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Abstract It is proposed that ATP is released from both
neurons and glia during electroconvulsive therapy (ECT) and
that this leads to reduction of depressive behaviour via
complex stimulation of neurons and glia directly via P2X
and P2Y receptors and also via P1 receptors after extracellular
breakdown of ATP to adenosine. In particular, A1 adenosine
receptors inhibit release of excitatory transmitters, and A2A

and P2Y receptors may modulate the release of dopamine.
Sequential ECT may lead to changes in purinoceptor
expression in mesolimbic and mesocortical regions of the
brain implicated in depression and other mood disorders. In
particular, increased expression of P2X7 receptors on glial
cells would lead to increased release of cytokines, chemo-
kines and neurotrophins. In summary, we suggest that ATP
release following ECT involves neurons, glial cells and
neuron–glial interactions acting via both P2 and after
breakdown to adenosine via P1 receptors. We suggest that

ecto-nucleotidase inhibitors (increasing available amounts of
ATP) and purinoceptor agonists may enhance the anti-
depressive effect of ECT.
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Introduction

Electroconvulsive therapy (ECT), the therapeutic applica-
tion of electricity to the scalp, has been used in the
treatment of psychiatric disorders for more than 60 years
[1]. It is now well established and considered one of the
most effective methods for treating major depression [2]
and catatonic schizophrenia [3]. Major depression is a
debilitating condition that includes a range of symptoms
and results from the contribution of multiple genetic and
environmental factors [4]. It has been claimed that a
depressive state can be characterized by abnormalities in
the functions of monoaminergic neurotransmission, of the
hypothalamic-pituitary-adrenocortical system or of neuro-
trophin and cytokine activities in genetically predisposed
individuals that have endured the impact of stress or
infection [5]. There have been numerous studies to
elucidate the precise mechanism of action of ECT thought
to include generalized seizures, normalization of neuroen-
docrine dysfunction and increased hippocampal neuro-
genesis and synaptogenesis [6], but a definitive candidate
remains to be found. A multitude of neurotrophic factors,
hormones, neuropeptides [7–9] and neurotransmitters and
their receptors [10] have all been implicated. The use of
ECT has been questioned, due to the experience of side
effects in some patients (e.g. retrograde and anterograde
amnesia), and its efficacy may depend on the aetiology of
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the depression and also the placement of the electrodes. We
hypothesize that purines, and their receptors may be central
to the clinical results observed as a result of ECT.
Following the characterization of adenosine (ADO) and
adenosine 5′-triphosphate (ATP) receptors, the field of
purinergic signalling has become well established [11].
Recent findings suggest that ATP, its breakdown products
and receptors are key players in pathological states both in
the central nervous system (CNS) [10] and elsewhere [11].
There is also emerging evidence that purines are involved
in mood and motivation [10].

Supporting evidence

Modulation of synaptic transmission by ATP
and its metabolites

The concept of purinergic neurotransmission was intro-
duced over 40 years ago when ATP was shown to be a
transmitter in non-adrenergic, non-cholinergic inhibitory
nerves in the guinea pig taenia coli [12]. It has since been
shown to be a co-transmitter in both the peripheral and
central nervous systems [11]. ATP acts as a fast excitatory
neurotransmitter [13] and is taken up by and stored possibly
in all secretory and synaptic vesicles [14]. It is known to be
stored and co-released with γ-aminobutyric acid, glutamate,
noradrenaline and dopamine within the CNS [14].

ATP and its metabolites act upon two classes of receptors
that are expressed throughout the CNS. ADO, a breakdown
product of ATP, acts upon P1 membrane receptors that are

further sub-classified into A1, A2A, A2B and A3 receptors.
ATP acts upon P2 receptors, which are further divided into
ionotropic P2X and metabotropic P2Y receptors [11]. There
are seven P2X ligand-gated ion channel receptor subtypes
and eight P2Y G protein-coupled receptor subtypes [11].
ADO activates P1 receptors leading to activation of mitogen-
activated protein kinases and can modulate neuronal and glial
signalling [15]. P2X subunits are heterogeneously expressed
throughout the CNS [14], and synaptic currents, mediated
through activation of P2X receptors, are present in CNS
regions, such as the cortex and the hippocampus [11, 14].

