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Abstract
The autotaxin (ATX) enzyme exhibits lysophospholipase D activity responsible for the conversion
of lysophosphatidyl choline to lysophosphatidic acid (LPA). ATX and LPA have been linked to
the initiation of atherosclerosis, cancer invasiveness, and neuropathic pain. ATX inhibition
therefore offers currently unexploited therapeutic potential, and substantial interest in the
development of ATX inhibitors is evident in the recent literature. Here we report the performance-
based comparison of ligand-based pharmacophores developed on the basis of different
combinations of ATX inhibitors in the training sets against an extensive database of compounds
tested for ATX inhibitory activity, as well as with docking results of the actives against a recently
reported ATX crystal structure. In general, pharmacophore models show better ability to select
active ATX inhibitors binding in a common location when the ligand-based superposition shows a
good match to the superposition of actives based on docking results. Two pharmacophore models
developed on the basis of competitive inhibitors in combination with the single inhibitor
crystallized to date in the active site of ATX were able to identify actives at rates over 40%, a
substantial improvement over the <10% representation of active site-directed actives in the test set
database.
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1. Introduction
Autotaxin (ATX) is a 125kDa extracellular enzyme that facilitates numerous biological
processes.[1–3] ATX was first identified in 1992 as a potent autocrine motility-stimulating
factor isolated from the human A2058 melanoma cell line.[4] ATX is a member of the
nucleotide pyrophosphatase phosphodiesterase (NPP) family based on the comparison of its
sequence similarities and enzymatic properties.[5, 6]
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ATX is found in several biological fluids and tissues, including the blood, kidney, and brain,
where it contributes to normal development.[7–9] ATX exerts its function through its ability
to hydrolyze lysophosphatidylcholine (LPC), as a lysophospholipase D (lysoPLD) enzyme,
to produce the bioactive lipid lysophosphatidic acid (LPA) and is responsible for the
majority of LPA production in blood.[3, 10–12] A variety of biological processes are
mediated by LPA including angiogenesis, chemotaxis, smooth muscle contraction, brain
development, and cell proliferation, migration, and survival with its primary effects being
growth-related.[2, 13–15] Other important effects elicited by LPA include cellular
differentiation, proliferation, stimulation of inflammation and suppression of apoptosis.[16–
22] Many of these diverse signaling processes are stimulated through the activation of G-
coupled protein receptors (GCPRs) specific to LPA.[19, 20, 23, 24]

Recent literature links ATX expression and LPA production with the promotion and
proliferation of various cancers including melanomas, renal cell carcinomas, metastatic
breast and ovarian cancers, thyroid carcinomas, Hodgkin lymphomas, neuroblastomas, and
invasive glioblastoma multiforme. [25–34] ATX, through its production of LPA, is also
thought to play a critical role in a variety of other human diseases, including obesity,
diabetes, rheumatoid arthritis, neuropathic pain, multiple sclerosis, and Alzheimer’s disease.
[35–43] Given the role of ATX in human disease, it has become an attractive drug target for
pharmacological therapeutic development.

Until recently, an obstacle to developing potent inhibitors for ATX has been the lack of a
three-dimensional protein structure. Therefore, ligand-based modeling has been of value for
this system. Recently, a number of nonlipid small molecule inhibitors of ATX have been
published using indirect structural data and the enzyme mechanism as guides.[1, 12, 35, 44–
48] Preceding these small molecules, the only known ATX inhibitors were metal chelators
and various lipid analogs that lacked structural diversity and characteristics typical of orally
bioavailable compounds.[49–54] Lipid-based analogues also possess high numbers of
rotatable bonds, limiting their value for ligand-based computational modeling techniques.
[55] Crystallographic structures of ATX were reported in January 2011, and now provide a
context in which to re-interpret results obtained using ligand-based methods.[56, 57]

