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Abstract
Epidemiological studies have implicated stress (psychosocial and physical) as a trigger of first
onset or exacerbation of irritable bowel syndrome (IBS) symptoms of which visceral pain is an
integrant landmark. A number of experimental acute or chronic exteroceptive or interoceptive
stressors induce visceral hyperalgesia in rodents although recent evidence also points to stress-
related visceral analgesia as established in the somatic pain field. Underlying mechanisms of
stress-related visceral hypersensitivity may involve a combination of sensitization of primary
afferents, central sensitization in response to input from the viscera and dysregulation of
descending pathways that modulate spinal nociceptive transmission or analgesic response.
Biochemical coding of stress involves the recruitment of corticotropin releasing factor (CRF)
signaling pathways. Experimental studies established that activation of brain and peripheral CRF
receptor subtype 1 plays a primary role in the development of stress-related delayed visceral
hyperalgesia while subtype 2 activation induces analgesic response. In line with stress pathways
playing a role in IBS, non-pharmacologic and pharmacologic treatment modalities aimed at
reducing stress perception using a broad range of evidence-based mind-body interventions and
centrally-targeted medications to reduce anxiety impact on brain patterns activated by visceral
stimuli and dampen visceral pain.
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Introduction
Visceral hypersensitivity reflected by enhanced perception of physiological signals from the
gut and/or enhanced perception of experimental visceral stimuli along with hypervigilance
to those, is commonly considered to play a major role in the pathophysiology of irritable
bowel syndrome (IBS) (Choung et al., 2009; Elsenbruch et al., 2010a; Elsenbruch et al.,
2010b; Lackner et al., 2010; Mayer et al., 2008; Posserud et al., 2004; Shen et al., 2009).
Epidemiological studies have implicated stress (psychosocial and physical) as a trigger of
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first onset or exacerbation of IBS symptoms (Blanchard et al., 2008; Dufton et al., 2008;
Mayer et al., 2001). Over the past 15 years, various animal models have been developed to
get insight into the underlying mechanisms of visceral hypersensitivity and the influence of
stress on visceral pain pathways (Barreau et al., 2007b; Larauche et al., 2009a; Mayer et al.,
2008; Qin et al., 2011; Yarushkina, 2008). In this review we will outline the recent
development in stress pathways and mediators, how they contribute to stress modulation of
visceral pain mechanisms, and the clinical relevance of these preclinical studies to unravel
potential molecular targets to alleviate pain symptoms in IBS.

Stress: pathways and mediators
The term “stress” was first coined by the endocrinologist Hans Selye more than 70 years ago
to define the physiological adaptive responses to emotional or physical threats (“stressors”)
to the organism, whether real or perceived (Selye, 1936). When exposed to an acute
threatening challenge, the body engages a “fight or flight” response as described originally
by W. Cannon (Cannon, 1915) in 1915 which is driven by sympathetic activation leading to
rapid heart rate and respiration, increased arousal, alertness, and inhibition of acutely non
adaptive vegetative functions related to feeding, digestion, growth and reproduction (Selye,
1936). Concurrently, a negative feedback is activated to limit the stress response and bring
the body back to a state of homeostasis or eustasis (Chrousos, 2009) through activation of
neural, neuroendocrine and immune mechanisms, a process called allostasis (McEwen,
1998) or “stability through changes” (McEwen, 1998; Sterling and Eyer, 1988). However, if
the stressor persists and becomes chronic, the body enters a resistance phase and tries to
adapt to the strains and demands of the environment by engaging coping mechanisms. When
the severity and/or chronicity of the stressors are exceeding the limits, and the adaptive
system becomes defective or excessive, the organism is no longer brought back to basal
homeostasis leading to a state of allostatic load (McEwen, 1998; McEwen and Stellar, 1993)
recently also named “cacostasis” (Chrousos, 2009). This state is harmful to the organism and
lies at the origin of a variety of stress-related diseases that develop in the context of a
vulnerable background (genetic, epigenetic and/or constitutional) (Chrousos, 2009). The
pathogenesis of stress-induced disorders affects the whole body, including the viscera of
which the gastrointestinal (GI) tract is a sensitive target (Chrousos, 2009; Stengel and Taché,
2010).

In recent decades, the biochemical coding of the stress response was unraveled through the
identification of the 41 amino acid peptide, corticotropin releasing factor (CRF), and related
peptides, urocortin 1, urocortin 2 and urocortin 3 along with the characterization of CRF
receptors CRF1 and CRF2 which display specific affinity for CRF and related agonists
(Hauger et al., 2003). Activation of CRF receptors underly the various biological
components of the stress response (Bale and Vale, 2004; Koob and Heinrichs, 1999; Stengel
and Taché, 2010). Indeed, hypothalamic CRF was established to play a pivotal role in the
activation of the hypothalamic-pituitary-adrenal (HPA) axis. When a stressor is perceived, a
convergence of stimulatory inputs from different brain regions (amygdala, prefrontal cortex,
pons, medulla) activates the paraventricular nucleus of the hypothalamus which releases
CRF and arginine-vasopressin into the hypophyseal portal system. There, CRF binds to
CRF1 receptors located on corticotrope cells of the pituitary gland to release the
adrenocorticotropic hormone while arginine-vasopressin interacts with vasopressin1b
pituitary receptor to potentiate adrenocorticotropic hormone release leading to
glucocorticoids secretion from the adrenal glands. Corticosterone (rodent)/cortisol (human)
exert a negative feedback on the paraventricular nucleus of the hypothalamus and pituitary
gland ultimately contributing to the termination of the response (Turnbull and Rivier, 1997).
Far beyond an exclusive neuroendocrine role, CRF, which is widely distributed outside of
the hypothalamus (De Souza and Grigoriadis, 2002), also acts as a neurotransmitter/
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neuromodulator to coordinate the behavioral, autonomic, immune, and visceral efferent
limbs of the stress response (Bale and Vale, 2004; Caso et al., 2008; Friedman and Irwin,
1995; Taché et al., 2001). For instance brain CRF activates the sympathetic nervous system
inducing the systemic release of catecholamines (adrenaline and noradrenaline) involved in
the ”fight or flight” response (Tsatsanis et al., 2007; Usui et al., 2009; Yorimitsu et al.,
2008). The locus coeruleus is also activated and its noradrenergic projections to the
forebrain provide an additional source of noradrenaline which contributes to the arousal and
alertness (Valentino et al., 1993). Convergent preclinical evidence has accumulated over the
years suggesting that stress-related alterations of colonic motor and visceral functions are
primarily mediated by the activation of brain CRF/CRF1 signaling pathway, while CRF2
receptor activation may exert a counteracting influence (Fukudo, 2007; Million et al., 2005;
Million et al., 2006; Taché and Brunnhuber, 2008). However, recent experimental and
clinical studies point to an equally important contribution of the peripheral CRF/CRF1
signaling locally expressed in the gut to the GI stress response (Larauche et al., 2009a;
Larauche et al., 2009b).

Visceral pain pathways
The perception of pain in peripheral tissues depends on the transmission of a signal from the
site of pain origin to a number of distinct regions in the cerebral cortex. This pain signal is
subject to modulation at every step of its travel to and from the central nervous system
(CNS) (Anand et al., 2007). In the periphery, pain is transmitted by the activation of
nociceptors (receptors activated by noxious stimuli) (Basbaum et al., 2009), located in two
sets of primary afferent fibers innervating the viscera that project to distinct regions in the
CNS (Sengupta, 2009). The GI tract innervation from the esophagus to the transverse colon
is provided by vagal afferent fibers originating in the nodose ganglia and projecting centrally
to the nucleus of the solitary tract. The remaining part of the large bowel (descending and
sigmoid colon, rectum) is innervated by pelvic nerve afferent fibers, originating in the
lumbosacral dorsal root ganglia, and projecting centrally to the sacral spinal cord. Due to
their anatomical association with parasympathetic nerves, those are often qualified of
parasympathetic afferents. The entire GI tract is also innervated by afferent fibers in the
splanchnic nerves projecting to the thoracic 5- lumbar 2 segments of the spinal cord, which
are qualified of sympathetic afferents due to their anatomical association with sympathetic
nerves (Robinson and Gebhart, 2008). Visceral afferents which constitute only 10% of all
afferents are present in the mucosal epithelium, serosa, muscles and myenteric ganglia, and
are able to monitor changes in the gut milieu and participate in the transmission of visceral
sensory information (Blackshaw et al., 2007; Grundy, 2002). While vagal afferents do not
encode painful stimuli, it is well established that changes in their activity can modulate
nociceptive processing in the spinal cord and the brain (Grundy, 2002; Ness et al., 2000;
Randich and Gebhart, 1992).

Upon entering the dorsal horn, visceral afferents terminate in spinal cord laminae I, II V and
X (Sugiura et al., 1993). Visceral information carried out by the pelvic and splanchnic
nerves converges onto spinal neurons in the lumbosacral segments and thoracolumbar
segments respectively. Lumbosacral segments appear sufficient to process reflex responses
to acute visceral pain. In contrast, the involvement of thoracolumbar segments in normal
visceral sensation is uncertain (Wang et al., 2005). Both segments process inflammatory
stimuli (Wang et al., 2005). Interestingly, activity in pelvic nerve colonic afferents inhibits
thoracolumbar dorsal horn neuron processing of the same colonic stimulus through a
supraspinal loop: homovisceral descending modulation (Wang et al., 2007). In addition to
the well known ascending pathways involved in the transmission of nociceptive information
including the spinothalamic tract, the dorsal column pathway was recently found to have a
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major role in relaying visceral nociceptive information (Al-Chaer et al., 1996; Palecek,
2004; Willis, Jr. and Westlund, 2001).

Subpopulations of neurons within the dorsal horn project to discrete nuclei within the
thalamus (i.e. ventral posterior lateral thalamus) as well as other structures in the brain stem
(parabrachial nucleus, periaqueductal gray). From the thalamus, the information is conveyed
to cortical areas involved in sensory processing (such as the somatosensory cortex) or those
involved in processing emotional or affective information (such as the anterior cingulate
gyrus and insular cortex) (Basbaum et al., 2009; Price, 2002).

