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Abstract Extracellular nucleotides and adenosine play
important roles in inflammation. These signaling molecules
interact with the cell-surface-located P2 and P1 receptors,
respectively, that are widely distributed in the central
nervous system and generally exert opposite effects on
immune responses. Indeed, extracellular ATP, ADP, UTP,
and UDP serve as alarmins or damage-associated molecular
patterns that activate mainly proinflammatory mechanisms,
whereas adenosine has potent anti-inflammatory and
immunosuppressive effects. This review discusses the
actual and potential role of extracellular nucleotides and
adenosine in multiple sclerosis (MS).
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Introduction

Multiple sclerosis (MS) is a debilitating autoimmune
disease of the central nervous system (CNS) that leads to

progressive physical and cognitive disability. The complex
etiology of MS includes the combination of genetic,
environmental, and infectious factors. Wallerian degenera-
tion, i.e., axonal injury and death resulting from demyelin-
ation, represents the major pathological symptom of MS.
Axon degeneration is followed by the atrophy of dendrites
and neuronal cell bodies, which altogether result in local
loss of neurological function [1, 2]. Demyelination process
observed in MS patients is heterogeneous and seems to
result from either autoimmunity (i.e., the T cell-mediated or
T cell-mediated plus antibody-mediated encephalomyelitis)
or a dystrophy of the myelinating cell oligodendrocyte [3].
Prevalent evidence demonstrates that MS progression is
associated with relapsing inflammation in disease lesions
(called plaques) [4, 5]. In agreement, active plaques show
the presence of various immune cells such as T and B
lymphocytes, glial cells (microglia, oligodendroglia, and
astrocytes), dendritic cells, monocytes/macrophages, and
neutrophils. All these cells contribute to neuroinjury by
secreting a wide array of proinflammatory cytokines that
exacerbate inflammation and promote chronic astrogliosis
[6, 7]. Interestingly, although activated B lymphocytes
produce antibodies against oligodendrocytes and myelin
which manifests in the presence of oligoclonal bands in the
cerebrospinal fluid in 95% of MS patients [8], the role of
these antibodies in the etiology of MS has not been
demonstrated.

Neuroinflammation is associated with high levels of
extracellular ATP which is released from activated cells or
leaks from injured or dead cells [9]. The cells involved in
MS, i.e., neurons, glia, and immigrated immune cells, can
sense this molecule, as well as other extracellular nucleo-
tides (e.g., ADP, UTP, and UDP), via specific P2 receptors.
This family of receptors includes ionotropic P2X (P2X1-7)
and metabotropic P2Y (P2Y1,2,4,6,11–14) receptors that differ
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in respect to specificity towards nucleotides: all P2X and
P2Y11 receptors are activated by ATP; P2Y2 by ATP and
UTP; P2Y1, P2Y12, and P2Y13 by ADP; P2Y4 by UTP;
P2Y6 by UDP; and P2Y14 by UDP glucose [10]. Mounting
evidence links the release of extracellular nucleotides with
the induction of a myriad of proinflammatory responses
such as the production of inflammatory mediators and
the proliferation, differentiation, trafficking, and apopto-
sis of immune cells [6, 11]. Cells involved in MS also
express P1 receptors, namely A1, A2A, A2B, and A3, that
are activated by extracellular adenosine [12, 13]. This
molecule is produced mainly from the degradation of
extracellular ATP and ADP by the ectonucleotidases
nucleoside triphosphate diphosphohydrolases (NTPDases)
and ecto-5′-nucleotidase [14, 15]. In contrast to P2
receptors, P1 receptors generally exert anti-inflammatory
and immunosuppressive responses.

This review discusses the actual and potential roles of
extracellular nucleotides and adenosine in MS.

Role of extracellular nucleotides and P2 receptors in MS

The proinflammatory P2X7 receptor, previously known as a
death receptor or P2Z, is one of the most abundant P2
receptors in the CNS. It is expressed either by resident cells
(e.g., microglia, oligodendroglia, astrocytes, and Schwann
cells) or leukocytes infiltrating the CNS during immune
responses (lymphocytes, monocytes, and macrophages) [7,
16–18]. The biological role of P2X7 is closely associated
with inflammatory process that increases the expression of
this receptor and also generates large quantities of extra-
cellular ATP required for its activation [9, 19]. In line with
the role of P2X7 in MS, the expression of this receptor is
significantly elevated in neurons and astrocytes of MS
patients and in brain samples from rodents subjected to
experimental autoimmune encephalomyelitis, which is an
animal model of MS [20–22]. Moreover, increased P2X7-
immunoreactivities have been found in microglial cells and
macrophages of MS and amyotrophic lateral sclerosis
spinal cord [17]. Typically, the stimulation of P2X7
activates multiple signaling pathways, e.g., Ca2+ influx,
K+ efflux, mitogen-activated protein kinases, phospholipases
D, and A2, and nuclear factor kappa B [23–25], and these
next trigger a cascade of responses including the release of
proinflammatory mediators and excitatory neurotransmitters,
cell proliferation, and death.

