDR across all 100 simulations are
shown at several positions to demonstrate the signifi-
cance of the differences between these methods.
In our comparison, we consider that the probe rank-

ing generated on the original datasets without any miss-
ing replicates, where most information is available, is
most reliable, and we refer to this as our “gold

standard”. Note that the FDR for the gold standard is
non-zero because some genes in the original dataset are
significant just by chance.
All methods when applied to the datasets with simu-

lated missing replicates produce the same results for
complete genes; the difference between these methods is
reflected in their ability to estimate the significance of
incomplete genes.
We analyse the cause of the overestimation of the

FDR as follows. If some incomplete genes are often
assigned less significant scores by a particular method
than the significance level that they should have in the
gold standard, these genes have a greater chance to be
counted as false positives (see Section for details). In
this case, the FDR is likely to be overestimated due to
the increased number of false positives. For example, in
Figure 3 since the INTERSECTION method discarded
all incomplete genes, which is equivalent to assigning
the least significant score (e.g., p-value = 1) to them, the
FDR is overestimated compared to the gold standard. In
the Ignore method, the estimated significance of incom-
plete genes is merely determined by the observable
replicates and the inter-study correlation is neglected.
Thus, the estimated significance is likely to be distorted
by those observable values, and so the estimated FDR
deviates from the “gold standard”.
Thus, we aim to develop a meta-analysis method that

generates an FDR as close as possible to the FDR gener-
ated by the gold standard, indicating that this method is
able to precisely estimate the significance of probes even
though some replicates are missing. In this regard, our
approach outperforms the others, since it is closest to
the gold standard, and the significance of this difference
in the FDR distributions is demonstrated by Figure 3.
Gene Ontology Terms
To further compare the ability of each method to find a
more significant set of genes, we have also evaluated the
GO terms found in the five breast cancer datasets.
In this experiment, we used the probe rankings pro-

duced by the gold standard, INTERSECTION and IGM,
which are identical to the results in Section. Based on
these rankings, a subset of significant probes (FDR≤0.01)
were selected for each method and each simulation of
missing replicates. To assess the significance of enrich-
ment, we used Fisher’s exact test to compute the
p-values of GO enrichment in these significant subsets.
The Biological Process branch was used. Subsequently,
for the INTERSECTION and IGM methods, we com-
puted the geometric mean of the p-values of the GO
terms from all 100 simulations, in order to generate a
single integrated list of GO terms as a basis for compar-
ison with the terms produced by the gold standard. In
Table 1 the top four GO terms for each method are
listed.
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As with the FDR evaluation, a good meta-analysis
method is expected to reproduce the order of GO terms
generated by the gold standard as much as possible
when missing replicates are present. Before comparing
the INTERSECTION and IGM with the gold standard,
we first show that the gold standard has effectively iden-
tified the important GO terms associated with the time
to metastasis of breast cancer.
A short time to metastasis (less than five years) has

been linked to up-regulation of the genes related to cell
cycle, cell proliferation, and cell invasion [32,38]. The
significant GO terms generated by the gold standard
confirm that the up-regulation of the biological pro-
cesses related to cell cycle, such as mitotic chromosome
condensation, spindle organization, DNA replication and
DNA repair [32,38-40], the processes related to signal
transduction, such as phosphoinositide-mediated signal-
ing [32,38], and cell proliferation [40] are most strongly
associated with the short time to metastasis.
In order to statistically show the advantages of IGM,

we compared the precision and recall of the INTERSEC-
TION and IGM methods in identifying the significant
GO terms found by the gold standard. First, in order to
establish a gold standard for comparing GO terms, we
selected the true significant GO terms from the gold

standard method by setting a threshold a on the
p-values. For example, given a = 0.01, we may find a set
of GO terms in the gold standard with a p-value ≤ a,
and denote this set as G. Second, we ordered all GO
terms in the other methods, including the IGM, INTER-
SECTION and Ignore methods according to their
p-values separately. Third, for each method (IGM or
INTERSECTION), we scanned the ordered GO terms
from the most significant to the least significant, and
declared different numbers (top k) of GO terms as sig-
nificant terms (where k ranges from 1 to all GO terms).
Finally, for each number of terms declared significant k,
we compared these terms declared significant with the
true significant terms in the set G, which was previously
obtained from the gold standard, and computed the pre-
cision and recall for this k. Thus, we can generate a vec-
tor of precision-recall pairs for different values of k as a
curve shown in Figure 4. This procedure is similar to
the generation of a ROC curve.

