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In choosing covariates for adjustment or inclusion in propensity score analysis, researchers must weigh the
benefit of reducing confounding bias carried by those covariates against the risk of amplifying residual bias carried
by unmeasured confounders. The latter is characteristic of covariates that act like instrumental variables—that is,
variables that are more strongly associated with the exposure than with the outcome. In this issue of the Journal
(Am J Epidemiol. 2011;174(11):1213–1222), Myers et al. compare the bias amplification of a near-instrumental
variable with its bias-reducing potential and suggest that, in practice, the latter outweighs the former. The author
of this commentary sheds broader light on this comparison by considering the cumulative effects of conditioning on
multiple covariates and showing that bias amplification may build up at a faster rate than bias reduction. The author
further derives a partial order on sets of covariates which reveals preference for conditioning on outcome-related,
rather than exposure-related, confounders.

bias (epidemiology); confounding factors (epidemiology); epidemiologic methods; instrumental variable; precision;
simulation; variable selection

Abbreviation: IV, instrumental variable.

THE PHENOMENON OF BIAS AMPLIFICATION

This commentary deals with a class of variables that, if
conditioned on, tend to amplify confounding bias in the
analysis of causal effects. This class, independently discovered
by Bhattacharya and Vogt (1) and Wooldridge (2), includes
instrumental variables (IVs) and variables that have greater
influence on exposure than on the outcome (3).

I am pleased to see that the phenomenon of bias ampli-
fication, which until recently was practically unknown to
researchers in the health sciences, has received a thorough and
comprehensive treatment byMyers et al. (4), confirming and
qualifying several theoretical predictions derived by Pearl (3)
andWhite and Lu (5). I am particularly struck byMyers et al.’s
description of the hip fracture study by Patrick et al. (6), in
which ‘‘the strength of the IV-exposure relation in this example
makes the IVeasy to identify and remove by investigators’’
(4, p. 1218). This awareness that strong predictors of expo-
sure may be a source of troublesome bias is perhaps the
most significant impact that the theory of bias amplification

has had thus far, because, as Myers et al. point out, it goes
against conventional wisdom. Hirano and Imbens (7), for
example, devote a major effort to choosing the strongest
possible predictors for propensity score inclusion, and Ru-
bin (8) regards the very idea of leaving an observed covariate
unconditioned on as ‘‘nonscientific ad hockery.’’ (See my
previous article (9) for an explanation.)

In this commentary, I supplement the discussion of Myers
et al. (4) with several observations that might shed additional
light on their conclusions, especially as they pertain to the
cumulative effect of multiple near-IV confounders, and the
problem of selecting a reasonable set of covariates from
a massive host of promising candidates.

BIAS AMPLIFICATION WITH MULTIPLE COVARIATES

Let us examine the simple IVmodel depicted in Figure 1A,
assuming a zero-mean, unit-variance standardization. If we
retrace the derivation of the association between X and Y
conditional on Z,
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E
�
Y jX ¼ xþ 1; Z ¼ z

�
� E

�
Y jX ¼ x; Z ¼ z

�

¼ c0 þ
a0b0
1� a21

; ð1Þ

we find that this formula holds not only for a perfect IV but
also for a near-IV, as the one depicted in Figure 1B (see my
previous article (3)). Allowing a confounding path to extend
from Z to Ywill only change the crude association, which will
increase from c0 þ a0b0 to c0 þ a0b0 þ a1b1 to reflect the
added confounding path X ) Z / Y.

Now consider a system of multiple confounders, such as
the one depicted in Figure 2, where each covariate intercepts
a distinct confounding path between X and Y and for which
the crude bias (without any conditioning) is

B0 ¼ a0b0 þ a1b1 þ a2b2: ð2Þ

If we condition on Z1, two modifications are required. First,
the path containing Z1 will no longer contribute to confounding
and, second, whatever bias is contributed by the remaining
paths, namely a0b0 þ a2b2, will be amplified by a factor of�
1� a21

��1
, reflecting the decreased variance of X due to

fixing Z1. Overall, the bias remaining after conditioning on
Z1 will read

B
�
Z1
�
¼ a0b0 þ a2b2

1� a21
: ð3Þ

Further conditioning on Z2 will remove the factor a2b2 from
the numerator (deactivating the path X) Z2 / Y) and will

replace the denominator by the factor
�
1� a21 � a22

�
, repre-

senting the reduced variance of X, due to fixing both Z1 and
Z2. The resulting bias will be

B
�
Z1; Z2

�
¼ a0b0�

1� a21 � a22
�: ð4Þ

We see the general pattern that characterizes sequential con-
ditioning on sets of covariates, organized as in Figure 2. The
bias B(Z ) remaining after conditioning on a set Z¼ (Z1, Z2, . . .,
Zk�1, Zk) is given by the formula

B
�
Z
�
¼ B0 � a1b1 � a2b2 � . . . � akbk�

1� a21 � a22 � . . . � a2k
� ; ð5Þ

which reveals 2 distinct patterns of progression, one represent-
ing confounding reduction (shown in the numerator) and one
representing IVamplification (shown in the denominator). The
latter increases monotonically while the former progresses
nonmonotonically, since the signs of the added terms may
alternate. Thus, the cumulative effect of sequential condition-
ing has a built-in slant towards bias amplification as compared
with confounding reduction; the latter is tempered by sign
cancellations, the former is not.