In addition to direct and paired release from neurons,
there is increasing evidence that purines play a significant
role in glial neurotransmission [gliotransmission] [16].
Immunocytochemical studies have demonstrated that ve-
sicular ATP and glutamate are contained within astrocytes
[16]. Release of ATP from astrocytes, for example from in
vitro culture preparations [17] and acute slices [18], results
in neuronal excitation through activation of P2X receptors
(for review, see [19]). Activation of P2X7 receptors on
these neurons can also cause an enhancement of AMPA
receptor surface expression, and a resulting increase in
miniature excitatory post-synaptic currents [16]. ADO,
produced as a result of hydrolysis from ATP, can give rise
to an inhibitory response through activation of A1 receptors
[17] (see Fig. 1). Interestingly, the synthesis and release of
neurotrophins, cytokines and chemokines in glial cells is
also controlled by purine receptors. All four ADO (P1)
receptor subtypes and P2X7 and P2Y receptors have been
shown to be expressed on glial cells [11, 19]. These
receptors have varying affinities to their ligands, and it is

Fig. 1 Schematic hypothesis of purinergic signalling in electrocon-
vulsive therapy. During electroconvulsive therapy, ATP is released
from astrocytes, neurons and vascular endothelial cells. The ATP acts
upon P2X7, P2Y1 receptors and also P1 receptors after the
extracellular breakdown of ATP to ADO. Activation of P2X7 and

ADO receptors on glial cells results in increased release of cytokines,
chemokines and neurotrophins, which act upon neurons in regions
involved in the control of mood and motivation. Stimulation of P2Y
receptors may modulate the release of dopamine (DA), glutamate
(Glut) and nitric oxide (NO) all implicated in control of mood
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possible that different receptor subtypes are selectively
activated in a concentration-dependent manner. Varying
concentrations of extracellular purines can therefore pre-
cisely regulate the release of different neurotrophins or
chemokines from glial cells.

Purinergic signalling in mood and motivation

ATP

The stimulation of P2X and P2Y receptors has been
implicated in sensitization, reward and motivation [20].
Stimulation of P2 receptors in rats has demonstrated
extended periods of novelty-induced locomotion indicative
of an anxiolytic effect [21]. Intracerebroventricular injections
of a P2Y1 receptor agonist into rats has demonstrated an
anxiolytic effect, which is in close relationship with the
ensuing formation and release of dopamine [21] and nitric
oxide [22], known to modulate noradrenaline, serotonin,
dopamine and glutamate, the major neurotransmitters in-
volved in the neurobiology of major depression [23]. It has
been shown that P2Y1 receptor agonists induce an antide-
pressant effect in a rat model of depression, which was
reversed by P2Y1 receptor antagonists [24]. The authors
showed further that P2Y1 receptor knockout mice displayed
decreased depression-like behaviour. P2 receptors of the
mesolimbic-mesocortical system, probably of the P2Y1

subtype, are involved in the release of transmitters such as
dopamine and glutamate, which are responsible for the
generation and pattern behaviour following motivation-
related stimuli [25]. P2X7 receptor knockout mice exhibited
an antidepressant-like profile [26]. Additionally, gene studies
in patients with recurrent major depressive illness [27] and
bipolar-effective disorder [28] have demonstrated a specific
single nucleotide polymorphism involving the P2X7 recep-
tor. Changes in the expression of the P2X7 receptor are not
unique to disorders of mood; there is a large body of
evidence to suggest increased expression in microglia and
other cell types in multiple CNS disorders [29–31].
Depression is considered to be associated with central
inflammation [32] and P2X7 receptor occupation leads to
release of inflammatory cytokines [33]. The role of the P2X7
receptor in depression and its involvement with central
inflammation requires further study.

Adenosine

Adenosingeric activity has been implicated in mania,
aggression and panic disorder [34, 35]. ADO is also
thought to interact with other potent mood regulators: the
psychotomimetic phencyclidine and alcohol [10]. ADO and
dopamine receptors share an extensive co-localisation
within the forebrain regions implicated in mood and

motivational processes, and there is considerable evidence
that A2A receptor activation is able to influence dopami-
nergic function [36] and hence mediate goal-directed
behaviour [37]. There is attenuation of psychostimulant-
induced behavioural responses in mice lacking A2A

receptors [38]. A2A and dopamine receptor knockout mice
exhibit decreased preference and consumption of ethanol
and saccharin [37], more so than those of D1 knockout
mice. In A1 receptor knockout mice, there is an increased
state of anxiety [39]. Indeed, selective stimulation of the A1