precision =
TP

TP + FP
; recall =

TP

TP + FN
(27)

Figure 4 shows the precision-recall curves across the
ranked terms in each method, generated under the
threshold a = 0.001 and a = 0.01. The higher precision
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and recall of IGM demonstrate that IGM better repro-
duced the order of GO terms in the gold standard than
the INTERSECTION method.
Similarly, the ROC curves of GO terms can be also

generated for different thresholds. We show the com-
parison of ROC curves between the IGM, INTERSEC-
TION and IGNORE methods in Figure 5. The results
confirmed that our IGM method was closest to the gold
standard in terms of reproducing the significant GO
terms.
We have computed the correlation coefficients of the

GO terms between the IGM, INTERSECTION and
IGNORE methods and the gold standard, and the result
in the form of a scatter plot is shown in Figure 6. The
left figure shows the scatter plot of all GO terms
between the three methods and the gold standard. Our

IGM method reproduced the GO terms and their signif-
icance from the gold standard better than the other two
methods, because it achieved the largest agreement with
the gold standard (closest to the ideal diagonal line and
the highest correlation coefficient). In addition, we also
computed the agreement of the GO terms between the
IGM, INTERSECTION and IGNORE methods in the
right figure. The full list of these ranked GO terms for
all methods is provided in the Additional File 3.

Real Missing Replicates in Gastric Cancer Datasets
Gastric Cancer Datasets
We tested our IGM algorithm on three gastric cancer
datasets, which we refer to as the Australian dataset [15]
(6957 genes), the Hong Kong dataset [16] (13; 258
genes) and the Japanese dataset [17] (4974 genes). These

Table 1 Top GO Terms in breast cancer datasets

gold standard (87 terms) IGM (60 terms) INTERSECTION (2 terms) IGNORE (29 terms)

GO Term p-value GO Term p-value GO Term p-value

phosphoinositide-
mediated
signaling

3.87E-14 phosphoinositidemediated
signaling

1.24E-13 phosphoinositide
mediated signaling

2.70E-03 phosphoinositidemediated
signaling

2.44E-11

mitotic
chromosome
condensation

5.61E-13 mitotic chromosome
condensation

2.14E-11 mitotic
chromosome
condensation

5.34E-03 mitotic chromosome
condensation

1.47E-08

DNA replication 1.22E-08 spindle organization 1.48E-08 regulation of
cyclin-dependent
protein kinase
activity

1.33E-02 spindle organization 1.91E-08

spindle
organization

1.53E-08 DNA replication 1.53E-08 DNA repair 1.47E-02 DNA replication 4.13E-06

Top four GO terms that are over-represented in the set of significant probes generated by the gold standard, IGM, INTERSECTION and IGNORE methods in the
breast cancer datasets.
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three datasets were generated on different spotted
cDNA platforms and do not possess an identical set of
probes. We aligned the features by their gene symbols.
Since we focused on the signatures discriminating two
well-known subtypes of gastric cancer, diffuse and
intestinal, according to Lauren’s classification [21], only
the tumor samples were retained. The Australian dataset
has 35 diffuse samples and 22 intestinal samples, the
Hong Kong dataset has 13 diffuse samples and 68
intestinal samples, and the Japanese dataset has 5 diffuse
samples and 17 intestinal samples.
Gene Ontology Terms
We evaluated the significance of GO terms enriched in
the top ranked genes in the gastric cancer datasets. We

