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Abstract
A recently introduced technique for pathogen recognition called BARDOT (BActeria Rapid
Detection using Optical scattering Technology) belongs to the broad class of optical sensors and
relies on forward-scatter phenotyping (FSP). The specificity of FSP derives from the
morphological information that bacterial material encodes on a coherent optical wavefront passing
through the colony. The system collects elastically scattered light patterns that, given a constant
environment, are unique to each bacterial species and serovar. The notable similarity between FSP
technology and spectroscopies is their reliance on statistical machine learning to perform
recognition. Currently used methods utilize traditional supervised techniques which assume
completeness of training libraries. However, this restrictive assumption is known to be false for
most experimental conditions, resulting in unsatisfactory levels of accuracy, poor specificity, and
consequently limited overall performance for biodetection and classification tasks. The presented
work demonstrates application of the BARDOT system to classify bacteria belonging to the
Salmonella class in a nonexhaustive framework, that is, without full knowledge about all the
possible classes that can be encountered. Our study uses a Bayesian approach to learning with a
nonexhaustive training dataset to allow for the automated detection of unknown bacterial classes.

1 Introduction
Recently a number of new label-free biosensors have been reported in the literature [1, 2, 3].
These tools are label-free in the sense that they do not employ fluorescence labels, but use
alternative detection modalities such as surface plasmon resonance, amperometric and
potentiometric measurements, or electrochemical impedance spectroscopy. However, these
biosensors still utilize traditional biological recognition elements: enzymes, antibodies, and
nucleic acids. The only well researched and broadly utilized techniques capable of true
reagentless fingerprinting of bacteria are vibrational spectroscopic methods (Raman and IR)
[4, 5, 6, 7, 8], autofluorescence-based observations [9, 10], MALDI-TOF-based systems [11,
12, 13], and light-scatter analysis [14, 15, 16, 17].
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Light scatter–based methods provide an interesting alternative to vibrational spectroscopies
because they not only allow for a true label-free and reagentless measurement capability, but
also rely on quantitative description of optical properties of the microorganisms rather than
on their chemical composition. The BARDOT (BActeria Rapid Detection using Optical
scattering Technology) system developed at Purdue University is a new optical sensor for
detection and identification of colonies of multiple pathogens that has shown great promise
for distinguishing bacterial cultures at the genus, species, and strain level for Listeria,
Staphylococcus, Salmonella, Vibrio, and E. coli [18, 19, 20]. The BARDOT method uses the
unique patterns formed by laser light scattering from bacterial colonies to detect and classify
pathogens (See Figure 1).

In some aspects the approach to detection and classification performed by BARDOT is
conceptually similar to procedures used in spectroscopic techniques. BARDOT relies on
pattern recognition and machine learning to evaluate colonies, and on the basis of this
information to recognize organisms belonging to specific classes. Spectroscopic systems use
chemometrics, which is fundamentally a specialized machine-learning toolkit optimized for
classification of spectral datasets representing various classes of bacteria.

One presumable yet mostly unrealized advantage of reagentless, label-free classification
technologies based on phenotypic recognition of bacteria is the fact that they can potentially
recognize and classify bacterial species or strains for which there are no available antibodies
or genetic markers. In order to achieve that, the classifier would have to be retrained with a
new set of “fingerprints” describing the new emerging pathogens. However, reliance on
machine learning and multivariate statistical analysis is also a weak point of BARDOT-, IR-,
or Raman-based technologies. These systems use knowledge automatically discovered from
pre-tested and pre-labeled samples through a supervised learning, which is de facto a
process of developing predictive models using a library of known samples. Therefore, the
predictive performance of these classifiers depends to a great extent on the quality of the
training libraries. Unfortunately, the quality of training libraries for any label-free
biodetection system is potentially limited in a number of ways.

The most important limitation of standard training libraries is that only the most prevalent
classes of bacteria are available, as it is impractical to assume the presence of all the classes
in all tested samples. Additionally, the presence of background bacterial flora makes the task
of dynamic learning and class expansion really unattainable. The sheer number of
pathogenic classes would not allow for a practical and manageable training. Additionally,
bacteria are characterized by a high mutation rate, which can influence their pathogenicity.
More specifically, a bacterial serovar may go through a mutation to form a new pathogenic
serovar. New emerging pathogens may also be rapidly introduced to a geographical area.
Therefore, any training library representing a set of bacterial classes is inherently
nonexhaustive, and collecting a fully exhaustive library would impossible. However,
classifying pathogenic bacteria from an unknown class as nonpathogenic would have
disastrous consequences.