In addition to the ascending system, which enables pain perception described above, there is
evidence of neural circuits originating from supraspinal sites that influence nociceptive
activity in the spinal cord and in primary afferents, a system referred to as descending
pathways (Heinricher et al., 2009). There are two types of descending control pathways:
inhibitory and facilitatory. Descending inhibitory control pathways recruited to inhibit the
pain response and produce analgesia include the periaqueductal gray and the locus coeruleus
(Tsuruoka et al., 2010). Descending facilitatory control pathways include the rostroventral
medulla and its two populations of neurons: one that stops firing immediately before the
initiation of a nociceptive reflex - “OFF cells” and is involved in antinociception and
another that begins firing immediately prior to the initiation of a nociceptive reflex - “ON
cells” leading to facilitation of pain (Heinricher et al., 2009; Martenson et al., 2009).

Lastly, there is also critical evidence that the modulation of the nociceptive response can
occur at afferent peripheral terminals and involves the sympathoadrenal and hypothalamic-
pituitary-adrenal axes. Antinociception is provided by inhibitory peptides such as β-
endorphin and enkephalin released by the pituitary and the adrenal medulla as well as
immune cells (Busch-Dienstfertig and Stein, 2010; Stein et al., 1995). In contrast, an
increase in nociception is mediated by adrenaline released from the adrenal medulla (Khasar
et al., 2005; Khasar et al., 2009).

Clinical evidence of stress-related visceral pain modulation
Stress and IBS – impact on symptoms—A predominant role of stress in the
pathophysiology, presentation and treatment outcome in clinical pain states, in particular
functional gastrointestinal disorders such as IBS, has been well documented (Bennett et al.,
1998; Gwee et al., 1999; Kearney and Brown-Chang, 2008; Monnikes et al., 2001).
Epidemiological data have shown that a history of early adverse life events in the form of
emotional, sexual, or physical abuse is a major predisposing factor for the development of
IBS later in life (Chitkara et al., 2008; Videlock et al., 2009). Childhood trauma, especially
in genetically predisposed individuals, is thought to induce persistence changes in the central
response system, including the HPA axis (Videlock et al., 2009). Additionally, it may cause
epigenetic programming of glucocorticoid receptor expression that affects behavioral
adaptation and susceptibility to stress-related disorders (Chrousos, 2009). In adult IBS
patients, the illness experience, health care-seeking behavior, and treatment outcome are
adversely associated with acute stress episodes, chronic social stress, anxiety disorders, and
maladaptive coping style (Leserman and Drossman, 2007; Videlock et al., 2009). Stress-
related psychosocial factors like somatization, neuroticism, and hypochondriasis are also
important predictors in the development of postinfectious IBS (Gwee et al., 1999; Spiller
and Garsed, 2009a).

Autonomic disturbances—At the autonomic nervous system level, stress-related
disturbances characterized by the decreased parasympathetic activity and increased
sympathetic outflow frequently occur in IBS patients (Jarrett et al., 2003; Spaziani et al.,
2008). Increased sympathetic tone has been shown to raise the level of perception to
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gastrointestinal stimuli (Azpiroz, 2002). Stress can affect different aspects of visceral pain
including referred pain area, as well as accompanying motor and autonomic reflexes
(Cervero, 2009). In fact, in IBS patients aberrant viscerosomatic referral has been reported
(Mertz et al., 1995). Alterations in the somatic nociceptive flexion (RIII) reflex indicating
the presence of hyperexcitability of spinal nociceptive processes have been also shown in a
large subgroup of IBS patients undergoing rectal distension (Coffin et al., 2004). Autonomic
dysfunction, in particular lower parasympathetic activity, has been also suggested to
represent the physiological pathways accounting for many extra-intestinal symptoms
occurring in IBS patients and the frequent overlap with other chronic pain disorders such as
fibromyalgia, chronic pelvic pain, chronic fatigue syndrome, migraine headache as well as
psychiatric disorders (Jarrett et al., 2003; Mayer and Tillisch, 2011; Mulak and Bonaz, 2004;
Palsson and Drossman, 2005; Warnock and Clayton, 2003; Whitehead et al., 2002).

Central mechanisms—The processing and evaluation of sensory information,
particularly of noxious stimuli, has been confirmed to have important cognitive,
motivational and emotional components, all of which are likely affected by psychological
stress (Mayer et al., 2001; Van Oudenhove et al., 2007). In IBS patients hypervigilance
expressed as an increased psychological tendency to report pain, which is in turn associated
with psychological distress, is considered as an essential contributor to visceral
hypersensitivity (Naliboff et al., 2006). Additionally, expectation of pain and perceived
controllability of pain can modify reported unpleasantness of stimuli (Salomons et al., 2007;
Sawamoto et al., 2000). Functional brain imaging studies in IBS patients have provided
evidence of an exaggerated activation of a vigilance network (i.e., the prefrontal cortex) and
a failure in activation of regions involved in pain inhibition (e.g., anterior cingulate cortex)
(Chang, 2005; Derbyshire, 2003; Piche et al., 2010). The influence of cognitive aspects and
emotions on the processing of sensory information is mediated by extensive neuro-
anatomical network with a pivotal role of the insular cortex and anterior cingulate cortex
(Seminowicz et al., 2004). Additionally, functional brain imaging studies in IBS patients
revealed that negative emotions of anxiety, anger and stress correlated negatively with
anticipatory downregulation within the dorsal pons, amygdala and anterior cingulate cortex
during visceral pain (Berman et al., 2008). It has been also shown that anxiety and
depression are associated with the subjective response to painful visceral stimuli and are
correlated with brain activation during painful rectal distension (Elsenbruch et al., 2010a;
Elsenbruch et al., 2010b).

Recently, a concept of “central sensitivity syndromes” has been proposed based on many
common abnormalities shared by chronic pain conditions (Yunus, 2008). This concept
corresponds well to the “top-down” pathophysiological model of stress-related disorders,
according to which alterations in the central stress circuits in susceptible individuals play a
primary role in the pathogenesis of symptoms (Chang, 2005; Mayer et al., 2000). Two main
disturbances in “central sensitivity syndromes” include alterations in serotonergic system
and dysregulation of the HPA-axis. Abnormalities in the level of other neurotransmitters
have also been suggested such as noradrenaline, dopamine, endocannabinoid deficiency, and
the increase of substance P (SP) in the spinal fluid (Binder and Nemeroff, 2010; Warnock
and Clayton, 2003). Once the CNS hyper-reactivity becomes expressed, any or all the
effector arms (e.g., increased visceral nociception, neurogenic inflammation, neuroendocrine
disturbances and autonomic dysfunction) can be involved (Warnock and Clayton, 2003)

Experimental stress models and visceral pain
Based on stress-related modulation of visceral pain in IBS patients as well as in healthy
subjects (Mayer et al., 2001; Rosenberger et al., 2009), experimental models using exposure
to various clinically relevant stressors have been developed to recapture features of IBS
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symptoms, of which lowered pain threshold and hyperalgesia to sigmoid distensions are
hallmarks (Bouin et al., 2002; Elsenbruch, 2011). Importantly, animal models provide ways
to explore hypotheses regarding the pathophysiological mechanisms underlying stress-
related pain modulation. The validity of these models however should take into
consideration three aspects: 1) face validity - how closely they mimic clinical pain features
in IBS patients; 2) construct validity - how consistent the animal models are with the
hypothetical pathogenesis; and 3) predictive validity - how well the models are responsive to
treatments showing some efficacy in alleviating visceral pain in IBS patients and therefore
can predict treatment responses to specific drugs or non pharmacological interventions in
humans (Mayer and Collins, 2002).

Monitoring of visceral pain in rodents—The assessment of pseudoaffective reflex
responses (and to a lesser degree of behavioral responses) to controlled isobaric distensions
of the distal colon has become the primary readout and the standard assay for the
measurement of visceral pain in rodents since its development in 1988 by Ness and Gebhart
(Ness and Gebhart, 1988). When applied to rats, colorectal distension (CRD) produces a
range of autonomic and behavioral pseudoaffective reflexes (changes in arterial pressure and
heart rate, passive avoidance behaviors, and contraction of abdominal musculature). The
monitoring of contraction of abdominal muscles or visceromotor response (VMR) is the
most commonly used index of visceral pain response in rats and mice. In conscious animals,
it can be recorded as a measure of electromyographic (EMG) signals via implantation of
recording electrodes which are either externalized through the skin (abdomen, neck)
(Bradesi et al., 2005; Christianson and Gebhart, 2007; Larsson et al., 2003) or connected to
radiotelemetric implants in the abdominal cavity (Nijsen et al., 2003; Welting et al., 2005),
but also as manometric changes in the pressure of the balloon inserted into the distal colon
(Arvidsson et al., 2006; Tammpere et al., 2005) or changes in pressure inside the colonic
lumen (Larauche et al., 2009a; Larauche et al., 2010a). Additional indirect approaches such
as abdominal withdrawal reflex monitoring (Al-Chaer et al., 2000), operant behavioral
assays (Ness and Gebhart, 1988) or functional brain imaging of integrated brain responses to
nociceptive stimuli (Johnson et al., 2010; Wang et al., 2008b) have also been used in some
studies.