applied all methods to all three gastric cancer datasets,
and set a threshold of FDR ≤ 0.01 to produce a subset
of significant genes based on the resulting ranks using
each method. The FDR was estimated using the
approach in Section. We used GOstat [41] to detect the
enriched GO terms for each subset of significant genes
and to generate the corresponding FDR-corrected
p-values [19]. In Table 2 we show the top GO terms
over-represented in the groups of significant genes.
Note that the significant genes were divided into two
groups, which are prominently over-expressed in the
diffuse and intestinal subtypes, respectively.
Since a few incomplete genes were included in the sig-

nificant set and participated in some biological processes
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Figure 5 ROC of GO terms. ROC curves of GO terms in the breast cancer datasets. Left: the true significant terms are annotated from the gold
standard under the threshold 0.01. Right: the true significant terms are annotated from the gold standard under the threshold 0.1.
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closely associated with a particular subtype of gastric
cancer, such as “biological adhesion” enriched in the dif-
fuse subtype (Table 2), the genes identified by IGM
resulted in more over-represented terms that have been
validated to be related to these subtypes in the previous
literature (discussed in Section) than the INTERSEC-
TION method. Under a threshold of the corrected
p-value ≤ 0.01, IGM resulted in 73 significant terms
while the Intersection method resulted in only 20 signif-
icant terms. This result is consistent with what we
observed in the breast cancer datasets.

A Validation on 11 Cancer Datasets
In order to validate the empirical performance on a lar-
ger number of studies, we have applied our method and
the Intersection, Ignore methods to a group of 11 data-
sets with different types of cancer with the purpose of
discriminating normal and cancer samples. A similar
application can be also found in [2]. These datasets are
all publicly available in GEO [31] (GEO series numbers
are GSE781, GSE2719, GSE3868, GSE7670, GSE9476,
GSE9750, GSE14359, GSE15852, GSE19147, GSE22529
and GSE23400).
All 11 datasets were selected on the Affymetrix HG-

U133A platform in order to conduct the same evaluation
as for the breast cancer datasets. We used identical set-
tings with the experiments of the five breast cancer data-
sets except that the proportion of missing values in each
dataset was set to 10% instead of 30% in order to retain
enough features for the Intersection method. The FDR
comparison for all the methods is shown in Figure 7.
As shown in Figure 7 our IGM method still performs

better than the Intersection and Ignore methods in terms
of FDR, since it is closest to the gold standard in the
entire range. However, the performance of IGM is closer

to the Ignore method than the result for the breast
cancer datasets (Note that the left figure in Figure 7
shows the FDR for the top 10,000 features, while Figure
3 shows the FDR for the top 1000 features only. This is
because the difference between different methods is too
small for selecting a small number of features).
Due to the noise and inconsistency when the number

of studies increases, the inter-study correlation may
decrease. As a result, the imputation based on the inter-
study correlation may not be as effective as the situation
where a significant positive inter-study correlation exists
(as with the breast cancer datasets).
Thus, this might be a reason for the reduced differ-

ence between our IGM method and the Ignore method.
A previous study [10] considered the inter-study con-
cordance in order to assess whether these studies are
worthy of being integrated. Thus, as future work, we
may take into account the inter-study concordance into
the imputation step of our algorithm in order to
improve the performance in large scale studies.

Discussion
Here we discuss the biological relevance of the genes
and GO terms that are over-expressed in the diffuse and
intestinal subtypes separately.
Compared to intestinal gastric cancer, the most signif-

icant feature of the diffuse subtype is the poor differen-
tiation caused by the invasion of tumor cells to the
stroma [15,21,42].
The term “extracellular structure organization and

biogenesis” and its descendent term, “extracellular
matrix organization and biogenesis”, which are asso-
ciated with an important component of tumor invasion
and metastasis, the extracellular matrix (ECM) [43,44],
were over-represented in our experiment. In these

Table 2 Top GO terms in gastric cancer datasets

IGM INTERSECTION IGNORE

GO Term p-value GO Term p-value GO Term p-value

Diffuse

DNA metabolic process 0 regulation of mitosis 7.80E-05 regulation of progression through cell cycle 5.83E-07

cell division 0 mitotic cell cycle 1.04E-03 regulation of cell cycle 5.83E-07

cell cycle 0 mitosis 1.22E-03 regulation of mitosis 9.78E-07

mitotic cell cycle 0 mitotic cell cycle checkpoint 1.22E-03 response to
endogenous stimulus