The outlined problem could be alleviated if the analysis strategy employed by phenotypic
recognition systems like BARDOT allowed for novelty detection (i.e., automated detection
of unknown serotypes) simultaneously with the process of classification. If a novelty
detection procedure were successfully implemented, BARDOT methodology would be
capable of raising an alarm when a new serotype was detected in tested samples.

In [21], we defined the nonexhaustive learning problem and proposed for the first time a
Bayesian approach based on maximum likelihood evaluation of real and simulated classes
for new samples. In this method, all classes (known and unknown) were assumed to have
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Gaussian distributions with a common covariance matrix. A prior was defined over the
mean vectors of the classes and its parameters were estimated using samples of the known
classes. A large number of samples was generated from the prior to simulate the space of all
classes. A new instance was classified using a maximum likelihood classifier and was
considered a novelty if it was classified into one of the simulated classes. This attempt,
although it looked promising, also had certain limitations. First, the common covariance
assumption was quite restrictive. Second, the Gaussian prior defined for the mean vectors
required a very large number of classes to be available in the training dataset to avoid
numerical problems in estimating the parameters of the prior. Third, as the dimensionality
increased, the number of simulated classes necessary to achieve higher specificities
increased exponentially.

In this report, we use our new Bayesian approach based on Wishart priors for detecting
samples of Salmonella belonging to unknown serotypes (i.e., serotypes not present in the
training library). The utilized algorithm creates new classes on the fly and evaluates
maximum likelihood with the updated set of classes, gradually improving detection accuracy
for future samples. Our approach is tested with over 400 samples representing seven
common serotypes of Salmonella. We demonstrate that novelty detection paired with
automated classification is an attainable goal, and that label-free phenotypic methods such as
laser scattering not only can be used to classify biological samples into previously known
categories, but may also play a role as a autonomous detection system. We believe that the
presented approach is applicable not just to BARDOT methodology, but that with minimal
modification it can also be utilized to enhance other label-free biosensors such as IR or
Raman spectroscopy.

2 Materials and Methods
2.1 Sample Preparation

The Salmonella enterica samples representing Agona, Cholerasuis, Indiana, Kentucky,
Schottmuelleri, Tennessee, and Typhimurium (var. Copenhagen) serotypes were obtained
from Dr. Bhunia's culture collection (Department of Food Science, Purdue University).
Rappaport-Vassiliadis R10 (RV) broth and xylose lysine deoxycholate (XLD) agar were
purchased from the Accumedia division of Neogen Corporation (Lansing, MI). RV broth is
a nutrient broth selective for Salmonella. The XLD agar is also selective for Salmonella and
inhibits growth of most other microorganisms. The Salmonella samples were cultured in RV
broth for 12-18 hours at 37 °C. Cultures were then decimally diluted in 20 mM phosphate
buffered saline. Dilutions were spread plated on XLD agar. The agar plates were incubated
at 37 °C until the desired colony size of 1.3±0.2 mm was reached. In most cases, this took
about 12 hours for all the tested Salmonella serotypes. Agar plates containing over 30
colonies of the appropriate size were analyzed with the BARDOT instrument.

2.2 Light-scattering instrumentation
The current implementation of BARDOT consists of three major components: colony
counter/locator, forward-scattering measurement device, and 2-D motorized stage. The
colony locator/counter is composed of a red laser equipped with a single-line projector
(Lasiris 501L-635-5mW, Stocker Yale, Inc. Salem, NH), and a line-scanner (Hamamatsu
512 pixel, 25 μm pitch, and 2.5 mm length). The line scanner optics employs two cylindrical
lenses (f=198 mm) and produces a laser line of 101.6 × 0.5 mm. The laser-line scan
generates a 2-D transmission map of the agar plate that is subsequently processed to identify
centers of all the colonies. The forward-scattering measurement device is composed of a
laser diode module (Lasiris 501L-635-1mW) and a monochromatic CCD image sensor
(Silicon Imaging SI1280 FM-CL, Silicon Imaging Inc., Costa Mesa, CA) with 1280 × 1024
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resolution and 6.7 × 6.7-μm pixel size. Motion control is provided by a three-axis stepping
motor (Velmex NEMA 17, Velmex, Bloomfield, NY). The controller and the pulse encoder
(E2-400-197 IHT, US Digital, Vancouver, WA) communicate with an external CPU via an
NI PCI-6602 board (National Instruments, Austin, TX).