The hallmark response resulting from P2X7 stimulation
is the maturation and release of the cytokine interleukin-1β
(IL-1β) via K+ efflux-dependent activation of caspase 1
[11, 19, 23, 26]. Several studies have demonstrated that IL-
1β released by P2X7 is secreted in the form of micro-
vesicles. Specifically, it was shown that P2X7 activation

triggers dramatic morphological changes at the plasma
membrane of monocytes, microglia, dendritic cells, and
astrocytes by inducing membrane protrusions that are
followed by shedding of microvesicles loaded with IL-1β
[27–30]. Once released, IL-1β triggers the activation of
cyclooxygenase-2 (COX-2) and inducible nitric oxide
synthase (iNOS), as well as, the production of proinflam-
matory cytokines IL-2 (IL-1β also upregulates the expres-
sion of the receptor for this cytokine), tumor necrosis factor
alpha (TNF-α), interferon-γ (IFN-γ), and IL-6 [16, 23].
These responses considerably contribute to MS. Indeed, the
products of COX-2 and iNOS increase the concentration of
glutamate to a high cytotoxic level which accelerates
neuronal injury. Specifically, the prostanoids produced by
COX-2 increase glutamate release whereas the reactive
oxygen species produced as the side-products of prostanoid
synthesis and nitric oxide generated by iNOS inhibit the
uptake of this excitatory neurotransmitter [31–33]. In
addition to glutamate, P2X7 stimulation increases the
release of glycine that is also an excitatory neurotransmitter
[16, 23, 34].

The cytokines induced by IL-1β also play a key role in
MS. For example, IL-2 stimulates the proliferation, differ-
entiation and survival of antigen-selected cytotoxic T cells.
Moreover, this cytokine is also necessary for the maturation
of regulatory T cells (Tregs) that prevent other T cells from
recognizing and reacting against “self antigens” [35]. TNF-
α is involved in the control of synaptic strength and
mediates the alteration of excitatory transmission occurring
in MS [36]. Together with IFN-γ and IL-6, this cytokine
also controls immune cell recruitment by increasing the
expression of adhesion molecules, namely intercellular
adhesion molecule-1, vascular cell adhesion molecule-1
(VCAM-1), and E-selectin, at the surface of endothelium.
Notably, natalizumab (Tysabri, Elan Pharma International
Ltd.), a monoclonal antibody directed against α4 integrin
(binds endothelial VCAM-1) expressed at the lymphocyte
surface is currently used in MS therapy. In addition, P2X7
is also implicated in N-formyl-Met-Leu-Phe (also known as
fMLF or fMLP)-induced expression of CD11b (or αMβ2, a
subunit of MAC-1) in human neutrophils which regulates
the transendothelial migration of these cells [37, 38].

P2X7 plays an important role in glial cells where,
depending on the conditions, its activation can stimulate
either proliferation or apoptosis. The former response was
observed in the monoculture of microglial cells treated with
exogenous ATP at milimolar concentration [39, 40] whereas
the latter response was exerted by repetitive receptor
activation by endogenous ATP released from astrocytes
co-cultured with microglia [41]. Interestingly, IFN-γ that
greatly potentiates ATP release from astrocytes further
increased microglial apoptosis. In addition, it was demon-
strated that the activation of P2X7 receptors can kill
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oligodendocytes in vitro [20]. This P2X7-induced response
appears to have an important role in chronic autoimmune
encephalomyelitis, where a sustained activation of P2X7
receptors leads to lesions resembling MS plaques in respect
to demyelination, oligodendrocyte death, and axonal dam-
age. In agreement with the role of P2X7 in this model,
severity of encephalomyelitis was significantly reduced
either in P2X7 knockout mice or in wild-type mice treated
with P2X7 antagonists [20, 42]. In contrast, another study
demonstrated an exacerbated experimental autoimmune
encephalomyelitis in P2X7 knockout mice which was
attributed to a loss of apoptotic activity in lymphocytes
[43]. These stark differences in the outcome of encephalo-
myelitis between studies using P2X7 knockout mice may
result from differences in phenotype of mice used. Indeed,
these studies were done with P2X7 knockout mice
generated by GlaxoSmithKline and Pfizer, respectively,
which, to our knowledge, tend to give conflicting results.
In addition to proliferation and apoptosis, P2X7 stimulation
in microglia can also activate superoxide production and
ATP release [40, 44]. The latter response subsequently
increases microglia activation by triggering intracellular Ca2+