1.11E-06

Intestinal

biological adhesion; 0 muscle contraction; 3.40E-05 biological adhesion 3.13E-07

cell adhesion; 0 muscle system process; 3.40E-05 cell adhesion 3.13E-07

muscle development; 0 muscle development; 1.35E-03 multicellular
organismal process

1.35E-05

muscle contraction; 2.80E-04 multicellular organismal process; 4.84E-03 muscle contraction 1.61E-05

Top four GO terms over-represented in the subset of genes that are prominently over-expressed in diffuse(first four terms) and intestinal (second four terms)
subtypes of gastric cancer.
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terms, aside from the genes COL4A6, COL6A2 and
COL14A1 belonging to the collagen family, Tenascin-X
(TNXB), which was described as a metastasis signature
in breast cancer [45], was also up-regulated in our
experiment but has not previously been reported for
gastric cancer. This is a potentially new discovery and
provides a focus for further investigation.
Another feature of the diffuse subtype, active cell

mobility, e.g., over-expression of Caldesmon 1 (CALD1),
stimulates the invasion and metastasis of tumor cells
[17,44]. This was reflected by the over-representation of
the term “cell mobility” and its parent “localization of
cell” in our experiment.
A few genes, such as the receptor tyrosine-protein

kinase erbB-3 (ERBB3), which is related to growth factors
[17], and dual specificity protein kinase (TTK) [46], which
is related to cell proliferation, were found to be up-regu-
lated in the intestinal gastric cancer samples. The over-
expression of these features were reflected by the over-
representation of several terms related to “cell cycle”, such
as “mitotic cell cycle” and “M phase of miotic cell cycle”.
By analysing the statistically significant terms and their

biological relevance, we observe that the gene sets iden-
tified by IGM result in more significant GO terms,
which are closely associated with particular subtypes of
gastric cancer according to the previous literature. This
demonstrates both the value of including incomplete
genes and the ability of IGM to better reproduce the
cancer related genes and the corresponding GO terms
that have been validated by the previous literature.

Conclusion
Meta-analysis has been widely used for identifying a
more robust set of differentially-expressed genes by

integrating multiple microarray datasets. However,
some genes with missing replicates, which we referred
to as incomplete genes, were neglected in previous stu-
dies. These genes may also be biologically significant
though their statistical significance is not confirmed by
all studies. In this paper, we developed Incomplete
Gene Meta-analysis for incorporating incomplete genes
into the meta-analysis. We have shown that the gene
rankings generated by IGM were able to identify more
statistically significant genes from incomplete genes in
terms of FDR, indicating the benefit of including the
incomplete genes. We also applied our algorithm and
the traditional methods to three gastric cancer data-
sets. The over-represented GO terms in each set of
significant genes implied that the subsets generated by
IGM contained more genes that were associated with
the important GO terms relevant to particular clinical
annotations in both the breast cancer and gastric can-
cer datasets. Taken together, these results indicate the
benefit in analysing the incomplete genes in addition
to complete genes, and demonstrate that IGM is able
to appropriately estimate the significance of incomplete
genes.

Additional material

Additional file 1: Supplement. The supplement contains an analysis of
the normality in the five breast cancer datasets, a correlation analysis of
the significant genes identified in the five breast cancer datasets,
significant Gene Ontology terms in the three gastric cancer datasets and
the accuracy of classification in both breast and gastric cancer datasets.

Additional file 2: Source Code. This additional file contains the source
code of the program of our IGM framework, which was implemented
using Matlab. In addition, a brief description is included to instruct the
use of this Matlab program.
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Additional file 3: Ranked GO List. This additional file contains the full
lists of GO terms which are ranked according to their significance in the
breast cancer datasets. The GO terms for the gold standard, IGM,
INTERSECTION and IGNORE methods are all included in this table.
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