2.3 Pattern preprocessing and feature extraction
The scatter patterns acquired using the sensor technology were represented as greyscale
bitmaps. Over 430 randomly selected scatter patterns representing colonies belonging to
tested samples were further processed to obtain numerical representation of the patterns.

The current implementation uses only a very simple normalization procedure to correct the
signal intensity of the scatter images, but does not correct any spatial distortion introduced
during the measurement process by improper laser positioning or off-axis illumination. After
normalization the bitmaps were rescaled and squares of 300×300 pixels representing centers
of the bitmaps were subjected to further analysis.

Two groups of features were used in this study: invariant orthogonal moments and Haralick
texture features [22, 23, 24, 25]. Our current implementation of the classification system
employs pseudo-Zernike moments (PZMs) [26, 27, 28], which were computed using
pseudo-Zernike polynomials. The pseudo-Zernike polynomials are a set of orthogonal
polynomials which have properties similar to those of Zernike polynomials. However, it has
been shown that pseudo-Zernike moments are less sensitive to image noise than are
conventional Zernike moments [29].

The 2-D pseudo-Zernike moment, Zpq, of order p with repetition q is defined using polar
coordinates (r,θ) inside the unit circle as

(1)

where  is the complex conjugate of the pseudo-Zernike polynomial Vpq(r, θ), which

is given by Vpq(r, θ) = Rpq(r)ejqθ, where , , −1 < x,y < 1.

Here Rpq(r) is the real-valued radial polynomial defined as:

(2)

The pseudo-Zernike polynomials satisfy the following orthogonality property:

(3)

where δnm is the Kronecker symbol.
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To compute the pseudo-Zernike moments of a given image, the center of the image is taken
as the origin and pixel coordinates are mapped to the range of the unit circle. Rotational
invariance is obtained by using the magnitudes of the pseudo-Zernike moments as features.
The details of pseudo-Zernike moment computation can be found in our published reports
[18, 20].

Another set of features was computed using gray-level co-occurrence matrices (GLCMs).
The GLCMs are routinely employed to quantify the number of occurrences at various
distances and angles of pixel intensity values with respect to each other [23, 24]. The
GLCMs were used to extract 14 low- and high-frequency (depending on the pixel-to-pixel
distance used in the co-occurrence matrix) texture properties (so-called Haralick texture
features). We used the mean and the range of 12 of these 14 features.

Formally, the Haralick features can be described as follows: let image I have Nx pixels in the
horizontal direction and Ny pixels in the vertical direction. Suppose also that there are Ng
distinct gray-tone levels in the quantized (digital) image. Let Lx = 1,2,…,Nx be the
horizontal spatial domain, Ly = 1,2,…,Ny be the vertical spatial domain, and G = 1,2,…,Ng
be the set of Ng distinct gray levels (tones). The texture-context information in image I is
contained in the overall or “average” spatial relationship that the gray tones in image I have
with one another. More specifically, this texture-context information is adequately specified
by the matrix of relative frequencies Pij with which two neighboring pixels separated by a
distance d occur on the image, one with gray level i and the other with gray level j.
Excluding the borders, a pixel has eight nearest-neighbor pixels (north, south, east, west,
northwest, northeast, southwest, southeast). For angles quantized to 45° intervals, the un-
normalized frequencies are defined by

(4)

where # denotes the number of elements in the set where the intensity level of a pixel pair
changes from i to j, the location of the first pixel is (x1,y1) and that of the second pixel is
(x2,y2), d is the distance between the pixel pair, and θ is the angle between the two pixels. A
symmetric co-occurrence matrix can be computed by the expression P(i, j, d, θ)′ = (P(i, j, d,
θ) + P(i, j, d, θ)T)/2. The probability estimates are obtained by dividing each entry in P(i, j,
d, θ) by the sum of all possible intensity changes with the distance d and direction.