waves in an autocrine manner. Due to well-documented and
important role of P2X7 in neuroinflammation, the antagonists
of this receptor are currently tested as potential treatments
against inflammatory diseases of the CNS [45–47].

Another ATP-activated P2 receptor involved in inflam-
mation, that could therefore play a role in MS, is P2Y11.
This receptor is expressed by granulocytes, dendritic cells
and lymphocytes [48–50]. In neutrophils, the activation of
P2Y11 protects against apoptosis and triggers chemotaxis
[51, 52]. In dendritic cells, P2Y11 controls the production of
cytokines responsible for the key innate and adaptative
immune responses, i.e., it induces the release of IL-10 and
IL-23 but inhibits the release of IL-12 and IL-27. IL-10 is a
potent anti-inflammatory cytokine that inhibits the synthesis
of multiple proinflammatory cytokines (IFN-γ, IL-2, IL-3,
TNF-α, and GM-CSF) and attenuates the antigen presentation
capacity of antigen presenting cells. IL-23 stimulates the
proliferation and increases cytotoxicity of T lymphocytes, and
also induces the release of IL-17 by T-helper cells that
subsequently triggers leukocyte recruitment. In addition, IL-
23 is necessary for the generation of T-memory cells and
autoimmunity, and thus plays a role in autoimmune diseases
such as autoimmune encephalomyelitis. IL-12 and IL-27
promote Th1 response by stimulating the production of IFN-γ
in natural killers (NK) cells and natural killer T (NKT) cells
[49]. IL-12 also enhances the proliferation, activation and
cytotoxicity of NK and cytotoxic T cells but inhibits their
IFN-γ and TNF-α secretion.

The P2Y2 receptor activated by ATP and UTP is
expressed by neurons, astrocytes, microglia and leukocytes
[53]. The expression of this receptor can be upregulated by

proinflammatory cytokines such as IL-1β [54]. Interestingly,
it is likely that P2Y2 may increase its own expression via a
positive loop mechanism involving P2Y2-dependent and
metaloprotease-induced activation of IL-1β production in
astrocytes and primary neurons. The major role of P2Y2 in
inflammation seems to be associated with cell migration.
Indeed, this receptor controls the migration of glial cells [53]
and leukocytes [55–58]. The migration of the latter cells
involves either endothelial P2Y2 receptors whose stimulation
upregulates the expression of adhesion molecules such as
VCAM-1 or leukocyte P2Y2 receptors that trigger the release
of chemokines IL-8 and MCP-1 [55, 58–60].

In agreement with an important role of ATP-activated
receptors in neuroinflammation and MS, a nonsynaptic
release of this nucleotide has been reported in the CNS that
allows communication between axons and myelinating glia
and has been shown to regulate myelination process [61].
Thus, it seems likely that the disregulation of nonsynaptic
ATP release and thus alterations in P2 receptor-dependent
neuron-to-glia crosstalk may disregulate myelination, and,
conversely, its normalization might be beneficial in MS.

The ADP-activated P2Y12 is expressed by oligodendro-
cytes, microglia and astrocytes [62, 63], and appears to play
an important role in myelination process. Indeed, there is an
inverse correlation between the decrease in P2Y12 expression
and both axonal damage and gray matter demyelination
occurring in frontal cortex during the secondary progressive
phase of MS [64]. In microglia, P2Y12 receptor plays an
important role in chemotaxis [63], and as microglia present
in MS lesions are negative for P2Y12 immunostaining [64],
it is likely that at least some of the effects described above
might be due to impeded microglia function that would
hamper debris clearance and thus either exacerbate neuro-
degeneration or hamper regeneration [65]. This is in
agreement with the role of glial cells in both destructive
and restorative phases of MS.

The UDP-sensitive P2Y6 receptor is widely expressed in
brain blood vessels (in vascular smooth muscle cells and
endothelium) and by immune cells such as microglia and
monocytes/macrophages [10]. The major role of this
receptor in inflammation is associated with the production
of the chemokine IL-8 that has a key role in inflammatory
leukocyte recruitment [58, 60, 66]. P2Y6 is also involved in
microglia phagocytosis [67].