In deriving equation 5, we assumed that no Zk is a collider,
that each Zk has a distinct path characterized by ak, and that
the Zk’s are not correlated. In a general graph, where multiple
paths may traverse each Zk, B(Z) will read

B
�
Z
�
¼

B�
0

�
k
�

�
1� a#1

2 � a#2
2 � . . . � a#k

2
�; ð6Þ

where B�
0

�
k
�
represents the crude bias B0 modified by con-

ditioning on (Z1, Z2, . . ., Zk�1, Zk), and a#k is the coefficient
of Zk in the regression of X on (Z1, Z2, . . ., Zk�1, Zk). For
example, in model 5 of Myers et al. (4) (shown in Figure 3),
the crude bias is

Bð0Þ ¼ a2c1b1 þ a1b1; ð7Þ

while the bias remaining after conditioning on Z reads

B
�
Z
�
¼

a1b1
�
1� c21

�

1� ða2 þ c1a1Þ2
: ð8Þ

The numerator is obtained by setting a2¼ 0 in equation 7 and
multiplying the remaining term by

�
1� c21

�
, to account for

the effect that conditioning on Z has on the path X)U/ Y.
The denominator invokes the factor a# ¼ (a2 þ c1a1), which
is the regression coefficient of X on Z.

We see that, in this model, c1 controls simultaneously the
reduction of confounding bias and the amplification of resid-
ual bias, both caused by conditioning on Z. Myers et al. (4)
assumed that c1 controls the former only.

In examining the extent to which these results are generaliz-
able to nonlinear models, it has been shown (3) that, while in
linear systems conditioning on an IV always amplifies con-
founding bias (if such exists), bias in nonlinear systems may
be amplified as well as attenuated. Additionally, an IV may

Z U

YX

0

0

1

0

1

B)

0

A)

01

0

Z U

YX

Figure 1. A) A linear model with instrumental variable Z and con-
founderU. B) A near-instrumental variable Z that is also a confounder.
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Figure 2. A linear model with multiple covariates (Z1 and Z2) and an
unobserved confounder U.
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introduce new bias where none exists. This can be demon-
strated if we introduce an interaction term into the model of
Figure 1A, to read

Y ¼ c0X þ b0U þ dXU þ e:

With this modification, equation 1 becomes

E
�
Y jX ¼ xþ 1; Z ¼ z

�
� E

�
Y jX ¼ x; Z ¼ z

�

¼ c0 þ
a0
�
b0 þ dð2xþ 1� a1zÞ

�

1� a21
; ð9Þ

while the crude association becomes

EðY jX ¼ xþ 1Þ � EðY jX ¼ xÞ
¼ c0 þ a0ðb0 þ dð2xþ 1ÞÞ: ð10Þ

The resulting z-adjusted bias therefore reads

B
�
Z ¼ z

�
¼ B0 � a0a1dz

1� a21
;

where B0 is the unadjusted bias.
We see that, if B0 � 0 and a0a1dz > 0, we can get

jBzj< jB0j. This means that conditioning on Z may reduce
confounding bias, even though Z is a perfect instrument and
both Y and X are linear in U. Note that, owing to the non-
linearity of Y(x, u), the conditional bias depends on the value
of Z and, moreover, for Z ¼ 0 we obtain the same bias
amplification as in the linear case (equation 1).

We also see that conditioning on Z can introduce bias
where none exists. However, this occurs only for a specific
value of X,

x ¼ �ð1þ b0=dÞ=2;

a condition that yields B0 ¼ 0 and jBzj > 0.

ON THE CHOICE BETWEEN EXPOSURE-RELATED
AND OUTPUT-RELATED COVARIATES

Investigators are often faced with the need to adjust for
a large number of potential confounders; some are strongly
related to exposure, and some are more related to the output.

Since estimation efficiency usually deteriorates with the
number of covariates involved, the question arises as towhich
subset of potential confounders to measure and control for (see
discussions by Day et al. (10), Thomas and Greenland (11),
Hill (12), Austin (13), Pearl (9), White and Lu (5), Patrick
et al. (6), and Myers et al. (4)).

Figure 4 represents this choice formally, where T represents
output-related covariates, Z represents exposure-related co-
variates, and U represents unmeasured confounders. We ask
which set of variables should be chosen for adjustment: {Z},
{T} or {Z, T}. Morgan and Winship (14) raise the same
question, and they state a preference for {Z, T}.