Note that only the distinct gray levels are used to build the P matrices. If the gray levels are
in the range [0, 255] and all are used in the image, then P will be a 256-by-256 matrix [23,
24].

3 Results
3.1 Automated classification of Salmonella samples assuming exhaustiveness of the
training library

One hundred and ninety features were extracted from every collected forward-scatter
pattern. Examples of the Salmonella scatter patterns are shown in Figure 1. The extracted
features were used directly for exploratory analysis of the acquired results. Figure 2 show
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principal component analysis (PCA), independent component analysis (ICA), and kernel
PCA mapping of the data. Some clusters of data points are clearly identifiable on these plots.
One of the obvious clusters corresponds to the Salmonella Indiana population, whereas the
other well defined cluster contains colonies belonging to Salmonella Agona. The other
serotypes are much more difficult to differentiate. This demonstrates a requirement for a
supervised machine-learning approach, and shows that the unsupervised exploratory
analysis can visualize easily discernible differences between some patterns only, whereas
the remaining patterns cannot be easily separated.

In the next step, the experimental data were used to construct and cross-validate a supervised
training system. The classifier operated in a single-instance fashion, meaning that it
classified a single colony (rather than a plate or a sample) at a time. Three classifiers were
evaluated: LDA, linear support vector machine (SVM), and an SVM with a Gaussian kernel.
Ten-× cross-validation was used to assess the quality of the classifiers. The following
measures of classification success for the best of the tested classifiers are reported in Table
1: sensitivity (true positive rate), specificity (1- false positive rate), accuracy, and AUC (area
under the receiver operating characteristic curves for a binary classifier which classifies a
given class as “positive” and all other classes as “negative”) [30]. The classifiers were
trained assuming that every tested colony represents an independent instance. The
implementation of the traditional supervised learning system was realized using R language
for statistical computing. The e1071 package operating within the R environment and
allowing access to the libsvm library was used for SVM-based classification [31, 32].

All results so far were computed assuming full exhaustiveness of the available training
libraries. In the next step this assumption is explicitly rejected, and the presented technique
operates within a nonexhaustive framework.

3.2 Machine-learning approach to real-time detection of unknown serotypes
The presented system works in a multi-class setting and incorporates sequential evaluation
of new samples in order to perform supervised classification and novelty detection. The
main contribution of this work is the special family of conjugate priors defined over class
distributions. This allows us to employ the prior information obtained from known classes to
make inferences about unknown classes as well. Our approach extends the concept of
novelty detection to set the stage for new class discovery. By identifying new classes of
informational value and dynamically updating itself with these classes, the training dataset
becomes more representative of the sample population. This results in a classifier with
improved predictive performance for future samples. In this study, we evaluate our approach
using a dataset consisting of seven strains of Salmonella. Extensive testing of the proposed
approach on 28-class bacterial-detection and 26-class letter-recognition datasets were
provided in [33], where the proposed approach was also compared against state of the art
involving nonadaptive density-based approaches and support vector domain description, as
well as a recently introduced Bayesian approach based on simulated classes.

3.2.1 Maximum likelihood detection—Our implementation of the outlined framework
utilizes a density-based approach that uses class-conditional likelihoods of samples to detect
unknown serotypes. Briefly, if the maximum of the class-conditional likelihoods is above a
designated threshold, then the sample belongs to one of the classes in the training library
(i.e., known serotypes) and is assigned the corresponding class label; otherwise the sample is
identified as belonging to an unrepresented serotype, hence a novelty.

More formally, let Ω, Δ, and Γ denote the set of all, known, and unknown bacteria classes (in
this case Salmonella serotypes), respectively, with Ω = Δ∪Γ; A, K, and M are their
corresponding cardinalities with A = K + M. The decision that minimizes the Bayes risk
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under the 0/1 loss-function assumption assigns a new sample z to the class with the highest
posterior probability:

(5)

where i = {1,…,A} and θi is the parameter of the conditional distribution associated with the
class ωi. The classifier obtained by evaluating this decision rule is known as a maximum a
posteriori classifier (MAP).

Using Bayes' rule the above decision rule can be rewritten as follows:

(6)

where fi(z∣θi) is the likelihood of z, π(θi) is the prior, and p(z) is the evidence. The evidence
p(z) is the same for all classes, and hence can be removed from the above formulation.
When all classes are assumed a priori likely, π(θi) can be dropped from (6) as well. This
leaves us with the maximum likelihood (ML) decision function for classifying z:

(7)

where z is considered a novelty if ωi*∈Γ, and a sample of a known class if ωi∈Δ.