The GPR17 receptor activated by both uracil nucleotides
and cysteinyl leukotrienes (e.g., UDP glucose and LTD4) is
expressed in neurons and a subset of parenchymal quiescent
oligodendrocyte precursor cells. This receptor appears to
act as a “sensor” that is activated upon brain injury and
participate either in neurodegeneration or remodeling/repair
response. It was shown that following brain injury,
stimulation of GPR17 increases an infract size most likely
by sensitizing CNS cells to ATP-induced death [68, 69]. At
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later stages, however, GPR17 expressed in parenchymal
oligodendrocyte progenitors induces differentiation of these
cells into mature oligodendrocytes and, thus, promotes
remyelinating process [70–72].

The role of P2 receptors in neuroinflammation is
summarized in Table 1.

Role of extracellular adenosine and P1 receptors in MS

Extracellular adenosine generally exerts potent anti-
inflammatory/immunosuppressive responses and therefore

plays an essential role in neuroprotection [73]. The neuro-
protective effects of this molecule in the CNS include:
preconditioning, increase in the level of oxygen supply/
demand ratio, control of cytokine production, and immu-
nosuppression. Importantly, adenosine also promotes neuro-
repair by stimulating cell proliferation and angiogenesis
[74, 75]. Sitkovsky and Ohta have proposed that inflam-
mation is always associated with mild hypoxia and that the
latter increases the production of extracellular adenosine as
the “stop” signal for inflammation (Fig. 1; [76]). This is
accomplished by: (1) increase in the metabolism of
extracellular ATP, (2) increase in the production of

Table 1 Role of P2 and P1 receptors in neuroinflammation and experimental encephalomyelitis

Receptor Natural agonist(s) Expression in the CNS Demonstrated and/or potential role
in the CNS

Role in experimental
encephalomyelitis (EAE)

P2X7 ATP (mM) Microglia astrocytes
oligodendroglia Schwann
cells leukocytes and
↑immunoreactivity in
neurons and astrocytes
of MS patients

Induces IL-1β maturation and
release

P2X7 stimulation causes lesions
resembling MS plaques

Regulates microglia proliferation
and apoptosis

Significantly reduced severity
of EAE either in P2X7
knockout mice or in wild-type
mice treated with P2X7
antagonists

Triggers superoxide generation and
ATP release by microglia

P2Y2 ATP and UTP Neurons, microglia,
astrocytes, and leukocytes

Controls migration of glial cells
and leukocytes

ND

Triggers the release of chemokines
IL-8 and MCP-1

P2Y6 UDP Microglia, leukocytes, and
blood vessel cells

Controls leukocyte recruitment via
IL-8 production

ND

Controls microglia phagocytosis

P2Y11 ATP and ADP Leukocytes Involved in neutrophil chemotaxis
and apoptosis

ND

Controls key immune responses of
dendritic cells

P2Y12 ADP Oligodendrocytes, microglia,
and astrocytes

Involved in myelination ND

GPR17 UDP, UDP
glucose, and
cysteinyl
leukotrienes

Neurons, parenchymal,
oligodendrocyte, and
precursor cells

Involved in neurodegeneration and
remodeling/repair processes
following brain injury

ND

A1 Adenosine Neurons, microglia, astrocytes,
leukocytes (except for T
lymphocytes), and ↓expression
in MS patients

Protects against neuroinflammation
and demyelination in patients
with MS and allergic EAE

A1 knockout mice display
increased neuroinflammation
and demyelination

Promotes tissue repair via
stimulation of neuronal growth
factor release from astrocytes

A2A and A2B Adenosine Neurons, microglia (except
for A2B), astrocytes, and
leukocyte

A2A knockout mice display an
increased production of
proinflammatory cytokines

ND

Antagonize T cell receptor
signalling and IL-2 release

A3 Adenosine Neurons, microglia, astrocytes,
and leukocytes

Induces the release of IL-6 and
CCL2 from astrocytes

ND

Decreases LPS-induced TNF-α
production by microglia and NK
activation

ND not determined
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intracellular adenosine and its transport outside the cells,
and (3) decrease in adenosine kinase activity that phos-
phorylates adenosine to AMP in physiological conditions
[77]. The (1) is possible due to, for example, increase in the
expression of the ectonucleotidases NTPDase1 and ecto-5′-
nucleotidase via induction of transcription factors Sp1 and
hypoxia-inducible factor-1 (HIF-1), respectively (see “Role
of ectoenzymes metabolizing extracellular nucleotides and
adenosine in MS”; [78, 79]). All these mechanisms can
rapidly raise the concentration of extracellular adenosine
from basal nanomolar to ~10–50 μM [80]. Adenosine acts
through the activation of four types of P1 receptors, namely
A1, A2A, A2B, and A3. A1 and A2A receptors require lower
concentrations of adenosine for activation than A2B and A3.
All P1 receptor subtypes are expressed by neurons and glial
cells except for microglia that do not express A2B [75, 80].