receptor in rats impairs the acquisition of fear conditioning
[40]. ADO has been demonstrated to act as an antidepres-
sant when either given by intraperitoneal or intracerebro-
ventricular routes in mouse models of depression [41],
acting via A1 and A2A receptors, and high doses of caffeine,
a non-selective ADO antagonist, can produce anxiety,
irritability and agitation [42]. There is conflicting evidence
to suggest that both A2A receptor agonists [41] and
antagonists [43] have an antidepressant effect in mouse
models of depression; this conflict may reflect that where
A2A receptors are claimed to have an antidepressant effect,
this is believed to occur only following an interaction
between A1 and A2A receptors [41]. Indirect evidence for
the role of ADO in major depression is also suggested by
the finding that serum activity of adenosine deaminase (a T-
cell-associated enzyme) was decreased in patients with
major depression, with an inverse relationship between the
enzyme activity and the severity of the depression [44].
This supports a role for ADO having a depressant effect,
since less enzyme results in greater ADO concentrations.
These results also suggest that decreased enzyme activities
might reflect that depressed patients may have a greater
tendency to immune dysfunction.

Putative role of ECT on purinergic signalling in mood

We hypothesize that high levels of ATP are released
following ECT, from microglia [19], neurons [45] and
vascular endothelial cells [11], resulting in improvement in
depressive symptoms through direct stimulation of pre- and
post-synaptic purinoceptors that modulate neuronal and
glial signalling (see Fig. 1). Pronounced increases in brain
ADO levels in mice following electroconvulsive shock in
rats has been shown [46], which would occur following
breakdown of released ATP. In cases where ECT does not
alleviate depression, this may reflect different aetiologies of
the depression and also the placement of the electrodes and
the amount of ATP released following the seizure. Sequen-
tial ECT may herald changes in pre- and post-synaptic
purinergic receptor profiles, and it is these changes that are
fundamental to the long-term benefits of ECT in major
depressive illness. For instance, P2Y1 receptors inhibit
long-term depression of rat prefrontal cortex neurons [47],
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and synaptic plasticity may underlie the long-term benefits
of ECT in depression. An important aspect of the
physiological effect of ECT is the induction of a seizure-
like state, and it is recognized that seizures give rise to
increased levels of extracellular ATP [2, 11, 48, 49]. We
suggest that this released pool of ATP following ECT is
derived, in part, from astrocytes through connexin hemi-
channels [50] and directly from neurons throughout the
brain. ATP is also released from astrocytes via connexin or
pannexin hemichannels, ABC transporters, maxi ion chan-
nels or by vesicular release [19, 51, 52]. There is also
evidence that ATP may be released from vascular endothe-
lial cells in addition to neurons and glial cells [53]. Once
released into the extracellular space, ATP and its breakdown
product ADO have a multitude of targets (see Fig. 1),
which can improve mood and motivation. Extracellular ATP
is co-released in conjunction with dopamine [54, 55] within
the mesolimbic-mesocortical system, and ATP may reduce
anxiety and depression through stimulation of P2X7
receptors, the gene for which has been associated with
major depressive disorder [27]. ECT is associated with an
increase of ADO (after breakdown of ATP) and up-
regulation of ADO A1 receptors in the brain [56].
Activation of pre- and post-synaptic A1 receptors by ADO
can cause inhibition of NMDA receptor activation [57],
which in turn has been shown to exert an antidepressant
action in both pre-clinical and clinical studies[58]. At the
simpler level, increased concentrations of ADO as a result
of ATP hydrolysis may relieve depression [44]. Released
ATP may also stimulate glial cells to release neurotransmit-
ters, neurotrophins, cytokines and chemokines [59–61] (see
Fig. 1), which can give rise to long term changes in
neuronal circuitry, such as synaptic plasticity (long-term
potentiation/long-term depression) and up-regulation/down-
regulation of receptors [62, 63] (i.e. more long-term effects
of ECT). The use of ecto-nucleotidase inhibitors (e.g. ARL
67156 (Sigma)) to increase extracellular ATP may be a
potential novel therapeutic strategy to supplement ECTs
long-term effects [64, 65]. P2X7 receptor agonists, such as
the potent agonist 2′,3′-O-(benzoyl-4-benzoyl)-ATP, may
also offer therapeutic potential.

Future developments

The effect of ATP release following ECT is multifaceted;
neuronal, glial and neuronal-glial signalling is implicated.
The proposed hypothesis for this mechanism has the
advantage that the tools are available so that every step
can be tested both in vivo and in vitro. Very sensitive ATP
assay techniques are now available, as well as some
selective purinoceptor subtype agonists and antagonists.
Increase of extracellular ATP during ECT by the use of

ecto-nucleotidase inhibitors as well as purinoceptor ago-
nists may be worth consideration to enhance the anti-
depressive effects of ECT.
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