Since the set of classes is nonexhaustive fi(z∣θi) cannot be computed for all classes, and as a
result the decision function in (7) cannot be evaluated explicitly. We can express (7) in
terms of ωi* and rewrite it by separating fi(z∣θi) of known and unknown classes as

(8)

where ψ = max{i:ωi∈Δ} {fi (z∣θi)} and γ = max{i:ωi∈Γ} {fi (z∣θi)}.

Since no data are available for unknown classes, γ cannot be explicitly estimated. In our
experiments we consider γ as a tuning parameter to optimize sensitivity at a desired
specificity or vice versa. In other words, γ is the parameter allowing us to adjust for the
required compromise between sensitivity and specificity of the classification system.

To summarize, if the conditional likelihood of a known class for a sample z is less than γ,
then z is considered to be a sample from an unknown class (a serotype not present in the
training library); otherwise z is a sample from one of the known classes (serotypes
represented in the library) and thus can be assigned a known class label.

The most common and effective way to treat data of unknown nature is to assume Gaussian
distributions for all classes: ωi ∼ N(μi, Σi), θi = {μi, Σi}.

With this assumption in place, (8) becomes
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(9)

where gi(z) = log(|Σi|) + (z −μi)T Σi
−1 (z − μi) is the negative log-likelihood of class ωi given

z and |Σi| is the determinant of Σi For {i:ωi∈Δ}, μi and Σi can be estimated from class-
conditional data available in the training set.

When dealing with datasets containing limited numbers of training samples and high
dimensionality, the covariance estimator plays an important role in the modeling of the
class-conditional distributions. The sample covariance can be obtained using the following
formula:

(10)

where ni is the number of samples in class ωi, eni is a vector of ones of size ni, and μi are the
mean vectors estimated as

(11)

Here for notational simplicity all samples belonging to class ωi are denoted in the matrix
form as Xi = [xi1…xini].

3.2.2 Bayesian approach to covariance estimation—When the number of samples
available for a given class is less than d + 1, where d is the dimensionality, the sample
covariance becomes ill conditioned, i.e., the inverse does not exist. In practice, a robust
sample covariance requires many more samples than d + 1 because the number of
parameters to estimate in a covariance matrix increases as the square of the dimensionality.
This phenomenon is known as the curse of dimensionality [34].

Although the research in covariance estimators using a limited number of samples with high
dimensionality has a long history with relatively well-established techniques, two main
approaches dominate the field. These are regularized discriminant analysis (RDA) [35] and
empirical Bayes estimators [36]. RDA considers the mixture of sample and pooled
covariance and an identity matrix as an estimator, with their weights empirically estimated
by cross-validation. On the other hand, the Bayesian approach defines a pair of conjugate
prior distributions over the sample and true covariance matrices, and uses the mean of the
resulting posterior distribution as an estimator. In RDA, multiple samples from each class
are required to estimate the mixing weights by cross-validation, and thus to estimate the
covariance matrix, whereas in the Bayesian approach, the covariance estimator is a function
of the parameters of the prior distribution, which are estimated using samples of the known
classes.

Creating a new class for each detected novelty and defining the class by its mean and
covariance matrix form the core component of the proposed approach. The Bayesian
approach assumes a common prior for all classes (known and unknown) and estimates the
covariance matrix using the posterior mean. In that regard, the use of the Bayesian approach
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makes intuitive sense in the nonexhaustive setting, mainly because we assume that there is a
common pattern among the class distributions of all classes and that it can be captured with
known classes only, provided that a sufficiently large number of them are available for
training. Toward achieving this end, we use a special family of conjugate priors to estimate
the covariance matrices of the class-conditional distributions.

The assumption of Gaussianity, i.e., ωi ∼N(μi, Σi), implies that the sample covariance
matrices Si, i = {1,…,K}, where K is the number of known classes, are mutually independent
with fiSi ∼ W(Σi, fi). Here fi=ni− 1 and W(Σi, fi) denotes the Wishart distribution with fi
degrees of freedom and a parameter matrix Σi. The inverted Wishart distribution is conjugate
to the Wishart distribution and thus provides a convenient prior for Σi.