Stress-induced modulation of visceral pain: animal models—Stressors are
conventionally categorized into exteroceptive (psychological or neurogenic) and
interoceptive (physical or systemic) classes (Herman and Cullinan, 1997; Sawchenko et al.,
2000). Exteroceptive stressors are limbic-sensitive and dependent upon the forebrain
cognitive circuits mediating the endocrine and autonomic responses to these types of
stressors. The limbic-sensitive neural network encompasses namely the cortex (lateral,
medial prefrontal, vendromedial, and infragenual cingulate), bed nucleus of the stria
terminalis, lateral septum, hippocampus, amygdala, hypothalamus (mainly paraventricular
nucleus) and periaqueductal gray. Interoceptive stressors in contrast are considered limbic-
insensitive, the cognitive processing is bypassed and brainstem/pontine nuclei such as the
lateral parabrachial nucleus, nucleus tractus solitarius, brainstem/pontine catecholaminergic
neurons in the ventrolateral medulla and the locus coeruleus, respectively, receive sensory
visceral input (Herman and Cullinan, 1997). The development of animal models to study the
relationship between visceral pain and stress has relied on the use of those two classes of
stressors based on their primary pathogenic mechanisms: those initiated by a CNS-directed
(psychosocial) stressor and those initiated by a gut-directed (physical) stressor (gut
inflammation, infection) (Mayer and Collins, 2002). Of note, because of the bidirectional
brain-gut interactions, secondary changes in the gut are likely to occur even if the primary
target may be directed at the brain and vice versa.
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Two types of visceral pain responses have been described in rodents with exteroceptive
stressors models: visceral hyperalgesia and visceral analgesia. Though less described and
studied the latter bears very relevant implications in the understanding of visceral pain-
associated pathologies. In contrast, interoceptive stressors have been most inevitably
associated with the development of stress-induced hyperalgesia.

Exteroceptive stress-induced visceral hyperalgesia
• Acute stress: Exposure to water avoidance stress (WAS) that entails rodents to stand on a
small platform to avoid the aversive environment of surrounding water, was originally
developed to assess stress-related alterations of gut motor function (Bonaz and Taché, 1994;
Enck et al., 1989). Since then, this stressor has been largely used as a form of psychological
stressor to assess modulation of visceral pain (Larauche et al. 2010). Reports indicate that
male Wistar exposed to WAS for 1h develop a delayed visceral hyperalgesia to CRD,
appearing 24h later (Schwetz et al., 2004a). Interestingly, exposure to partial restraint stress
for 2h, a stressor with stronger psychological component than WAS, was found to induce an
immediate hyperalgesia to CRD in male (Gué et al., 1997) and female Wistar rats
(Rosztoczy et al., 2003), even though this hyperalgesia was not reproduced in male Wistar
rats in a more recent work by the same group indicative of sex difference in the response
(Rosztoczy et al., 2003). Transient stressors generally trigger adaptive responses and this
model has good face validity in mimicking stress-related hypersensitivity to CRD as
reported in IBS patients. However it does not show good construct validity, as in clinical
settings, it is most commonly the exaggerated or chronic activation of the stress system,
particularly in vulnerable individuals, which is responsible for the detrimental effects on the
body, including the viscera (Chrousos, 2009).

• Chronic mild stress (CMS) model: Convergent reports established that daily chronic
stress predicts the intensity and severity of subsequent symptoms in IBS patients (Bennett et
al., 1998; Chang, 2004; Choung et al., 2009; Elsenbruch et al., 2010b; Elsenbruch, 2011;
Lackner et al., 2010). Therefore to better mimic this feature, a variety of rodent models
involving chronic intermittent exposure to stress have been recently developed. One of the
first chronic stress models to be adapted to the study of visceral hypersensitivity was the
repeated exposure to psychological stress of WAS (Söderholm et al., 2002; Yang et al.,
2006). Initial studies using this model indicate that male Wistar rats exposed to 10
consecutive days of WAS for 1 h daily developed visceral hypersensitivity to CRD (Bradesi
et al., 2005; Hong et al., 2009) lasting up to 30 days after the end of the stress. In these
studies, the visceral pain response was monitored using EMG recording that entails surgical
implantation of electrodes and subsequent single housing of animals (Bradesi et al., 2005).
However when naïve male and female Wistar rats were exposed to a similar WAS schedule,
they developed visceral analgesia to CRD as monitored by intraluminal colonic solid-state
manometry (Larauche et al., 2010b). Similarly, in C57Bl/6 mice, chronic WAS has been
described to induce visceral hyperalgesia (Larauche et al., 2010a), visceral analgesia
(Larauche et al., 2010a) or to have no influence on the VMR (Larsson et al., 2009)
depending upon preconditions (surgery, housing conditions) associated with the method of
recording of VMR (Larauche et al., 2010a). Therefore, the impact of repeated mild stress
such as WAS in modulating visceral pain response is largely influenced by the basal state
condition of the animals before applying the repeated stressor [see Exteroceptive stress-
induced visceral analgesia and (Larauche et al., 2010a)]. Furthermore, exposure to
homotypic stressors leads to habituation associated with the recruitment of endogenous
mediators such as oxytocin (Zheng et al., 2010) and endocannabinoids (Patel and Hillard,
2008) which have been found to modulate visceral sensitivity (Black et al., 2009; Sanson et
al., 2006). In that context, heterotypic stress models using different and alternating types of
stressors have been more recently developed. Male Wistar rats exposed intermittently to a
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combination of cold restraint stress, WAS or forced swimming (one stressor per day for 9
consecutive days) were found to develop visceral hypersensitivity at 8h but not at 24h or 7
days after the end of the last stressor (Winston et al., 2010). The use of more complex and
long lasting heterotypic stressors including 2–3 stressors per day for up to 35–40 days (Seo
et al., 2010; Tagliari et al., 2010) causes behavioral changes in rodents that parallel
symptoms of depression (Gamaro et al. 2008; Ni et al. 2008; Wilner 2005; Katz and Hersh
1981). This later CMS model may display strong construct validity in the context of subset
of IBS patients presenting depression symptoms (Folks, 2004) when sustained alterations in
visceral sensitivity will be established in these models. Of note, the chronic mild stress
model can be difficult to be characterized and be reproducible as a number of pre-existing
variables may affect the response (Willner, 1997). Specifically, the strain and sex of the
animal, the extent of single housing before the beginning of the procedure or even diurnal
variation in sensitivity to stress seem to have major influence on the impact of CMS on
animals exposed to it and the end point parameters measured (Willner, 1997). Variety within
the CMS schedule appears critical to prevent or delay the habituation of rodents to the
stressor, which has been shown to occur rapidly when an homotypic stressor is presented
repeatedly (Babygirija et al., 2010; Griffiths et al., 1992; Muscat and Willner, 1992; Zheng
et al., 2010). All of these aspects could also potentially affect the influence of CMS on the
visceral pain response, as recently evaluated (Larauche et al., 2010a).

• Neonatal maternal separation stress model: Early life events and childhood trauma by
biopsychosocial factors (neglect, abuse, loss of caregiver or life threatening situation)
enhance the vulnerability of individuals later in life to develop affective disorders
(depression, anxiety, emotional distress) and put them at a greater risk for development of
IBS (Elsenbruch, 2011; Videlock et al., 2009). Early stress/childhood trauma is mimicked in
rodents by isolating the pups from the dam for 2–3 hours per day during the first 2 weeks
after birth from postnatal day 1–2 to postnatal day 14 (Barreau et al., 2007b; O'Mahony et
al., 2011; Plotsky and Meaney, 1993; Rosztoczy et al., 2003). Maternal care in rodents
affects the function of the HPA axis, and the development of both cognitive and emotional
functions (Fish et al., 2004). By disrupting the normal pup-mother interaction and thereby
affecting the quality of the maternal care, neonatal maternal separation stress results in
permanent changes in pups' CNS, documented at the level of gene expression,
neurochemistry, electrophysiology, and morphology (Szyf et al., 2007). At adulthood, rats
previously subjected to neonatal maternal separation exhibit visceral hypersensitivity to
CRD in basal conditions which is further exacerbated by exposure to an acute stressor
(WAS; 1h) (Barreau et al., 2004; Coutinho et al., 2002). Interestingly, the protocol of
separation, removal of all pups from home cage (type M) or separation of half of littermates
(type P) was found to differentially affect the visceromotor responses of pups at adulthood
in a sex-dependent manner (Rosztoczy et al., 2003). Under basal conditions, male exposed
to type M and females exposed to both type M and P developed visceral allodynia and
hyperalgesia to CRD (Rosztoczy et al., 2003). In males, an additional acute stress did not
modify the VMR to CRD, while females exposed to acute WAS (1h) exhibited an
exacerbated VMR (Rosztoczy et al., 2003). This model which has both face (visceral
hypersensitivity) and construct (early life events induce long term changes in gut function)
validity is a relevant model in the context of subset of IBS patients with history of early life
traumatic events.

• Genetic models of chronic stress: Anxiety is a well established co-morbid condition in a
subgroup of IBS patients (Folks, 2004; Lee et al., 2009; Thijssen et al., 2010). A study used
three strains of rats known to have varying levels of baseline anxiety as determined by the
acoustic startle response and open-arm exploration in the elevated plus-maze assay: high-
anxiety Wistar–Kyoto rats and low-anxiety Sprague-Dawley and Fisher-344. They
demonstrated that high-anxiety rats had increased VMR to CRD compared to low-anxiety
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animals suggesting a direct link between anxiety and visceral hypersensitivity (Gunter et al.,
2000). In addition, compared to low-anxiety rats, the sensitivity of high-anxiety rats was
highly exacerbated by peripheral sensitization of the colon with a small dose of acetic acid
(Gunter et al., 2000). Genetic models that blocked chronically the stress pathways by
deleting CRF1 receptors showed a decrease in anxiety and colonic sensitivity to colorectal
distention (Trimble et al., 2007). Chronic stress relying on alterations of the CRF system
such as CRF over-expressing mice (Million et al., 2007b) are available and could be useful
to study IBS-like manifestations, but the visceral sensitivity of those transgenic animals has
not been assessed yet. New promising genetic models with more selective conditional and/or
region-targeted genetic manipulations including RNAi gene silencing technology to modify
CRF-related genes are continuously developed (Bakshi and Kalin, 2000; Delic et al., 2008
Deussing and Wurst, 2005; Kimura et al., 2010; Kolber et al., 2010; Lu et al., 2008). These
models will be suitable to explore specific stress circuitries in the context of chronic stress-
related visceral pain modulation which so far is lagging behind.

