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Abstract
PURPOSE—To test the hypothesis that there is increased expression of several profibrotic genes
including matrix metalloproteinase–2 (MMP-2), and -9 (MMP-9), and its inhibitors (TIMP-1 and
TIMP-2), a disintegrin and metalloproteinase with thrombospondin motif -1 (ADAMTS-1), and
fibroblast specific protein-1 (FSP-1) in a murine remnant kidney (RK) model.

MATERIALS AND METHODS—CKD was created in ten C57BL/6 male mice (20-25 g) by
performing a right nephrectomy and ligation of the upper pole of the left kidney (RK). Animals
were sacrificed at 42 and 56 days later. Real time polymerase chain reaction (RT-PCR) for
MMP-2, MMP-9, TIMP-1, TIMP-2, ADAMTS-1, and FSP-1 was performed in the RK. Histologic
evaluation of the RK was performed using Ki-67, α-smooth muscle cell actin (α-SMA),
hematoxylin and eosin, and Masson’s trichrome staining. Kidney function was assessed using
serum BUN and creatinine.

RESULTS—The mean serum BUN and creatinine levels at day 42 and 56 were significantly
higher than baseline (P <0 .05). By day 42, the mean expression of MMP-2, MMP-9, TIMP-1,
ADAMTS-1, and FSP-1 was significantly higher in the RK when compared to normal kidney
(P<0.05) and by day 56, only FSP-1 expression increased significantly higher (P<0.05). There was
increased fibrosis by Masson’s trichrome, increased Ki-67, with increased α-SMA staining in the
RK when compared to normal kidneys.

CONCLUSIONS—In the RK, there was increased fibrosis with increased α -SMA and Ki-67
staining with significantly increased expression of MMP-2, MMP-9, TIMP-1, ADAMTS-1, and
FSP-1.

Introduction
In the United States, it is estimated that more than 20 million people are affected with
chronic kidney disease affects (1). This population will increase because of the rising
prevalence of the etiologies of chronic kidney disease, including diabetes, hypertension, and
obesity (2-6). Patients with chronic kidney disease have increased cardiovascular
complication rates as well as acute and chronic renal failure requiring renal replacement
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therapy (7). Understanding the mechanisms responsible for chronic kidney disease is
important so that therapies could be developed that improve clinical outcomes in patients.

Histologic evaluation of kidneys removed from patients with chronic kidney disease
demonstrate changes consistent with angiogenesis and inflammation accompanied with
glomerulosclerosis and tubular interstitial fibrosis which is felt to contribute to the decline in
kidney function (8). It has been hypothesized that these histologic changes are caused by
changes in angiogenic and matrix regulatory proteins including vascular endothelial growth
factor-A (VEGF-A), matrix metalloproteinase (MMPs), a disintegrin and metalloproteinase
with thrombospondin motif -1 (ADAMTS-1), and others (9-16). Each of these proteins has
been found to be increased in experimental animal models and in patients with chronic
kidney disease.

In order to determine the mechanisms of chronic kidney disease, animal models have been
created in which one kidney is removed along with half of the contralateral kidney known as
the remnant kidney model. Many different animals have been used for this model including
rats, mice, rabbits, cats, dogs, baboons, and pigs (17-24). The purpose of the current report
was to determine the expression pattern of a disintegrin and metalloproteinase with
thrombospondin motif-1 (ADAMTS-1), MMP-2, MMP-9, and its inhibitors along with
fibroblast specific protein-1 (FSP-1) in a murine remnant kidney model. We used C57BL/6
mice as they are resistant to fibrosis and detonation of kidney function, which occurs in the
FVB mice (25, 26). The histologic changes in the remnant kidney were characterized.

Materials and Methods
Study Design

Appropriate Institutional Animal Care and Use Committee approval was obtained prior to
performing any procedures. The housing and handling of the animals was performed in
accordance with the Public Health Service Policy on Humane Care and Use of Laboratory
Animals revised in 2000 (27). Animals were allowed access to water and food ad libitum.
Anesthesia was achieved with intraperitoneal injection of a mixture of ketamine
hydrochloride (0.20 mg/g) and xylazine (0.02 mg/g) and maintained with intraperitoneal
pentobarbital (20-40 mg/kg). Ten male C57BL/6 mice (Jackson Laboratories, Bar Harbor,
ME) weighing 25-30 grams were used for the present study. Chronic renal insufficiency was
created by surgical removal of the right kidney accompanied by ligation of the arterial blood
supply to the upper pole of the left kidney as described previously (28). The right kidney
was used for comparison and designated as normal kidney for the PCR and histologic
analyses. The right kidney was weighed after removal. Serum BUN and creatinine were
measured by removing blood from the tail vein at baseline (before nephrectomy) and at the
time of sacrifice. The animals were sacrificed at day 42 (n=5) and 56 (n=5) later. The
animals were weighed weekly after the nephrectomy.