We assume that Σi is distributed according to an inverted Wishart distribution with m
degrees of freedom as

(12)

The scaling constant (m−d −1) before Ψ is chosen to satisfy E {Σi} = Ψ. Under this setting,
the posterior distribution of Σi given {S1,…,SK}, is obtained as described in [37]:

(13)

The mean of this posterior distribution is

(14)

Under squared-error loss, the posterior mean is the Bayes estimator of Σi. The estimator is a
weighted average of Si and Ψ; it shifts toward Si for large fi and approaches Ψ for large m.
For a class with just one sample, the estimator returns Ψ, which implies that no matter what
the dimensionality is, a nonsingular covariance estimate can be obtained using this
estimator, provided that Ψ is nonsingular. The estimator is a function of Ψ and m, which are
the parameters of the inverted Wishart prior for Σi. The closed-form estimates for Ψ and m
do not exist. The study in [36] suggests estimating Ψ by the unbiased and consistent estimate
Sp, i.e., the pooled covariance, and maximizing the marginal likelihood of Si for m > d +1
numerically to estimate m. In this study we set Ψ to Sp but estimate m to maximize the
classification accuracy for the known classes by cross-validating over the training samples.
Here, Sp is the pooled covariance matrix defined by

(15)

where N is the total number of samples available in the training dataset.

So far, we have presented our framework for detecting novelties in real time based on
maximum likelihood (ML) evaluation of samples using known classes. Our approach
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employs a pair of conjugate Wishart priors to estimate the covariance matrices of known
classes and detects novelties by thresholding the maximum likelihood evaluated with known
classes. However, novelties (samples belonging to unknown serotypes) originate from
classes of informational value that were not known at the time of training. Pooling novelties
showing similar characteristics into individual clusters may potentially recover some of
these classes, and as more classes of informational value are introduced, the training library
becomes more representative. This helps improve the predictive performance of the system
not only for detecting novelties but also for classifying future samples of newly discovered
classes. Our algorithm, referred as BayesNoDe, combines the ability to perform novelty
detection with new class discovery.

As formulated in (9), a new sample z∈ ℜd is detected as a novelty if min{i:ωi∈Δ} gi(z) > γ. In
other words, if the negative log-likelihoods of known classes given z are all greater than the
designated threshold γ, then the sample is considered a novelty, i.e., belongs to an a serotype
not represented in the training library.

When a sample is detected as a novelty, a new class is generated and defined by the
parameters (μ, Σ), where μ is the mean vector of this class and Σ is the covariance matrix,
both of which are not known. With just one sample, since S is not defined and f = 0, the
posterior mean in (14) is equivalent to Ψ and thus the Bayesian estimator for Σ becomes Σ̂ =
Ψ. The mean vector μ is estimated by μ̂ = z, i.e., the sample itself, which follows from (11).

Subsequently, the set of known classes (serotypes) is augmented with this new class.
Therefore, for the next sample available, the decision function in (9) is evaluated for classes
known initially as well as for newly created classes. If the sample is detected as a novelty,
the above procedure is repeated to generate another class. Otherwise, if the sample is
classified into one of the existing classes, then the system looks for a class that minimizes
the negative log-likelihood. If the sample is assigned to a previously discovered class, then
the class parameters μ and Σ are updated using equations (11) and (14) for that class. Since
there is more than one sample available now, Σ̂ becomes a mixture of the sample covariance
and Ψ. If, on the other hand, the sample is assigned to a class known initially, then no class
update is necessary.

4 Experimental demonstration of the detection/classification procedure
A total of 7 serotypes of Salmonella were considered in this study. Table I shows the list of
7 strains considered in this study together with the number of samples collected for each one
using the BARDOT system. In our experiments we treated each strain as a separate class
and used the number of samples listed in Table I from each class for training.