Among P1 receptors, the A1 receptor appears to have the
most profound neuroprotective role in the CNS. For
example, together with A3, this receptor is implicated in
brain ischemic preconditioning [75]. Moreover, A1 stimu-
lation protects against neuroinflammation and demyelin-
ation in patients with MS and allergic encephalitis [81]. In
agreement, A1 receptor knockout mice develop severe
demyelination and oligodendrocyte cytotoxicity due to
increased production of IL-1β and metalloproteinase-12
by macrophages. This finding is in line with the decreased
expression of A1 receptors in peripheral blood mononuclear
cells, microglia and macrophages from MS patients [82,
83]. The neuronal A1 receptors also contribute to neuro-
protection by inhibiting the release of excitatory neuro-

transmitters and attenuating the propagation of their
signaling [84]. In addition to neuroprotection, A1 receptors
are involved in tissue repair via stimulation of neuronal
growth factor release from astrocytes [85].

The activation of A2A and A2B receptors leads to
increase in intracellular cAMP that has a general inhibitory
effect on immune cells (Fig. 2). While prevalent evidence
indicates that the activation of A2A initiates potent anti-

Fig. 2 The role of P1 receptors in the regulation of T lymphocyte
functions

Fig. 1 The role of adenosine
and P1 receptors in
inflammation
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inflammatory responses, the role of this receptor in the
CNS remains controversial as its activation is detrimental in
cerebral ischemia but beneficial in lipopolysaccharide
(LPS)-induced meningitis [80]. The results obtained from
the model of liver injury show that A2A deletion in mice
exacerbates inflammation through increased production of
TNF-α, IL-12, and IFN-γ. Similar effects were observed in
animals treated with the A2A antagonist ZM241385 that
markedly increased severity of liver damage compared with
untreated mice [76]. The protective role of A2A receptor in
liver injury was most probably due to dendritic cells as the
stimulation of A2A in these cells inhibits the release of
proinflammatory TNF-α, IL-12, and chemokine CXCL10
but increases the release of anti-inflammatory IL-10 and
CCL17 [75]. In glial cells, the activation of A2A decreases
the induction of iNOS by LPS, IFN-γ, TNF-α and IL-1β
but increases COX-2 expression [75]. A2A stimulation also
exerts potent immunosuppressive effects on T lymphocytes
by antagonizing T cell receptor (TCR) signaling that
activates the release of cytokines (e.g. IL-2) and granules,
upregulates the expression of CD25, CD69 and Fas ligand,
and increases the cytotoxicity and proliferation of T cells [86].

As mentioned above, A2B receptor requires higher
concentration of adenosine for activation then A2A suggesting
that the former receptor may be more important in
pathological conditions where it would potentiate the
responses triggered by A2A activation. In agreement, the
functional responses of A2B in astrocytes were increased by
prior stimulation with TNF-α [87]. The activation of A2B

receptors in T cells results in the inhibition of IL-2
production [86] whereas in astrocytes, A2B, together with
A3 receptors, induce the release of IL-6 and CCL2 [88, 89].
The activation of A3 receptor was also shown to decrease
LPS-induced TNF-α production by microglia and NK
activation [86, 90].

Interestingly, in some cells, adenosine can exert opposite
biological effects depending on the activated P1 receptors. For
example, A1 stimulates astrocyte proliferation whereas A2A

inhibits this process [80]. Therefore, given that either neurons
or glial cells express all four P1 receptor subtypes, the final
effect of extracellular adenosine will depend on P1 subtype
expression level, adenosine concentration and environmental
conditions (e.g., cytokine production). The role of P1
receptors in neuroinflammation is summarized in Table 1.