• Post-traumatic stress disorder model: There is evidence of increased prevalence of GI
symptoms and IBS in post-traumatic stress disorder sufferers including women veterans
(Cohen et al., 2006; Drossman et al., 1990; Irwin et al., 1996; Savas et al., 2009; White et
al., 2010). Clinical and experimental studies indicate that exposure to an uncontrollable
stressor can induce an alteration in the behavioral, autonomic, and neuroendocrine responses
to subsequent stressors. In rats, treatment with a relatively short-lasting session of shocks or
a social confrontation with a predator or aggressive conspecific animals induces long-lasting
(weeks–months) conditioned fear-responses to trauma-related cues, and a generalized
behavioral sensitization to novel stressful stimuli that persists or grows stronger over time
(Rau et al., 2005; Stam et al., 1997; Stam, 2007; Wang et al., 2008a). Repetitive balloon
distention of the distal colon causes increased cardiovascular $$`pseudoaffective' reflexes in
pre-shocked rats compared to controls, 2 weeks after a single session of foot shocks (Stam,
2007). Interestingly, female rats appear to show a different pattern of sensitized behavioral
responsiveness to the same challenge, possibly pointing to differential alterations in the
neuronal substrates involved (Stam et al., 2002). Whether these sex differences in behavior
translate into sex differences in visceral sensitivity has not been assessed yet. These rodent
PTSD models mimic clinical features (stress-related visceral hypersensitivity) of IBS and
have a good construct validity, relevant for a subset of IBS patients with post-traumatic
stress disorder. As the visceral pain alterations observed in this paradigm of uncontrollable
stress model have been mainly characterized by one group of investigator, the reliability of
the model however needs further independent confirmation.

Exteroceptive stress-induced visceral analgesia—While extensively described in
somatic pain (Butler and Finn, 2009), activation of descending inhibitory pathways in stress-
related visceral responses has only been reported in a few studies. Opioids have been
implicated in descending inhibition of visceral sensitivity following stress as evidenced by
the fact that naloxone unmasked WAS-induced hyperalgesia to repeated phasic CRD in
normal rats and exacerbated the pain response to CRD in maternally-separated rats
(Coutinho et al., 2002). In another study, a visceral analgesic response was observed 6h after
exposure to an acute session of WAS in wild-type mice and Sprague-Dawley rats, with
males exhibiting stronger analgesia than females (Gui et al., 2004). This visceral analgesia
was shown to be dependent on the activation of neurotensin signaling pathways, as it is no
longer observed in neurotensin deficient mice. Likewise using pharmacologic approach, the
intravenous administration of a neurotensin receptor antagonist unmasked the visceral
hyperalgesia in male rats and to a much greater extent in female rats (Gui et al., 2004). In
another experimental model, a daily short period (15 min) of separation from post natal day
2 to 14 decreased VMR to phasic CRD performed immediately after WAS as well as

Larauche et al. Page 9

Exp Neurol. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



prevented the development of hyperalgesia 24h after WAS in adult male Long-Evans rats
(Schwetz et al., 2005). These data suggest a potential alteration of endogenous pain-
modulatory systems by this mild maternal separation stress (Schwetz et al., 2005). Similar
findings in adult rats have been recently reported, such that chronically handled rats develop
visceral hypoalgesia in response to CRD that becomes significant 7 days after the last
handling (Winston et al., 2010). However, the underlying mechanisms and potential
implication of this visceral analgesia were not discussed by the authors (Winston et al.,
2010).

Interestingly, we recently demonstrated that mice repeatedly exposed to WAS (1h/day) for
10 consecutive days exhibit a differential profile of VMR to CRD 24h after the last session
of stress depending on the basal status of the animal before WAS, in particular the context in
which they are housed and method used to monitor visceral pain. Mice that had undergone
surgery for the placement of EMG electrodes on abdominal wall and were subsequently
single housed to avoid deterioration of implanted electrodes by cage-mate, developed
visceral hyperalgesia in response to repeated WAS while mice tested for visceral pain using
the non-invasive solid-state intraluminal pressure recording and kept group housed
developed a strong visceral analgesia under otherwise similar conditions of chronic WAS
(Larauche et al., 2010a). Recent reports suggest that previous injury or exposure to opioids
in male rats can switch stress influence on pain responses from analgesia to hyperalgesia
(Rivat et al., 2007). Furthermore, paw incision in male Sprague-Dawley rats was shown to
induce a long lasting visceral hyperalgesia (Cameron et al., 2008). Together these data point
to the state of animals (naïve vs surgery), its social environment (group housing vs single
housing, cage enrichment or not), the handling by the investigator, the methods used to
record its visceromotor responses (EMG requiring surgery vs manometry not requiring
surgery), as well as its sex can significantly affect the response to exteroceptive stressors and
should be carefully considered and weighed in the design, conduct and interpretations of the
studies addressing the influence of stress on visceral sensitivity in experimental animals.
Based on recent clinical findings demonstrating that IBS patients have compromised
engagement of the inhibitory descending pain modulation systems (Berman et al., 2008;
Coffin et al., 2004; Piche et al., 2010; Song et al., 2006; Wilder-Smith et al., 2004), gaining
a deeper understanding of the mechanisms involved in the expression of stress-induced
visceral analgesia or lack thereof are promising avenues to explore that may lead to new
therapeutic targets for IBS. Therefore the use of non-invasive methods of monitoring VMR
that alleviates the surgical and housing impact on repeated stress modulation of visceral pain
represents a step forward to gain insight into the underlying mechanisms in particular the
neural substrates and neurochemistry of stress-related analgesia as established in the somatic
field (Butler and Finn, 2009).

Interoceptive stressors and visceral hyperalgesia
• Neonatal inflammation/neonatal pain models: The newborn's gut may be exposed to a
variety of factors resulting in mucosal inflammation and tissue irritation. Daily colon
irritation during the neonatal period (days 8–21) either in the form of daily noxious
colorectal distention (CRD) (two 60 mmHg-60 s distensions separated by 30 min of rest) or
by performing daily intracolonic injection of mustard oil (5%), increases pain behavior to
CRD from postnatal week 5 up to postnatal week 12 (Al-Chaer et al., 2000; Lin and Al-
Chaer, 2003). These findings suggest that two different perturbations of the intestinal
homeostasis in early life (mechanical or chemical irritation) can result in permanent central
sensitization initiated and partly maintained by peripheral afferent input sensitized by
neonatal events (Al-Chaer et al., 2000; Lin and Al-Chaer, 2003). The model has both face
(visceral hypersensitivity) and construct validity (long lasting, permanent sensitization of
dorsal horn neurons) and could apply to a subset of IBS patients, even though no
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longitudinal studies exist to show that gut irritation in early life is a risk factor for IBS
development at adulthood (Mayer and Collins, 2002).

• Intestinal infection: post-infectious IBS model: In approximately 10% of patients with
IBS, the onset of symptoms began with an intestinal infectious illness (Collins et al., 1999).
Prospective studies have shown that 3% to 36% of enteric infections lead to persistent new
IBS symptoms depending on the infecting organism. In addition, the co-existence of adverse
psychological factors at time of infection is also an important determinant to the
susceptibility to develop post-infectious IBS (Spiller and Garsed, 2009b). While viral
gastroenteritis seems to have only short-term effects, bacterial enteritis and protozoan and
helminth infections are followed by prolonged post-infectious IBS (Spiller and Garsed,
2009b). Long-lasting visceral hyperalgesia has been observed in mice after transient
intestinal inflammation induced by Trichinella spiralis infection (Bercik et al., 2004; Long
et al., 2010) or in rats infected by Nippostrongylus brasiliensis (McLean et al., 1997).
Although the vast majority of human post-inflammatory hypersensitivity symptoms are
observed after bacterial infection (Campylobacter, Shigella, Salmonella or Escherichia coli
infections), no animal model of hypersensitivity postbacterial infection has been developed
yet. For instance mice infected with Citrobacter rodentium, an attaching-effacing murine
enteropathogen similar in its mechanisms of infection to enteropathogenic E. coli, do not
spontaneously develop visceral hypersensitivity symptoms (Vergnolle, 2008). These models
of nematode parasites in rodents have however good construct and face validity in that they
show that long-term immune modulation of smooth muscle and enteric nervous system can
result in persistent altered gut motility and visceral hypersensitivity.