Intuitively, since Z is ‘‘closer’’ to X, it acts more like an
instrument than T, and one would expect T to yield a lower
bias. Indeed, substituting the proper parameters for ak and bk
in equation 5 confirms this preference; the biases obtained for
Z and T are

B
�
Z
�
¼ b0a0�

1� a2Z
�; ð11Þ

and

B
�
T
�
¼ b0a0�

1� a2Zc
2
�; ð12Þ

with a clear advantage of T over Z.
As to the set {Z, T}, from equation 6 and the fact that the

coefficient of T in the regression of X on Z and T vanishes,
we conclude that conditioning on {Z, T} would have the same
bias as conditioning on Z alone. This can also be seen from
the theory of collapsibility and confounding-equivalence (15),
since X v {Z, T}jZ.

Equations 5 and 6 induce a total order on covariate sets,
which in theory can be used to determine (in linear systems)
which among several candidate sets of covariates will result,
upon adjustment, in the lowest bias. Of course, these equations
are not estimable from the data because, first, the residual bias
a0b0 is not estimable and, second, the graph structure is gen-
erally unknown. However, given a theoretically plausible
graph structure, a partial order can be derived which is inde-
pendent on the numerical values of the parameters. The idea
is to compare sets that are known to give rise to the same
numerator and for which one denominator is guaranteed to be

Figure 3. The model used by Myers et al. for studying near-
instrumental variables. The parameter c1 contributes to confounding
as well as to bias amplification.

YX

UZ

TZ

0

0 0
T

Figure 4. Adjustment for an output-related covariate (T) is preferred
to adjustment for a treatment-related covariate (Z) or both (Z, T). The
former covariate has a lower bias-amplification potential than the latter
two when U is unobserved.
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greater than the other for all values of ak. We have seen such
a preference derived in equations 11 and 12, yet a more gen-
eral condition for preferring set Tover Z can be established by
means of this logic, leading to the following rule:

A set T is preferred to Z if

1) T blocks all paths between Yand Z that do not traverse X,
and

2) T does not block all paths between Z and X.

These two conditions are clearly satisfied in Figure 4.
Complementing this partial order, Pearl and Paz (15) estab-
lished a necessary and sufficient condition for 2 sets to be
equally meritorious for bias reduction.

Thus far, our discussion has focused on adjustment and
its effect on systematic bias, yet the harmful effect of over-
adjustment on precision is not less important and has been
recognized by epidemiologists for at least 3 decades (10, 11).
Remarkably, the ordering dictated by precision considerations
coincides almost exactly with that dictated by consideration
of bias amplification. Based on a result by Hahn (16) and
assuming no unmeasured confounders, White and Lu (5)
derived a partial order on covariates in terms of the asymp-
totic variance of the effect estimand. This ordering prefers
covariates that do not constrain X—the more independent
variation there is in the exposure, the more efficient the re-
sulting estimator. The intuition is clear; the more latitude
we allow for X to swing away from its baseline value, the
fewer samples are needed to reveal the effect of that swing.
Referring to Figure 4 with a0¼ 0 (no measured confounders),
White and Lu (5) showed that the asymptotic variance of the
estimators of c0 obtained by conditioning on Talone is lower
than that obtained by conditioning on both T and Z, and the
latter is lower than that obtained by conditioning on Z alone.
This further reinforces the idea that conditioning on factors
affecting X (or their proxies) is to be avoided if possible.

CONCLUSIONS AND RELATED OBSERVATIONS

The study by Myers et al. (4) confirms the general conclu-
sions of Bhattacharya and Vogt (1), Wooldridge (2), Pearl (3),
and White in Lu (5) that 1) strong predictors of exposure
should be excluded from the analysis, 2) factors affecting
outcome (or their proxies) are safer and more effective bias
reducers than those affecting exposure, and 3) consideration
of covariate selection should be grounded in structural assump-
tions; it cannot be left at the mercy of conventional wisdom,
however entrenched.

Myers et al.’s conclusions that, under conditions prevailing
in practice, the bias-reducing potential of a near-IVoutweighs
its bias-amplification potential should be reevaluated in light
of the way that bias accumulates in sequential conditioning
over large sets of potential confounders. The fact that bias
amplification increases monotonically while confounding
reduction progresses nonmonotonically, moderated by cancel-
lation of positive and negative confounding paths, may result
in a more pronounced effect of bias amplification than the
one revealed by studying a single covariate.

The partial preference order established above on subsets
of candidate covariates, though requiring basic knowledge of

the graph structure, should not be easily dismissed. The basic
scientific knowledge required for this determination is often
far more accessible than the knowledge needed for sub-
stantiating assumptions such as ‘‘strong ignorability,’’ which
underlie much of the propensity-score practice.

A few observations should be noted concerning the use
of IVs in nonparametric models. First, IVs carry the unique
(and rarely utilized) capability of detecting the presence of
residual bias whenever a difference B0 6¼ Bz is measured.
Second, conditioning on Z has no effect whatsoever on
selection-induced bias unless selection is determined by
causes of X (3). Finally, Bareinboim and Pearl (17) have shown
that the use of an IV can, under certain weak conditions,
eliminate selection bias altogether.
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