Tissue harvesting
At euthanasia, all mice were anesthetized as described previously and euthanized by CO2
asphyxiation and the remnant kidney harvested for RT-PCR, histologic, or protein analyses
as described previously (28, 29). The RK was removed and weighed as previously described
(28).

RNA isolation
The tissue was stored in RNA stabilizing reagent (Qiagen, Gaithersburg, MD) as per the
manufactures guidelines. To isolate the RNA, the specimens were homogenized and total
RNA isolated using RNeasy mini kit (Qiagen) (28, 29).
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Real time polymerase chain reaction (RT-PCR) analysis
Expression for the genes of interest was determined using RT-PCR analysis (29). Briefly,
first-strand complementary DNA (cDNA) was synthesized using superscript III first strand
(Invitrogen, Carlsbad, CA) according to the manufacturer’s guidelines. cDNAs specific for
the genes analyzed were amplified using primers described in Table 1 (28). PCR products
were analyzed on 1.5% (w/v) agarose gels containing 0.5-μg/ml ethidium bromide. Bands
were quantified by scanning densitometry (Image J version 1.43, NIH, Bethesda, MD). An
area of the gel image that was devoid of signal was assigned to be the background value.
Then each band representing the gene of interest was analyzed for the density above
background. Next, it was normalized to the amount of loading of mRNA to 18S gene to
ensure that there were no differences in loading and then pooled for all the animals in the
different treatment groups for each time period.

Immunohistochemistry
Hematoxylin and eosin, Masson’s trichrome, Ki-67, and α-SMA staining were performed on
5-μm thick paraffin embedded sections from the remnant kidney or control kidney using the
Vectastain Elite ABC system (Vector Laboratories, Burlingame, CA, USA) as described
previously (30, 31). The following antibodies were used: mouse monoclonal antibody Ki-67
(DAKO, Carpentaria, CA; 1:400) or rabbit polyclonal antibody to mouse for α-SMA
(Abcam, Cambridge, MA; 1:400).

Statistical methods
Data are expressed as mean ± SEM. Two groups were compared with 2-tailed unpaired
Student’s t-test. Significant difference from control value was indicated by *P < 0.05. SAS
version 9 (SAS Institute Inc., Cary, N.C.) was used for statistical analyses.

Results
Surgical outcomes

The mean body weight of the mouse at baseline was 23.2 ± 2.2 g and decreased to 20 ± 3.2 g
by 7 days after nephrectomy when compared to weight at the time of nephrectomy (P<0.05).
By day 28, the average weight had increased to 23 ± 3.2 g and by days 42 to 56, it had
increased to 25 ± 2.2 (P = NS). The right kidney at nephrectomy weighed 150 ± 15 mg. By
day 42, the average weight of the remnant kidney had increased to 180 ± 10 mg and by day
56, it was 178 ± 5 mg (P<0.05 for both time points when compared to the right kidney).

Serum BUN and creatinine changes after nephrectomy
The mean BUN and creatinine at baseline was 28 ± 5 mg/dL and 0.24 ± 0.1 mg/dL,
respectively. The mean serum BUN increased significantly by day 42 (49 ± 7.8 mg/dL) and
continued to rise by day 56 (60 ± 4.8 mg/dL) when compared to baseline (P<0.05). The
mean serum creatinine increased significantly by day 42 (0.34 ± 0.01 mg/dL) and remained
significantly elevated by day 56 (0.42 ± 0.1 mg/dL) when compared to baseline (P<0.05).
These data indicate that the mice had developed chronic renal insufficiency at day 42 and 56
after nephrectomy.

Hematoxylin and eosin with Masson’s trichrome staining in the remnant kidney at day 42
and 56

We assessed the histologic changes in the remnant kidney by performing hematoxylin and
eosin (H and E) staining on representative sections removed from the normal kidney
(column one) and the remnant kidney from day 42 and 56 after nephrectomy as shown in
figure 1. The H and E staining showed increased cellular localization in the tubular
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interstitial compartment (yellow arrows). We next assessed fibrosis by performing Masson’s
trichrome staining on representative sections removed from the normal kidney (column one)
and the remnant kidney from day 42 and 56 after nephrectomy as shown in figure 2.
Compared to the normal removed kidneys, there was an accumulation of fibrotic tissue (blue
stain, yellow arrows) in the tubular interstitial compartment of the remnant kidneys on day
42, with even greater staining on day 56. These changes are consistent with the clinical
scenario.