Role of ectoenzymes metabolizing extracellular
nucleotides and adenosine in MS

The activation of P2 and P1 receptors is regulated by
ectoenzymes that metabolize the ligands of these receptors
[14, 15]. For example, the sequential hydrolysis of
extracellular ATP to adenosine by the enzymes ectonucleo-

tidases either terminates P2 receptor activation or promotes
P1 activation. While ATP and ADP (as well as UTP and
UDP) are hydrolyzed by NTPDases, AMP is dephosphory-
lated to adenosine by ecto-5′-nucleotidase (CD73). Some
cells also possess the enzymes ectokinases, e.g., adenosine
kinase, that have the capacity to re-synthesize nucleotides
from their degradation products, e.g. adenosine, and thus
inactivate P1 activation but promote P2 activation [15].

NTPDase1 (CD39) is a dominant ectonucleotidase origi-
nally identified as the activation marker of B lymphocytes
[14]. In the CNS, this enzyme is expressed in synaptic
membranes [91] and by microglia [7]. Moreover, also
infiltrating leukocytes express CD39, e.g., Foxp3+ Treg cells
(CD39 is used as a specific marker of this T cell subset;
[92]), activated T cells, NK cells (where its expression
increases upon activation), monocytes/macrophages and
neutrophils [12, 93]. By contributing to the production of
extracellular adenosine, NTPDase1 downregulates antigen
recognition and cytotoxic T cell activation and thus has an
important immunosuppressive role [94]. In agreement,
patients with remitting/relapsing MS have significantly
reduced numbers of CD39+ Tregs [92]. Moreover, CD39+

Tregs from MS patients display reduced capacity to suppress
IL-17 production by Th17 cells [95]. Other studies demon-
strate a key role of this enzyme in cytokine production. For
example, endogenous NTPDase1 tightly regulates P2Y2-
dependent IL-8 release by human neutrophils [96]. Endog-
enous NTPDase1 also controls the release of IL-1β by
mouse macrophages and protects these cells from ATP-
induced death [97]. Exogenous NTPDase1, i.e., apyrase, was
demonstrated to abolish IL-8 release by human primary
monocytes and IL-1α by human endothelial cells [60, 66,
98]. The studies performed with apyrase to augment the
endogenous NTPDase1 activity may reflect an in vivo
situation where hypoxia associated with ongoing inflamma-
tion upregulates the expression of this enzyme via induction
of transcription factor Sp1 [79]. In RAW macrophages, in
turn, the increase in NTPDase1 expression can be induced by
agents driving cAMP response via cAMP response element-
binding [99]. In keeping with these results, patients with
relapsing–remitting MS have an increased activity of CD39
in lymphocytes [100, 101]. This increase may represent a
protective mechanism that will decrease the activation of
proinflammatory P2 receptors and at the same time facilitate
the activation of anti-inflammatory P1 receptors.

The expression of ecto-5′-nucleotidase in the CNS was
detected in astrocytes, oligodendrocytes and microglia.
Moreover, this enzyme is also present in endothelium and
leukocytes [7]. As for NTPDase1, the expression of ecto-
5′-nucleotidase can be rapidly augmented by hypoxia via
HIF-1 [78]. Interestingly, MS patients treated with IFN-β-
1a and IFN-β-1b exhibited elevated expression of ecto-5′-
nucleotidase in serum, astrocytes and blood–brain barrier
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endothelium that suggests that these therapies target the
increase in extracellular adenosine [102, 103].

Another ectoenzyme involved in MS is adenosine
deaminase (ADA). This enzyme terminates P1 receptor
activation by degrading adenosine to inosine and its activity
was detected in thymus, lymphoid tissue and T lymphocytes
[15, 104]. In agreement with the expression pattern,
adenosine deaminase controls the growth, proliferation,
differentiation and transendothelial migration of lympho-
cytes. In keeping with the role of this enzyme in MS,
lymphocytes from patients with relapsing-remitting and
secondary progressive MS exhibit a markedly reduced
adenosine deaminase activity. The dampened expression of
ADA in MS lymphocytes may facilitate the infiltration of
these cells in the CNS [86, 100, 105].

Summary

As reviewed above, mounting evidence allows to link the
actions of extracellular nucleotides and adenosine with the
etiology of MS. The multifaceted role of these molecules in
immune responses including the release of cytokines and
excitatory neurotransmitters, cell trafficking, cell prolifera-
tion and death, myelination, immunosupression, etc., opens
a variety of new avenues for treatments against this
debilitating disease. Moreover, we are currently testing the
hypothesis whether extracellular nucleotides or adenosine
measured in cerebrospinal fluid could serve as the early
biomarkers of MS or the markers of the transition from
remitting–relapsing MS to treatment-resistant secondary
progressive MS ([106] and work in progress).

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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