Scatter patterns of the bacteria were characterized by a total of 38 features involving
moment invariants and Haralick texture descriptors. The features were selected by the
procedure described for the exhaustive statistical machine-learning procedure. Details of the
feature extraction process and its robustness when performed for other bacterial species are
described in our previous publications [20]. Since the training dataset is nonexhaustive, the
goal is to design a classifier that accurately detects samples of known classes as known and
those of unknown classes as novelty. In this framework, classifiers can be more properly
evaluated using receiver operating characteristic (ROC) curves. Here sensitivity is defined
as the number of samples from known classes classified as known divided by the total
number of samples from known classes. Specificity is defined as the number of samples
from unknown classes detected as novelty, divided by the total number of samples from
unknown classes. Multiple sensitivity and specificity values are obtained to plot the ROC
curves. Different operating points are obtained by varying the threshold γ designated in (9).
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To evaluate our approach the 431 colonies were randomly split into two sets, as train and
test, with 80% of the samples being the training set and the remaining 20% being the test.
Stratified sampling was used to make sure that each subclass was represented in both sets.
This process was repeated ten times to obtain ten different pairs of train-test sets. Then, one
serotype out of the seven available was randomly selected and all the samples belonging to
this serotype were removed from the training datasets. Consequently this serotype became
unknown for the trained classifier. The novelty detection algorithm was trained with the
resulting nonexhaustive datasets and tested on the corresponding test sets. For each data
split, the area under the ROC curve (i.e., the AUC value) was computed. The AUC values
averaged over the ten different train-test splits were recorded along with the standard
deviation. In order to account for any possible bias introduced by removing a serotype, the
above process was repeated 6 more times, each time removing a different one of the seven
serotypes available for this study. Each repetition involved re-running the same in silico
experiment with a different nonexhaustive subset of the original data. AUC values achieved
by our algorithm are included in Table 2 for all 7 experiments. As described earlier, these
values represent the average of the ten runs each executed with a different train-test split.
The values in the third column of the table indicate standard deviations. Figure 3 shows the
corresponding ROC curves.

5 Discussion
The results presented in this report, as well as our previous publications, demonstrate that
the label-free BARDOT technique paired with supervised learning systems indeed performs
very well when libraries are assumed to be exhaustive, the number of bacterial classes is
relatively small, and samples are assumed to be pure (no mixed cultures). This classification
success expressed using standard measures such as sensitivity, specificity and AUC is
comparable to the best results reported for other far more complex phenotypic detection
systems based on Raman spectroscopy, IR spectroscopy, or MALDI-TOF [38, 39, 40, 8,
41].

It is important to note here that all phenotypic methods (elastic light scattering, vibrational
spectroscopy, protein profiling, etc.) ultimately rely on the ability either to enrich the sample
or to isolate a pure cell population in order to quantitatively describe the phenotypes.
Specifically, the BARDOT phenotypic detection and classification technique cannot be
employed for nonculturable microorganisms, as it relies on the ability to observe colonies.
However, provided that the organisms of interest can be cultured and that the assumptions of
library exhaustiveness are fulfilled, a traditional supervised learning system such as SVM
can quite easily and successfully classify the scatter fingerprints

At this point a fundamental question should be asked: how likely is a biodetection system to
encounter a new pathogenic class that the system is not trained to recognize? And
consequently, how important is it to pursue effective solutions to this problem for either
BARDOT or any other biodetection method using machine learning for identification of
samples.

Unfortunately, the probability of encountering a new class cannot be universally estimated.
Depending on the particular biodetection application, the occurrence of new, unknown, or
unexpected pathogens can vary greatly. Effectively this problem becomes an issue of risk
management. For instance, in the case of identification of Listeria monocytogenes the
classification difficulty is relatively mild. Only thirteen serovars are recognized, most cases
of human listeriosis are caused by serovars 4b, 1/2a, and 1/2b, and almost all large outbreaks
in humans are due to serovar 4b [42]. Since the number of serovars is low, a traditional
machine-learning system assuming an exhaustive library can be employed quite
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successfully. However, listeriosis is a serious disease and has a very high mortality rate. It
disproportionately affects persons with impaired immune systems or persons of certain
ethnic groups. Therefore an argument could be made that a system accounting for
nonexhaustiveness would still perform better in case a new subclass emerges owing to a
mutation [43, 44].