Ki-67 staining in the remnant kidney at day 42 and 56
Because there was increased fibrosis and cellular density, we assessed whether this was due
to an increase in cellular proliferation using Ki-67 staining which is a nuclear stain (yellow
arrow) on representative sections removed from the normal kidney (column one) and the
remnant kidney from day 42 and 56 after nephrectomy as shown in figure 3. Cells staining
positive for Ki-67 have brown colored nuclei. The normal kidney shows no evidence of
Ki-67 positive cells while there is increased staining for Ki-67 positive cells by day 42 and
56. Overall, these results indicate that there is increased proliferation in the remnant kidney
by days 42 and 56.

a-SMA staining in the remnant kidney at day 42 and 56
Finally, we assessed the increase in smooth muscle cell density by staining for α-smooth
muscle actin (α-SMA) on representative sections removed from the normal kidney (column
one) and the remnant kidney from day 42 and 56 after nephrectomy as shown in figure 4.
Cells staining positive for α -SMA are brown (yellow arrow). The normal kidney shows no
evidence of α-SMA positive cells while there is increased staining for cells staining brown
by day 42 and 56. Overall, these results indicate that there are increased cells staining
positive for α-SMA in the remnant kidney by days 42 and 56 localized to the tubulo-
interstitial compartment.

Gene expression of MMP-2 and MMP-9 in the remnant kidney at day 42 and 56
Increased expression of MMP-2 has been shown in the remnant kidney model (16, 32). We
assessed MMP-2 (Fig. 5) and MMP-9 expression (Fig. 6) by RT-PCR performed in the
normal and remnant kidney at day 42 and 56 after nephrectomy. By day 42, the mean
expression of both MMP-2 and MMP-9 in remnant kidney was significantly higher (3.32 ±
0.13 and 3.99 ± 0.2, respectively) when compared to the control kidney (1.6 ± 0.013 and
1.17 ± 0.13, respectively P<0.05). By day 56, the mean gene expression for both MMP-2
and MMP-9 had significantly decreased in the remnant kidney when compared to the
control. Overall, these results indicate that there is increased expression of MMP-2 and
MMP-9 in the remnant kidney by days 42 which decreases by day 56.

Gene expression of TIMP-1 and TIMP-2 in the remnant kidney at day 42 and 56
We assessed the changes in TIMP-1 and TIMP-2 expression using RT-PCR in the control
and remnant kidney at day 42 and 56. By day 42, the mean expression of TIMP-1 was
significantly higher (3.5 ± 0.13) when compared to the control kidney (0.3 ± 0.05, P<0.05)
(Fig. 7). By day 56, the mean gene expression for both TIMP-1 had significantly decreased
in the remnant kidney when compared to the control. In contrast, the mean expression of
TIMP-2 at day 42 was the same as control and decreased significantly by day 56 when
compared to control.

Gene expression of ADAMTS-1 in the remnant kidney at day 42 and 56
ADAMTS-1 is an inhibitor of VEGF-A and has been shown to be increased in the remnant
kidney (16, 32). We assessed the changes in ADAMTS-1 expression using RT-PCR in the
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control and remnant kidney at day 42 and 56 (Fig. 8). By day 42, the mean expression of
ADAMTS-1 in the remnant kidney was significantly higher (0.22 ± 0.02) when compared to
the control kidney (0.11 ± 0.01, P<0.05). By day 56, the mean gene expression for
ADAMTS-1 had returned to normal in the remnant kidney when compared to the control.
Overall, these results indicate that there is increased expression of ADAMTS-1 by day 42
that normalizes by day 56.

Gene expression of FSP-1 in the remnant kidney at day 42 and 56
Since there was increased fibrosis by Masson’s trichrome with increased α-SMA staining in
the remnant kidney, we assessed these changes using fibroblast specific factor-1 which is a
marker for α-SMA using RT-PCR in the remnant kidney and control kidneys at day 42 and
56 (Fig. 9). By day 42, the mean expression of FSP-1 in the remnant kidney was
significantly higher (1 ± 0.05) when compared to the control kidney (0.74 ± 0.05, P<0.05).
By day 56, the mean gene expression for FSP-1 continued to increase (2.01 ± 0.11, P<0.05)
significantly in the remnant kidney when compared to the control.