• Noninfectious intestinal inflammation: post-inflammatory IBS model: Despite some
controversies on the origin of the symptoms (Keohane et al., 2010; Long and Drossman,
2010), “IBS-like” symptoms appear to be common in patients in remission from ulcerative
colitis (Spiller and Garsed, 2009a). Several chemical irritants have been used to produce
colonic inflammation resulting in visceral hyperalgesia in rodents. In rats, acetic acid
(Burton and Gebhart, 1995), mustard oil (Ji et al., 2005; Palecek and Willis, 2003), and
zymosan (Coutinho et al., 1996; Traub and Murphy, 2002) evoke short-term hyperalgesia
associated with transmural tissue damage/colonic inflammation. Intracolonic trinitrobenzene
sulfonic acid induces a severe colonic transmural inflammation and visceral hypersensitivity
that develops at 4–5 days with the disappearance of symptoms by 14 days (Adam et al.,
2006; Gschossmann et al., 2004). Interestingly, in 24% of rats there is reoccurrence of
visceral hyperalgesia 16 weeks after the induction of inflammation, whereas no evidence of
microscopic inflammation is observed in rat colonic tissues at that time point (Adam et al.,
2006; Zhou et al., 2008). Mild non-specific colitis and acute dextran sodium sulfate (DSS)-
induced colitis were associated with increased responsiveness to CRD on days 5 or 60 after
the induction of colitis in male Balb/c mice while chronic DSS colitis was not (Verma-
Gandhu et al., 2007). These results are in contrast with another study showing that DSS
colitis failed to cause the development of visceral hypersensitivity in response to CRD at
any of the observed time points after the induction of inflammation (days 5, 12, 16, 20, 30,
40 or 51 after the induction of colitis) in C57Bl/6 or Balb/c mice (Larsson et al., 2006). A
number of factors may have contributed to these conflicting results among which the
protocol of colitis induction (three 5 days DSS with a 15 days rest between cycles vs 5–7
days DSS-rest), the dose of DSS used (5% vs 4%) or even the sex of the animals, which was
surprisingly not even mentioned in the latter study. While it is difficult to make any
assumptions on the reasons for these differences, these results suggest that inflammation
alone may not always lead to visceral hypersensitivity and that the type of inflammatory
insult and severity determine whether this will result in the development of
postinflammatory hypersensitivity (Adam et al., 2006). In most, but not all the studies
(Larsson et al., 2009), previous exposure of rats and mice to psychological or psycho-social
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stress was shown to enhance their susceptibility to colitis and to aggravate their colonic
inflammatory response (Reber et al., 2006; Reber et al., 2008; Veenema et al., 2008) as well
as to precipitate the reactivation of colonic inflammation in animals in which colitis had
healed (Melgar et al., 2008; Saunders et al., 2006). Likewise, previous colitis was found to
render the colon more susceptible to the effects of stress on enteric nerve function and to
increase some parameters of inflammation in response to stress (Collins et al., 1996).
Nevertheless, the relationship between stress, colitis and visceral pain remains controversial
as stress was found to exacerbate post-inflammatory visceral hyperalgesia in rats (Liebregts
et al., 2007) or either to have no effect in mice (Larsson et al., 2009).

Bile salt malabsorption underlies some forms of postinfectious IBS (Spiller, 2003). A rodent
model was developed in which a bile acid deoxycholic acid instilled intracolonically daily
for 3 days induces a mild, transient colonic inflammation within 3 days of administration
that resolves within 3 weeks. Adult male Sprague-Dawley rats exposed to this regimen of
bile acid develop a persistent visceral hyperalgesia starting after 1 week and lasting up to 4
weeks (Traub et al., 2008).

Animal models: predictive validity—Some commonly used animal models showed the
modulation of visceral pain to CRD by acute or chronic stressors presenting good face and
construct validity, however, their predictive validity in humans is either unknown or has
been unsatisfying in clinical trials (Bradesi and Mayer, 2009; Holschneider et al., 2011;
Mayer et al., 2008). The use of novel non-invasive techniques to assess visceral pain such as
intraluminal colonic pressure (Larauche et al., 2009a; Larauche et al., 2010a) by allowing
for the monitoring of stress-induced visceral analgesia, may open new venues to deepen our
understanding of stress-related analgesic pain pathways in the viscera. Novel strategies such
as identification and characterization of endophenotypes in IBS patients, followed by
reverse translation of these endophenotypes for pharmacological studies in rodents, have
also been recently suggested (Bradesi and Mayer, 2009; Holschneider et al., 2011; Mayer et
al., 2008).

Mechanisms involved in stress-induced modulation of visceral pain
Pathological pain refers to conditions characterized by hyperalgesia and allodynia, in which
maladaptive neuroplastic changes lead to persistent increased perception and responsiveness
to noxious stimuli, or response to normally non-noxious stimuli. Such neuroplastic changes
can occur in primary afferent terminals (peripheral sensitization) but also in the spinal cord
(central sensitization) and in the brain (supraspinal pain modulation) or in descending
pathways that modulate spinal nociceptive transmission. Such alterations in the processing
of sensory information are all considered as possible mechanisms of visceral
hypersensitivity in IBS patients (Azpiroz et al., 2007; Sengupta, 2009).

Stress and peripheral sensitization: a role for the CRF system, mast cells, gut
microbiota and ion channels—A key role for peripheral CRF signaling in the
development and expression of visceral pain is well documented by several reports in both
humans and rodents (La et al., 2008; Larauche et al., 2009a; Lembo et al., 1996; Nozu and
Kudaira, 2006; Sagami et al., 2004; Taché and Brunnhuber, 2008; Tayama et al., 2007).
Converging evidence support the involvement of peripheral CRF1 receptors in these effects.
Peripheral injection of CRF induces visceral hypersensitivity to CRD (La et al., 2008), an
effect reproduced by the intraperitoneal administration of the selective CRF1 agonist,
cortagine in rats and mice (Larauche et al., 2009a) while intraperitoneal injection of
selective (urocortin 2) or preferential (sauvagine) CRF2 agonists, reduced visceromotor
response to CRD in rats (Million et al., 2005; Million et al., 2006). In addition, the visceral
hyperalgesia induced by peripheral injection of cortagine in rats is abolished by peripheral,
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but not central, administration of the non selective CRF receptor antagonist astressin
(Larauche et al., 2009a). Likewise under conditions of repeated exposure to WAS for 10
days, we found that peripheral administration of the peptide CRF1/CRF2 receptor antagonist
astressin before each stress session prevented the development of visceral hyperalgesia
supporting the participation of a peripheral component to the development of visceral
hypersensitivity (Larauche et al., 2008). Of translational relevance intravenous
administration of a non-selective and peripherally-restricted CRF receptors antagonists, α-
helical CRF9–41 or astressin was reported to reduce visceral hyperalgesia in diarrhea-
predominant IBS patients subjected to colonic electrical stimulation (Sagami et al., 2004;
Tayama et al., 2007).

Stress and peripheral administration of CRF induce mast cells degranulation in the colon in
experimental animals and humans (Barreau et al., 2007a; Wallon et al., 2008)which can in
turn lead to the development of visceral hypersensitivity via the release of several preformed
or newly generated mediators namely histamine (Barbara et al., 2007; Cenac et al., 2007;
van den Wijngaard et al., 2010), tryptase (Cenac et al., 2007), prostaglandin E2 (Gold et al.,
2002), nerve growth factor (NGF) (Barreau et al., 2004) that can activate or sensitize
sensory afferents (Sengupta, 2009; van den Wijngaard et al., 2009). It is now well
established that stress can disrupt the intestinal epithelial barrier which may increase the
penetration of soluble factors (antigens) into the lamina propria, and lead to nociceptors
sensitization (Barbara et al., 2007; Piche et al., 2009). Increased intestinal permeability
appears as a prerequisite for the development of visceral hypersensitivity in both humans
and rodents (Ait-Belgnaoui et al., 2005; Piche et al., 2009; Zhou et al., 2009). Alterations of
epithelial permeability following stress involves the activation of the peripheral CRF system
and may (Demaude et al., 2006; Santos et al., 2001; Söderholm et al., 2002; Vicario et al.,
2010; Yu and Perdue, 2001) or may not be dependent from mast cell activation (Demaude et
al., 2006; van den Wijngaard et al., 2009) in a time-dependent manner.

Lastly, there is mounting evidence that stress can affect the intestinal and fecal microbiota of
rodents which display changes in composition, diversity and number of gut microorganisms
(Bailey et al., 2011; Bailey et al., 2010; O'Mahony et al., 2009). These alterations in the
microbiota can in turn have significant impact on the host and affect his behavior, visceral
sensitivity and inflammatory susceptibility (Bercik, 2011; Collins and Bercik, 2009; Cryan
and O'Mahony, 2011; Heijtz et al., 2011; Rhee et al., 2009).

Stress-induced intestinal epithelial permeability or intestinal injury or inflammation can lead
to the sensitization of peripheral terminals. Three mechanisms can account for this
sensitization: change in tissue properties, change in transduction process (increased release
of mediators) or changes in the properties of protein/protein complexes underlying stimulus
transduction (receptors sensitivity or number). In response to an injury such as
inflammation, the intestinal mucosa leads to the release of chemical mediators (ATP,
bradykinin, prostaglandins) which can directly stimulate afferent neuron terminals but also
promote the release of algogenic substances (proteases, histamine, SP), serotonin, NGF and
prostaglandins), leading to the amplification of the afferent chemical or mechanical stimulus
(Blackshaw et al., 2007; Chung et al., 2009; Lin and Al-Chaer, 2003; Mantyh, 2002;
Robinson and Gebhart, 2008; Vergnolle, 2010; Winston et al., 2010). This peripheral
sensitization is mediated by a number of ion channels widely expressed in colonic afferents
(Cregg et al., 2010; Holzer, 2001; Jones, III et al., 2005; McRoberts et al., 2001). Among
these, the N-methyl-D-aspartate receptor (NMDA) (McRoberts et al., 2001), proteinase-
activated receptor, PAR2 (Cenac et al., 2007), transient receptor potential vanilloid 1
(TRPV1) (Ravnefjord et al., 2009; Winston et al., 2007; Yu et al., 2010) and TRPV4 (Cenac
et al., 2010), transient receptor potential ankyrin 1 (TRPA1) (Cattaruzza et al., 2010; Yu et
al., 2010), purinergic receptor P2X (Holzer, 2001), neurokinin receptor 1 (NK1)
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(Greenwood-Van Meerveld et al., 2003) and acid-sensing ion channels (ASICs) (Page et al.,
2004) have all been found to be associated with visceral hypersensitivity.