The constraints for risk assessment would be very different for Salmonella. Although
Salmonella has over 2300 identified serotypes, the ten most common serotypes
(Typhimurium, Enteritidis, and Newport being the top three) together account for over 70%
of all cases of salmonellosis reported in 2002. No known biodetection methods for rapid
Salmonella subtyping are capable of routine identification of all subtypes. If a BARDOT
system equipped with standard supervised learning tools were employed for Salmonella
subtyping and tuned for recognition of the most common serotypes, the probability of
encountering a less common yet dangerous Salmonella would still be highly significant,
considering the history of Salmonella outbreaks. Emergence of a new (i.e., previously
unidentified) Salmonella serotype may dramatically affect public health – as in the case of
the highly antibiotic-resistant and previously unknown serotype Newport, which was first
identified through the National Antimicrobial Resistance Monitoring System surveillance in
1998 [45, 46]. The Newport serotype is responsible for 10% of infections in the US. The
most common Newport variant, Newport-MDRAmpC, accounts for over 20% of tested
isolates. This highly dangerous microorganism is resistant to chloramphenicol,
streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, amoxicillin-clavulanic acid,
ampicillin, cefoxitin, ceftiofur, and cephalothin [46, 47]!

The reported results obtained using classification with a non-exhaustive training library
show that detecting unknown or emerging pathogens using a phenotypic label-free detection
system such as BARDOT is indeed feasible. To test this notion we constructed a set of in
silico experiments in which a know class of bacteria was hidden from the classification
system during the training. These experiments simulate the condition of nonexhaustiveness.
A “true” nonexhaustiveness cannot be tested in laboratory settings because it would require
access to an unknown and uncharacterized serotype, and simultaneously, a full knowledge
of this serotype in order to verify whether an unknown can be found. This obviously
constitutes a logical conundrum. However, removing known serotypes from a training
library and subsequently using a detection system to identify these organisms faithfully
simulates an encounter with an emerging class of pathogens. The removal and subsequent
detection/classification was tested for all seven available classes. The results summarized in
Table 2 and illustrated in Figure 3 show that our classification system was indeed able to
find hidden classes despite the fact that the classifier has not been previously exposed to
their characteristic features. The best result was obtained for serotype Agona. All the
colonies belonging to this serotype were correctly identified as belonging to a new emerging
class, when classifier encountered Agona samples in the test dataset. The worst, yet still an
impressive result (AUC = 0.85), was obtained for serotype Cholerasuis. The important
aspect of the presented approach is that it is not based on any particular property of
BARDOT-related features and therefore it can potentially be applied to other label-free
measurement techniques, such as various forms of vibrational spectroscopy.

Despite the demonstrated ability to find unknown serotypes with the help of a Bayesian
classification/detection algorithm, phenotypic methods cannot compete with approaches
based on analysis of genetic information as far as thorough characterization of emerging
phenotypes is concerned. However, there are many practical setting in which phenotypic
approach may excel, and analysis of samples derived from food matrices is one of them.
Usually 95-99.9% of tested samples are negative for the presence of food-borne pathogens.
Therefore, the use of expensive detection kits to determine that a sample is negative can be
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considered uneconomical and unnecessary. A phenotypic method such as BARDOT can be
employed as an inexpensive tool that would allow pre-screening of large numbers of
samples. If a sample is found positive, the colony(ies) can be picked up and verified by PCR
or other complex confirmatory tests.
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Figure 1.
Examples of scatter patterns formed by scattering of a laser beam from colonies formed by
different Salmonella serotypes: (A) Agona, (B) Cholerasuis, (C) Indiana, (D) Kentucky, (E)
Schottmuelleri, (F) Tennessee, (G) Typhimurium (Copenhagen).
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Figure 2.
Principal component analysis (A), independent component analysis (B), and kernel principal
component analysis (C) plots showing tested Salmonella dataset. Although the Agona and
Indiana serotypes can be easily differentiated the remaining data points do not form
distinguishable clusters.
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Figure 3.
ROC curves computed for a BayesNoDe classifier tested with non-exhaustive Salmonella
datasets. The seven curves represent seven incomplete datasets with a single serotype
removed from each.
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Table 2

AUC values averaged over 10 iterations for all 7 experiments run with the Salmonella dataset. A single
serotype is selected and considered unknown during each of the 7 experiments.

Removed serotype AUC AUC sd

Salmonella Agona 1.0 0.00

Salmonella Cholerasuis 0.85 0.02

Salmonella Indiana 1.0 0.00

Salmonella Kentucky 0.88 0.03

Salmonella Schottmuelleri 0.94 0.02

Salmonella Tennessee 0.99 0.01

Salmonella Typhimurium (Copenhagen) 0.97 0.01
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