Discussion
Understanding the mechanisms of chronic kidney disease is important in developing and
selecting therapies that will improve health care outcomes. In the present paper, we
determined the gene expression of several important profibrotic genes including MMP-2,
MMP-9, TIMP-1, TIMP-2, ADAMTS-1, and FSP-1 in the murine remnant kidney. We
found that there is increased gene expression of MMP-2, MMP-9, TIMP-1, ADAMTS-1,
and FSP-1 at day 42 with continued expression of FSP-1 at day 56. We observed that the
remnant kidney undergoes compensatory enlargement by increasing the kidney weight with
tubular interstitial fibrosis and scarring that worsens over time. Finally, we observed
increased cellular proliferation with smooth muscle density in the remnant kidney when
compared to control.

Many different remnant kidney animal models have been used to study the mechanism of
chronic kidney disease (17-24). We used the murine model of chronic kidney disease to
determine the changes in several important profibrotic genes. The major advantage of the
murine model is that it enables the use of genetically altered mice to determine the
significance of these genes in chronic kidney disease. In the present study, the mice had a
significant increase in BUN and creatinine levels at day 42 and 56 after nephrectomy. The
remnant kidney exhibits compensatory enlargement with tubular interstitial fibrosis and
scarring by day 42 and 56 after nephrectomy.

There have been several hypotheses to explain the mechanisms of chronic kidney disease.
These include increased expression of proteins involved in inflammation, angiogenesis, and
extracellular matrix deposition (13, 15, 33, 34). Matrix metalloproteinase (MMPs) are a
family of extracellular matrix degrading proteinases. Several have linked aberrant MMP
and/or TIMP expression to a number of renal pathophysiology, both acute and chronic (13).
The development of progressive renal failure is mainly attributed to the formation of
extensive glomerular and tubular interstitial fibrosis (35). Tubular interstitial fibrosis is
characterized by the accumulation of mesangial matrix and fibrosis of the glomerular
basement membrane. The main constituent of the mesangial matrix and fibrosis of the
glomerular and tubular basement membrane is type IV collagen that is degraded by MMP-2
and MMP-9. The degradation of this collagen is mainly inhibited by TIMP-1 (36). The
results of present study shown that there is a significant increase in the expression of
MMP-2, MMP-9, and TIMP-1 by day 42, which decreases, by day 56 after nephrectomy. In
addition, the mean expression of TIMP-2 is significantly reduced by day 56. We suggest the
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MMP-2, MMP-9 contribute the formation of remnant kidney fibrosis and these results are
similar to those observed by other investigators (34).

ADAMTS-1 is a soluble MMP that can inhibit VEGF-A (37). There have been several
studies, which have demonstrated involvement of VEGF-A in chronic kidney disease,
diabetic nephropathy, glomerulosclerosis, and the remnant kidney model (15, 33, 34).
Furthermore, inhibiting VEGF-A function using angiostatin has shown to decrease
extracellular matrix deposition in the rat remnant kidney model (14). Recently, in a rat
kidney model of ischemia reperfusion injury, ADAMTS-1 was increased at early time points
after ischemia reperfusion while VEGF-A expression was decreased with ADAMTS-1 being
localized to the proximal tubules (16). In the present study, we observed a significant
increase in the average gene expression of ADAMTS-1 by day 42. The identification of
ADAMTS-1 being elevated in chronic kidney disease is consistent with a study by
Rumberger et al (34). In this study, nephrectomy was created in C57BL/6 mice and gene
array technology was used to identify increases in ADAMTS-1 and ADAMTS-4.

In order to explore the molecular basis for the increased expression of α-SMA and fibrosis
as observed histologically, we examined fibroblast specific protein-1, which is a marker for
α-SMA (38, 39). The mean gene expression of FSP-1 was significantly increased by days 42
and 56 in the remnant kidney when compared to the control kidneys. This is coupled by the
observation that we observed increased α-SMA staining and fibrosis in the remnant kidney.
In view of these considerations, we suggest that the temporal changes in FSP-1 expression
may contribute, at least in part, to the fibrotic profile observed in the remnant kidneys.