Spinal cord plasticity and glia activation: role in the central processing of
peripheral pain perception—Once peripheral sensitization has developed, it can in turn
activates the release of spinal cord mediators. Among them, ASIC1A was recently shown to
be increased in sensory neurons of rats exhibiting hypersensitivity in response to repeated
colonic butyrate enemas (Matricon et al., 2010). Similarly, NK1 receptors were found to be
upregulated in the spinal cord of chronically stressed rats and to mediate the development of
visceral hypersensitivity (Bradesi et al., 2009b; Bradesi et al., 2006; Gaudreau and Plourde,
2003). In conscious animals subjected to psychological chronic stress, the decrease in the
somatic mechanical nociceptive threshold was shown to be related to the activation of
cholecystokinin (CCK)-dependent descending facilitatory nociceptive pathways (Rivat et
al., 2007), a phenomenon which could also explain visceral hypersensitivity (Friedrich and
Gebhart, 2000; Friedrich and Gebhart, 2003). Increase in growth factors such as NGF
(Chung et al., 2007) or brain-derived neurotrophic factor (BDNF) (Chung et al., 2009) as a
result of stress exposure in rodents has also been established to play a key role in mediating
visceral hyperalgesia. Phosphorylation of extracellular signal-regulated kinases 1 and 2
(ERK) in the spinal cord induced by the binding of neurotrophins to their specific tyrosine
kinase receptors or by neuronal activity leading to glutamate release and binding to its
ionotropic and metabotropic receptors (Cruz and Cruz, 2007), are known to be nociceptive-
specific signaling pathways and their upregulation is associated with visceral hyperalgesia
(Million et al., 2006; Zhang et al., 2009).

Very recently, another potential mechanism through which spinal sensitization may occur in
response to stress has been suggested in the form of spinal cord glia activation. While this
phenomenon is now considered an important component in the development and
maintenance of allodynia and hyperalgesia in various models of chronic pain, including
neuropathic pain and pain associated with peripheral inflammation, it is only recently that
the possibility of spinal cord glia changes in relation with visceral hypersensitivity and
stress-induced visceral hypersensitivity have been addressed (Bradesi, 2010). One study
using a model of visceral hypersensitivity induced by neonatal colonic irritation showed an
increase spinal immuno-reactivity for OX42 (indicating microglia proliferation) in sensitized
rats compared to controls (Saab et al., 2004). Visceral hypersensitivity to CRD in these
animals was blocked by an acute treatment with minocycline, a microglia inhibitor.
Likewise, chronic WAS in male Wistar rats increases p38 phosphorylation in OX42 positive
cells, and this effect was blocked by treatment with minocycline (Bradesi et al., 2009a). The
concomitant visceral hyperalgesia exhibited by those rats was blocked by intrathecal
treatment with minocycline or the p38 inhibitor SB203580, supporting a functional role of
spinal microglia activation in the development of visceral hypersensitivity (Bradesi et al.,
2009a). The modulatory influence exerted by spinal microglia on visceral nociception was
further supported by the findings that spinal injection of the microglia activator fractalkine
in naïve rats, induces visceral hyperalgesia (Bradesi et al., 2009a; Saab et al., 2004).
Candidate molecules involved in glia activation signaling include neurotransmitters such as
SP or glutamate, but also purinergic agents, opioids, chemokines and glucocorticoids [for
review see (Bradesi, 2010)].

Glutamate uptake through spinal glutamate transporters is critical for maintaining normal
sensory transmission under physiologic conditions (Liaw et al., 2005; Lin et al., 2009). A
potential deficiency in glutamate reuptake by astrocytes associated with the activation of
spinal cord glia (Svensson et al., 2003) has been recently suggested to play a role in the
spinal sensitization and the development of visceral hypersensitivity in rats (Gosselin et al.,
2010).Together, these data strongly support the concept that transmission of visceral
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nociceptive signals may be enhanced in various conditions of spinal microglia activation
(Tjong et al., 2010).

Supraspinal pain modulation: a fine-tuning between pain facilitation and
inhibition—Various supraspinal sites are involved in the modulation of visceral pain
signals. Rectosigmoid distension in humans activates sensory (insula, somatosensory
cortex), and limbic and paralimbic regions (including anterior cingulate cortex and
amygdala) (Tillisch et al., 2011). Many of these regions were also found to be significantly
affected by colorectal distension in rats (Wang et al., 2008b; Zhang et al., 2011).

The anterior cingulate cortex mediates key emotional-aversive aspects of pain and may also
have a mnemonic role in which it allows transient storage of information during pain
processing (Chang, 2005; Mayer and Tillisch, 2011). The cingulate cortex contains specific
subareas for integrating visceral sensation (Ladabaum et al., 2000) and has direct
connections to the amygdala, periaqueductal grey, and orbitofrontal cortex (Devinsky et al.,
1995). Wistar-Kyoto rats, high-anxiety rats exhibiting visceral hypersensitivity (Gunter et
al., 2000) have greater prefrontal cortex activation in response to CRD compared to
Sprague-Dawley (Gibney et al., 2010).

Another key limbic system structure that has been implicated in the affective component of
pain is the central amygdala. It is involved in the processing of visceral information,
attention, emotion and integrating the physical and psychological components of the stress
response (Dayas et al., 2001). Additionally, the central amygdala plays a crucial role in the
generation and development of fear and anxiety (LeDoux et al., 1988; Rosen and Schulkin,
1998). Specifically, the central nucleus of the amygdala (CeA) has been shown to facilitate
the activation of the HPA axis in response to stress and increase the release of CRF,
adrenocorticotropic hormone, and corticosterone (Feldman and Weidenfeld, 1998; Shepard
et al., 2003). Increased glucocorticoid levels in turn upregulates CRF gene expression in
neurons within the CeA and implants of corticosterone in the CeA have been found to
induce visceral hypersensitivity in rodents (Greenwood-Van Meerveld et al., 2001; Myers et
al., 2007; Myers and Greenwood-Van Meerveld, 2007). The interaction between the CRF
signaling system in the CeA and visceral nociception has been recently reported by showing
that noxious CRD increases CRF expression and p-ERK in the CeA and fos in the spinal
cord (Kim et al., 2010).

The locus coeruleus is a well established target of stress, expressing CRF1 receptors, which
receives CRF innervation from nearby Barrington nucleus and increases firing in response to
CRD in the same neurons responsive to central injection of CRF (Curtis et al., 1995;
Kosoyan et al., 2005; Lechner et al., 1997; Reyes et al., 2007; Reyes et al., 2008; Rouzade-
Dominguez et al., 2001; Valentino et al., 1993). Electrophysiological studies in anesthetized
rats showed that the CRF1/2 antagonists, [DPhe12]CRF12–41, administered into the lateral
brain ventricle or microinfused into the LC, or astressin injected into the cisterna magna, and
selective CRF1 antagonist crossing the blood brain barrier, NBI 35965 given intravenously
prevented LC neuronal activation and bursting activity in response to central injection of
CRF and CRD at submaximal distention (40 mmHg) (Kosoyan et al., 2005; Lechner et al.,
1997). In addition, peripheral injection of CRF1 antagonist which enters into the brain,
JTC-017, reduced the rise in noradrenaline levels in the hippocampus induced by CRD in
rats. Bursting activity in the LC is associated with the release of noradrenaline in the cortical
and limbic rostral efferent projections of the LC leading to arousal, hypervigilance and
anxiogenic response (Koob, 1999; Koob and Heinrichs, 1999). Therefore these pontine sites
are well positioned to coordinate gut-brain interaction with visceral information from the gut
impacting on cortical and limbic activities under stress conditions and may modulate
visceral pain responses (Tsuruoka et al., 2010; Valentino et al., 1999).
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Thalamic relay nuclei have a key role in gating, filtering and processing sensory information
en route to the cerebral cortex and are subject to similar activity-induced plasticity processes
as the spinal cord (Kuner, 2010). Two modes of firing of thalamocortical neurons, tonic and
burst firing, are believed to reflect the divergent states of sensory signal transmission from
the thalamus to the cortex and have been shown to modulate visceral pain (Cheong et al.,
2008; Ren et al., 2009). Upregulation of CRF1 receptor in the thalamus is associated with
visceral hyperalgesia in the rat model of NMS (Tjong et al., 2010).

Lastly, spinal visceral nociceptive reflexes are subject to facilitatory modulation from the
RVM, providing the basis for a mechanism by which visceral sensations can be enhanced
from supraspinal sites (Sanoja et al., 2010; Zhuo and Gebhart, 2002) under stress conditions
associated with development of visceral hyperalgesia (Martenson et al., 2009).
Compromised engagement of descending pain inhibitory pathways as observed in
maternally-stressed rats may also contribute to increasing the visceral pain responses in
those animals (Coutinho et al., 2002).

Sex differences in stress-induced alterations of visceral sensitivity
Female predominance in IBS patients (women to men ratio about 2:1) is consistent with an
observation that women are more susceptible to stress-related disorders (Adeyemo et al.,
2010; Heitkemper and Chang, 2009). A number of clinical studies have documented sex
differences in the stress response and stress-induced pain modulation (Fillingim et al., 2009).
However, although there is a dearth of preclinical studies assessing the effect of sex on
stress-induced modulation of visceral sensitivity, most preclinical studies addressing stress-
related modulation of visceral pain have been conducted in male rodents (Gui et al., 2004;
Taché et al., 2005).

There is convergent evidence that sex hormones, in particular estrogens, strongly modulate
the HPA axis regulation, for example estrogen receptors α and β have been shown to
increase CRF gene expression (Chen et al., 2008; Mulak and Taché, 2010). Fluctuations in
estrogen levels during ovarian cycle cause also changes in the serotonergic system (e.g.
estrogens enhance serotonergic postsynaptic responsiveness in the brain) and interactions
between the serotonergic and reproductive endocrine systems have implication in the
etiology as well as treatment of stress-related disorders (Heitkemper and Chang, 2009;
Linthorst, 2005; Lu et al., 2009; Mulak and Bonaz, 2004; Warnock and Clayton, 2003). Sex
hormones have been shown to significantly affect visceral sensitivity in rodents (Aloisi et
al., 2010; Holdcroft et al., 2000; Ji et al., 2008; Sapsed-Byrne et al., 1996; Taché et al.,
2005). Addressing the influence of sex in the modulation of visceral pain by stress appears
critical to find novel therapies (Adeyemo et al., 2010; Ouyang and Wrzos, 2006).