The mouse strain (C57BL/6) used in this study is known to be resistant against deterioration
of kidney function after nephrectomy (25, 26). The FVB mouse in the same setting has been
shown to undergo continued decline in kidney function with a majority of animals dying at
three months after nephrectomy (25, 26). We chose the C57BL/6 mice because they did not
have the increased mortality observed with the FVB mice (25, 26). It is possible that some
of the results observed in this study could be as a result of these genetic differences.

In summary, we observed several important features in the mouse model of chronic kidney
disease. There was increased mean BUN and creatinine by days 42 and 56 after
nephrectomy with increased fibrosis and α-SMA staining in the remnant kidney. In addition,
we observed increased gene expression of several profibrotic genes including MMP-2,
MMP-9, TIMP-1, ADAMTS-1, and FSP-1. Therapeutic manipulation of these genes using
knockout models will help gain further understanding of these genes in chronic kidney
disease and help develop therapies, which can reduce the progression of chronic kidney
disease.
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Fig. 1.
Hematoxylin and eosin (H and E) staining on representative sections removed from the
normal kidney (column one) and the remnant kidney from day 42 and 56 after nephrectomy.
Upper row is 10X and lower row is 40X. There is increased cellular localization in the
tubular interstitial compartment (yellow arrows).
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Fig. 2.
Masson’s trichrome staining on representative sections removed from the normal kidney
(column one) and the remnant kidney from day 42 and 56 after nephrectomy. Upper row is
10X and lower row is 40X. The normal kidney remains unaltered, while there is
accumulation of fibrotic tissue (blue, yellow arrows) in the tubular interstitial compartment,
which is present on day 42, and worsens by day 56 in the remnant kidney.
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Fig. 3.
Ki-67 staining on representative sections removed from the normal kidney (column one) and
the remnant kidney from day 42 and 56 after nephrectomy. Upper row is 10X and lower row
is 40X. Cells staining positive for Ki-67 have brown colored nuclei. The normal kidney
shows no evidence of Ki-67 positive cells while there is increased staining for Ki-67
positive cells by day 42 and 56.
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Fig. 4.
α-smooth muscle actin staining on representative sections removed from the normal kidney
(column one) and the remnant kidney from day 42 and 56 after nephrectomy. Upper row is
10X and lower row is 40X. Cells staining positive for α -SMA are brown (yellow arrow).
The normal kidney shows no evidence of α-SMA positive cells while there is increased
staining for cells staining brown by day 42 and 56.
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Fig. 5.
Average gene expression of matrix metalloproteinase-2 (MMP-2) in the remnant kidney at
day 42 and 56 after nephrectomy. Data are mean ± SEM. (*) is P<0.05.
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Fig. 6.
Average gene expression of matrix metalloproteinase-9 (MMP-9) in the remnant kidney at
day 42 and 56 after nephrectomy. Data are mean ± SEM. (*) is P<0.05.
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Fig. 7.
Average gene expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in the
remnant kidney at day 42 and 56 after nephrectomy. Data are mean ± SEM. (*) is P<0.05.
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Fig. 8.
Average gene expression of a disintegrin and metalloproteinase with thrombospondin
motif-1 (ADAMTS-1) in the remnant kidney at day 42 and 56 after nephrectomy. Data are
mean ± SEM. (*) is P<0.05.
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Fig. 9.
Average gene expression of fibroblast specific protein-1 (FSP-1) in the remnant kidney at
day 42 and 56 after nephrectomy. Data are mean ± SEM. (*) is P<0.05.
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Table 1

PCR primers

Gene Sequence Amplicon Length Cycles

MMP-2 5’ – agatcttcttcttcaaggaccggtt– 3’ (sense)
5’ – ggctggtcagtggcttggggta– 3’ (antisense)

225 35

MMP-9 5’ – gtttttgatgctattgctgagatcca– 3’ (sense)
5’ – cccacatttgacgtccagagaagaa3’(antisense)

208 35

TIMP-1 5’ – ggcatcctcttgttgctatcactg– 3’ (sense)
5’ – gtcatcttgatctcatcccgctgg– 3’ (antisense)

169 35

TIMP-2 5’ – ctcgctggacgttggaggaaagaa– 3’ (sense)
5’ – agcccatctggtacctgtggttca– 3’ (antisense)

155 35

ADAMTS-1 5’ –cattaacggacaccctgctt– 3’ (sense)
5’ –cgtgggacacacatttcaag– 3’ (antisense)

166 35

18S 5’ –agctaggaataatggaatag-3’ (sense)
5’-aatcaagaacgaaagtcggag- 3’(antisense)

150 19
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