Therapeutic interventions targeting stress reduction: outcome in IBS
The modulatory role of stress-related psychological factors, emotional state, and established
brain-gut interactions in the pathophysiology of IBS (Mulak and Bonaz, 2004; Mayer and
Tillisch, 2011), has been confirmed by the encouraging outcome of nonpharmacological
approaches by treatment modalities using a broad range of evidence-based mind-body
interventions such as psychotherapy, cognitive behavioral therapy, hypnotherapy, relaxation
exercises or mindfulness mediation (Kearney and Brown-Chang, 2008; Palsson and
Drossman, 2005; Whorwell, 2009). Different forms of therapies are focused on teaching
better stress coping strategies, both at a cognitive level (catastrophic or self-defeating
thoughts) and at a behavioral level (problem solving, especially interpersonal problems)
(Blanchard et al., 2007; Whorwell, 2009). The symptomatic improvement seems to result
from the modulation of stress response, restoration of the autonomic system balance, and
changes in the brain activation pattern in response to visceral stimuli. Several well-designed
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IBS studies of hypnotherapy, including randomized, controlled trials, have shown
substantial long-term improvement not only of gastrointestinal symptoms but also of
anxiety, depression, quality of life, disability and excess healthcare (Kearney and Brown-
Chang, 2008). However, a few recent large-scale randomized controlled trials of cognitive
behavioral therapy have failed to show significant advantages in reduction of gastrointestinal
symptoms in comparison of psychological control conditions (Blanchard et al., 2007; Boyce
et al., 2003; Drossman et al., 2003). The results of study by Blanchard et al. (Blanchard et
al., 2008) suggest that there is rather a reciprocal than a causal relation between stress and
symptoms. Thus, as described by Miller and Whorwell (Miller and Whorwell, 2009), more
direct targetting to gastrointestinal symptoms including abdominal pain, such as with gut-
directed hypnotherapy might be more effective.

In addition to psychological mind-body interventions, clinical trials confirm the
effectiveness of centrally acting pharmacological interventions such as with antidepressants,
and anxiolytics, or combination of drugs from both groups in the treatment of chronic pain
disorders (Palsson and Drossman, 2005; Verdu et al., 2008; Warnock and Clayton, 2003).
Tricyclic antidepressant amitriptyline has been shown to reduce brain activation during
rectal distension in IBS patients, but only during mental stress (Morgan et al., 2005; Thoua
et al., 2009). Based on the reduced activation in cognitive and affective cortical regions, it
was postulated that amitriptyline improves symptoms in IBS due to a CNS effect rather than
a peripheral one, most likely reducing the affective and hypervigilance component to pain or
stress-related exacerbation of symptoms (Morgan et al., 2005). Another antidepressant –
fluoxetine (selective serotonin reuptake inhibitor) reduces abdominal pain in IBS, but only
in patients displaying hypersensitivity to rectal distension, thus adequate patients selection
would determine treatment effectiveness (Kuiken et al., 2003) (Table 1).

As serotonin plays a critical role not only in stress-related alterations of gut motility, visceral
sensitivity, and intestinal secretion (ligands of 5-HT3 and 5-HT4 receptors belong to the
most effective treatments in IBS), but also in the pathophysiology of many extra-intestinal
stress-related disorders frequently associated with IBS such as anxiety, depression or
chronic pain syndromes (e.g., migraine headaches) and therefore points to the development
of efficacious and safe serotonergic agents to alleviate IBS symptoms (De Ponti and Tonini,
2001; Maneerattanaporn et al., 2011). For example, buspirone, a partial 5-HT1 receptor
agonist, with anxiolytic activity displays analgesic effect in the CRD-induced visceral pain
model in rats (Sivarao et al., 2004). Similarly, robalzotan tartrate monohydrate (AZD7371),
a selective competitive 5-HT1A receptor antagonist, initially developed as a potential
treatment for depression and anxiety disorders significantly reduces the visceromotor
response to CRD in rats (Lindström et al., 2009). However, the clinical development of
AZD7371 has been discontinued due to severe adverse events including hallucinations, and
the inability to demonstrate significant efficacy in IBS patients compared with placebo
(Drossman et al., 2008). Recently, a new piperazinylpyridine derivative, TZB-20810 with
mixed 5-HT1A agonistic and 5-HT3 antagonistic activities has been proposed as a promising
drug in the treatment of IBS (Asagarasu et al., 2009).

Data from preclinical and clinical studies on triptans, 5-HT1B/D agonists used for migraine
treatment revealed that, although they do not exert anxiolytic effect, can influence the
perception of colorectal and gastric distension (Mulak and Paradowski, 2006; Tack et al.,
2000; Vera-Portocarrero et al., 2008). Furthermore, based on experimental data, the role of
5-HT2B receptor antagonist (RS-127445), probably involved in the descending pain
modulatory pathway, has been suggested as a potential therapeutic target in IBS (O'Mahony
et al., 2010).
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Apart from serotonergic agents, some other compounds including GABAB receptor agonist,
baclofen and the positive allosteric modulator CGP7930 (Brusberg et al., 2009b) as well as
the α2-receptor agonist, clonidine (Bharucha et al., 1997a; Brusberg et al., 2008), reveal
sedative or anxiolytic-like action on stress-related behavior along with analgesic effect on
visceral pain. Preliminary data suggest that anxiolytic activity of γ-aminobutyric acid-ergic
agent (gabapentin) and α2δ ligand (pregabalin) may be also efficient in reducing central
sensitization in hyperalgesia (Camilleri and Andresen, 2009) as shown in experimental
model (Million et al., 2007a). New centrally acting agents providing analgesic effects
include dextofisopam (2,3-benzodoazepine receptor modulator) and quetiapine (atypical
antipsychotic agent ameliorating anxiety, sleep disturbances and augmenting the effect of
antidepressants) (Camilleri, 2010).

The central as well as peripheral role of CRF1 receptors in stress-related visceral pain
response has been intensively studied over the past decade based on convergent preclinical
data and phase I clinical studies showing blockade of acute and chronic stress-related
visceral hyperalgesia using selective small molecule CRF1 antagonists that cross the blood
brain barrier such as antalarmin, NBI 35965, JTC-017, CP-154,526 or GW876008 (Martinez
and Taché, 2006; Taché and Brunnhuber, 2008)(Table 1). However, despite encouraging
data from preclinical animal models of IBS, recently published results from a randomized,
double blind, placebo controlled, crossover study did not confirm the effectiveness of
GW876008 in IBS patients regarding the global improvement scale, daily selfassessment of
pain/discomfort or individual lower gastrointestinal symptoms (Dukes et al., 2009).
Currently, there are several CRF1 receptor antagonists undergoing clinical trials (Phase II/
III) for depression (GSK561679, GW876008 and pexacerfont), IBS and anxiety
(GSK561679 and GW876008) (Zorrilla and Koob, 2010). The results of these trials should
provide definitive conclusion as to whether this is still a viable target.

Growing evidence has accumulated suggesting that the endogenous cannabinoid system is
also an important signaling system playing a key role in mediating and/or modulating
behavioral, neurochemical, neuroendocrine, neuroimmune and molecular responses to stress
(Finn, 2010). Activation of cannabinoid receptors (CB1, CB2, and G protein-coupled
receptor GPR55) induces analgesic effect in several experimental models, including visceral
pain originating from the gastrointestinal tract (Izzo and Sharkey, 2010; Sanson et al., 2006).
The allodynic and hyperalgesic responses induced by a selective CB1 receptor antagonist
suggest the existence of endogenous cannabinoid tone and the activation of CB1 receptors
during noxious CRD in rodents (Brusberg et al., 2009a). However, in a recent clinical trial
the mixed CB1/CB2 receptor agonist delta-9-tetrahydrocannabinol (dronabinol) has failed to
reduce visceral perception to rectal distension in healthy volunteers and IBS patients
(Klooker et al., 2011). These initial data dampen the potential use of centrally acting
cannabinoid agonists as therapeutic agents to treat IBS.

While opioids may also exert antidepressant- and anxiolytic-like effects, their clinical use
for gastrointestinal conditions has been limited by CNS side effects. A new generation of
peripheral opioid receptor ligands free of these side effects has been developed (Healy,
2009; Moultry et al., 2011). Interestingly, in a recent study an on-demand dosing schedule of
asimadoline, a peripheral kappaopioid agonist, was not effective in reducing the severity of
abdominal pain in IBS, but modestly reduced the anxiety score (p = .053) (Szarka et al.,
2007).

Tachykinin neuropeptides including SP, neurokinin A, neurokinin B and their receptors
(NK1, NK2, NK3) localized in brain areas known to be implicated in stress-mechanisms,
mood/anxiety regulation, emotion-processing and pain modulation and also modulating the
CRF system may present another potential therapeutic targets in stress-related disorders such
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as IBS (Ebner et al., 2009; Frisch et al., 2010). However, although in a pilot study in IBS
patients, the NK1 receptor antagonist, ezlopitant, reduced the emotional response to
rectosigmoid distension, it did not significantly decreased rectal sensitivity (Oh-Young et
al., 2000).

Recent studies have pointed to CCK as being involved in stress-induced sensory
hypersensitivity, through neuroinflammation in the dorsal horn of the spinal cord (Rivat et
al., 2007). Whether these preclinical observations will translate as potential good therapeutic
candidate in the context of anxietyinduced hyperalgesia remains to be established. The
potential role of other peptide signaling pathways such as somatostatin or melatonin in the
modulation of visceral pain in the context of their anxiolytic and antidepressant properties
requires further studies (see Table 1).

The better understanding of a recently developed concept of the brain-gut-enteric microbiota
axis and the critical interdependence between the composition and stability of the microbiota
and sensorymotor function of the gut as well as stress-related behavioral changes indicate a
novel approach for IBS with a use of probiotics, prebiotics, and antibiotics (Collins et al.,
2009b; Rhee et al., 2009). Whether the uprising new line of investigations related to specific
modulation of the enteric microbiota will open new promising strategy for stress-related
disorders, in particular co-morbid aspects of functional gastrointestinal disorders such as
IBS (Cryan and O'Mahony, 2011) is still to be defined.
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Abbreviations

ASICs acid-sensing ion channels

BDNF brain-derived neutrophic factor

ATP adenosine triphosphate

CB cannabinoid

CeA central amygdala

CNS central nervous system

CRD colorectal distension

CRF corticotropin releasing factor

CRF1 CRF receptor subtype 1

CRF2 CRF receptor subtype 2

DRG dorsal root ganglia

DSS dextran sodium sulfate

EMG electromyography

ENS enteric nervous system

ERK extracellular signal-regulated kinases

GABA gamma-amino butyric acid

GI gastrointestinal
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GPR G-protein coupled receptor

5-HT 5-hydroxytryptamine

HPA hypothalamic-pituitary-adrenal

IBS irritable bowel syndrome

IFN interferon

NK neurokinin

NMDA N-methyl-D-aspartate receptor

P2X purinergic receptor 2X

PAR2 proteinase-activated receptor 2

PGE2 prostaglandin E2

PTSD post-traumatic stress disorder

SNRI serotoninnoradrenaline reuptake inhibitor

SSRI selective serotonin reuptake inhibitor

SP substance P

TRPA transient receptor potential ankyrin

TRPV transient receptor potential vanilloid

VMR visceromotor response

WAS water avoidance stress
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Figure 1. Putative mechanisms involved in exteroceptive and interoceptive stress-induced
visceral hyperalgesia
Exteroceptive stress when perceived by the CNS, induces the activation of the
paraventricular nucleus of the hypothalamus and the release of CRF centrally leading to the
activation of the pituitary-adrenal axis and the release of corticosterone and catecholamines,
and peripherally stimulating the ENS to release peptides (SP, CRF). These peptides
stimulate mast cells degranulation and release of preformed and newly synthesized
mediators (tryptase, histamine, NGF, prostaglandins, cytokines, serotonin) leading to T-cell
activation and increased colonic paracellular permeability. This in turn, increases the
transfer of bacteria and antigens into the mucosa, further activating mast cells and T-cells,
with an increased release of inflammatory mediators that sensitize the afferent fibers to
mechanical stimuli leading to the development of visceral hypersensitivity. Interoceptive
stressors can induce the release of inflammatory mediators by epithelial cells (ATP,
bradykinin, prostaglandins) which can directly sensitize afferent fibers or induce the
additional release of algogenic substances (histamine, SP, NGF, serotonin). Sensitization of
afferent nerves can lead to long term alterations in the spinal cord and hyperactivation of
spinal glial cells, which once the peripheral insult or stressor is resolved can perpetuate the
visceral hypersensitivity. ATP: adenosine triphosphate, CNS: central nervous system, CRF:
corticotropin-releasing factor, DRG: dorsal root ganglia, ENS: enteric nervous system, IFN:
interferon, NGF: nerve growth factor, PGE2: prostaglandin E2, SP: substance P.
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Table 1

Drug class Compounds Effect on visceral sensation References

Tricyclic antidepressant Amitriptyline Reduces brain activation in cognitive
and affective cortical regions during
rectal distension in IBS

(Morgan et al., 2005;
Thoua et al., 2009)

Antidepressant SSRI Fluoxetine Reduces abdominal pain but only in
patients with hypersensitivity to
rectal distension

(Kuiken et al., 2003)

Citalopram Reduces abdominal pain in IBS
patients with coexisting depression

(Ford et al., 2009)

Antidepressant SNRI Venlafaxine Increases compliance, decreases tone
and sensation in healthy humans

(Chial et al., 2003)

5-HT1 agonist Buspirone Induces analgesic effect in the CRD
model in rats

(Sivarao et al., 2004)

Not significantly alters colonic
compliance, tone, or sensation in
healthy humans compared to placebo

(Chial et al., 2003)

Robalzotan tartrate
monohydrate (AZD7371)

Induces analgesic effect in the CRD
model in rats

(Lindström et al.,
2009)

Ineffective in clinical trial in IBS (Drossman et al.,
2008)

5-HT3 antagonist Alosetron Inhibits stress-induced visceral
hyperalgesia in a rat model

(Bradesi et al., 2007)

Increases colonic compliance in IBS
patients

(Delvaux et al., 1998)

No significant effect on
gastrointestinal transit or rectal
sensory and motor function in IBS

(Thumshirn et al.,
2000)

Reduces symptom ratings, emotional
stimulus ratings as well as regional
blood flow in various limbic structure
including the amygdala

(Mayer et al., 2002)

GABAB receptor agonist Baclofen and CGP7930
(positive allosteric modulator)

Exert anxiolytic-like action on stress-
related behavior and inhibit
visceromotor response to CRD in rats

(Brusberg et al.,
2009b)

GABA analogue Gabapentin Reduces rectal mechanosensitivity
and increases rectal compliance in
diarrhea-predominant IBS patients
Reduces central sensitization?

(Lee et al., 2005)

α2δ ligand Pregabalin Reduces the viscerosomatic and
autonomic responses associated with
CRD-induced visceral pain and
increased colonic compliance in rats

(Million et al., 2007a;
Ravnefjord et al.,
2008)

Reduces visceral sensation in
hypersensitive IBS patients Reduces
central sensitization?

(Houghton et al.,
2007b)

2,3-benzodiazepine receptor modulator Dextofisopam Reduces visceral pain in the CRD
animal model but not in preliminary
study in IBS patients

(Leventer et al.,
2008)
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Drug class Compounds Effect on visceral sensation References

α2-adrenergic receptor agonist Clonidine Inhibits visceromotor response to
CRD in rats

(Brusberg et al.,
2008)

Induces sedative and analgesic
response during CRD in humans

(Bharucha et al.,
1997b)

Nonselective CRF receptor antagonist α-helical CRF Reduces colonic distension-induced
sensitivity in IBS patients

(Sagami et al., 2004)

Astressin Attenuates post-inflammatory
visceral hypersensitivity

(La et al 2008)

CRF1 receptor antagonist Antalarmin NBI 35965
JTC-017 CP-154,526

Blocks stress-induced visceral
sensitivity in rats

(Greenwood-Van
Meerveld et al.,
2005; Million et al.,
2003; Million et al.,
2005)

GW876008 Not effective in IBS patients
regarding global improvement and
pain/discomfort

(Dukes et al., 2009)

μ-opioid agonist Fentanyl Prevents the sensitizing response to
repetitive CRD in mice

(Arvidsson et al.,
2006)

κ1-opioid agonist Fedotozine Reduces visceral hypersensitivity in a
model of colonic irritation Increases
thresholds of perception during CRD
in IBS patients

(Delvaux et al., 1999;
Langlois et al., 1997)

Asimadoline Not effective in reducing severity of
abdominal pain in IBS, but has a
tendency to reduce the anxiety score

(Szarka et al., 2007)

Nociceptin receptor (ORL-1) agonist Nociceptin/Orphanin FQ Injected peripherally, reduces
visceral hypersensitivity triggered by
inflammation or stress in rats

(Agostini et al.,
2009)

CB1 receptor agonist SAB-378 Inhibits pain-related responses to
repetitive noxious CRD in rats

(Brusberg et al.,
2009a)

CB1/CB2 receptor agonist WIN55,212-2 Inhibits pain-related responses to
repetitive noxious CRD in rats

(Brusberg et al.,
2009a; Hong et al.,
2009)

Dronabinol Failed to reduce visceral perception
to CRD in healthy subjects and IBS
patients

(Klooker et al., 2011)

NK1 receptor antagonist SR140333 Diminishes the enhanced
visceromotor reflex to CRD in rats

(Bradesi et al., 2006)

Ezlopitant (CJ-11974) Reduces the emotional response to
rectosigmoid distension but does not
decrease rectal sensitivity in IBS
patients

(Oh-Young et al.,
2000)

NK3 receptor antagonist Talnetant Reduces nociception associated with
CRD and hypersensitivity induced by
stress but not inflammation

(Fioramonti et al.,
2003)

No benefit in clinical trial in IBS (Houghton et al.,
2007a)

CCK2 receptor antagonist Cl-988 Blocks anxiety-induced hyperalgesia
in rats

(Rivat et al., 2010)
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Drug class Compounds Effect on visceral sensation References

Somatostatin receptor agonist Octreotide (sst2,3,5 agonist) Exerts antinociceptive effect on
responses to CRD at the central level
in rats

(Su et al., 2001)

Normalizes visceral perception
thresholds in IBS patients

(Schwetz et al.,
2004b)

Failed to improve IBS symptoms in a
long-term treatment

(Klooker et al., 2007)

sst2 agonist Inhibits mesenteric afferents involved
in nociceptive transmission and
induce anxiolytic-like and
antidepressant-like behavior effect in
rats

(Booth et al., 2001;
Engin and Treit,
2009)

Melatonin Melatonin Decreases abdominal pain and
improve overall IBS symptom scores
in patients

(Mozaffari et al.,
2010)

Exerts antinociceptive effect in a rat
model of post-inflammatory visceral
hyperalgesia via a centrally mediated
process

(Mickle et al., 2010)

Neu-P11 (melatonin agonist) Exerts antidepressant and anxiolytic
activities in rodent models - effect on
visceral sensitivity not studied yet

(Tian et al., 2010)

Antibiotics Rifaximin, neomycin Inhibit stress-induced visceral
hyperalgesia in animal models and
alleviate symptoms in IBS patients
modulating also stress-related
behavioral changes via the brain-gut-
enteric microbiota axis

(Pimentel et al.,
2006; Pimentel et al.,
2011b; Pimentel et
al., 2011a)

Probiotics VSL#3 Lactobacilus spp.
Bifidobacterium spp.

(Collins et al., 2009a;
McKernan et al.,
2010; Messaoudi et
al., 2011; Moayyedi
et al., 2010; Verdu et
al., 2006)

Prebiotics Enzyme-treated rice fiber
Transgalactooligosaccharide

(Kanauchi et al.,
2010; Silk et al.,
2009)
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