In this paper, we examine the correspondence between ligand-based pharmacophore models
selected on the basis of performance against a test set of compounds with known ATX
inhibitory activity and the superpositions obtained upon docking the same ligands into a
crystallographic structure of ATX. North et al. illustrated the use of pharmacophores, based
on moderately potent ATX inhibitors, to be a dynamic tool in identification of several novel
ATX inhibitors.[55] This was accomplished in two steps. First, specific points in space
occupied by shared functional groups of known inhibitors were identified. Such points
represent features necessary for biological interactions between ATX and its inhibitors.
Second, database searching using these pharmacophores produced several novel inhibitors
with potencies in the hundred nanomolar range. Using the inhibitors discovered by these
prior pharmacophore models, along with additional published and in-house data on lipid and
small molecule inhibitors of ATX, a database was compiled using the Molecular Operating
Environment (MOE) software and updated pharmacophore models were developed using
four combinations of input compounds (training sets). The pharmacophore models with the
highest overlap and accuracy scores for each training set were then evaluated against the
larger complete database (test set) to choose the pharmacophore model with the highest hit
rate for comparison against docked positions of actives from the training set. The current
work differs from that described by North et al.[55] in that inactive compounds and
subsequently identified inhibitors with greater potency were included. Additionally, the
pharmacophore models selected based on performance showed remarkable correspondence
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with docked conformations of the training compounds, suggesting that performance-based
pharmacophore selection assists in the identification of the bioactive conformation.

2. Methods
2.1. Database generation

To develop and validate a pharmacophore model(s) to use for the identification of
prospective ATX inhibitors, a database of known inhibitors was assembled. Compounds
reported solely in the patent literature[58–60] were not included as activities in many of
these patents are described based on exceeding threshold values and thus cannot always be
unambiguously compared with our criterion for activity. All structures were input and
ionized as expected at pH 7.4, based on the typical assay conditions used for ATX
inhibition. Due to the relatively open and solvent-accessible nature of the binding pocket in
the crystallographic structures of ATX, this is expected to be a reasonable estimate of the
likely ionization state of bound inhibitors. The database contained fields for the compound
structure, a molecule ID, % ATX inhibition, IC50, Ki (representing affinity for the enzyme),
and Ki’ (representing affinity for the enzyme:substrate complex) with the identified substrate
and concentrations from the literature noted. Identity of substrate was required as a variety
of substrates have been used to characterize ATX inhibition, including the natural substrate
LPC (usually assayed using an Amplex Red based system that couples choline production to
a fluorescent readout[3]), FS-3 (an internally quenched substrate that gives rise to a
fluorescent signal upon enzymatic hydrolysis[61]), and para-nitrophenyl thymidine
monophosphate (which gives a UV-absorbing product upon enzymatic hydrolysis[3]). In
total, this database contained 457 compounds drawn from the literature[1, 12, 35, 44–48, 55,
62–65] and unpublished in-house assays, of which 111 compounds were deemed active
according to their percent inhibition (>50% ATX inhibition at 10 µM regardless of
substrate) or IC50 values (≤ 10 µM). This cutoff for active inhibitors was chosen to be
consistent with our previously published pharmacophores.[55] A conformational search was
performed for each of the 457 compounds using the MMFF94x force field,[66] within the
Molecular Operating Environment software package (MOE, Chemical Computing Group,
Montreal, Canada),[67] to generate a multi-conformer database (test set) representing a
range of conformations accessible to each molecule. This was important as the bioactive
conformation of a molecule is not necessarily the lowest energy conformation. The search
was performed using default settings with the following exceptions, 1) the method was
changed to stochastic, 2) the rejection limit was changed to 10, and 3) the conformation limit
was changed to 10. Up to 10 of the lowest energy conformations for each molecule were
collected into the test set database.

2.2. Pharmacophore generation
Different ATX inhibitors have been characterized as showing varying inhibition
mechanisms based on Michaelis-Menten kinetic studies,[1, 44, 55] although the majority of
reported inhibitors have not been characterized to this extent. Pharmacophore model
development based on compounds sharing a common biological activity assumes that the
compounds interact with their biological target through a common set of interactions at a
single site. Therefore, three different training sets containing small numbers of active and
inactive compounds were compiled (Figure 1, sets A–C) and used to generate
pharmacophore models prior to the availability of the crystallographic structure of ATX.
Our hope was that one or more of the sets chosen would include compounds sharing a
common interaction site. One additional set (Figure 1, set D) was compiled after the
crystallographic structure became available and included actives showing competitive
inhibition by Michaelis-Menten kinetics or binding at the active site by crystallography. The
active compounds were chosen for their structural diversity and high percent inhibition of

Mize et al. Page 3

J Mol Graph Model. Author manuscript; available in PMC 2012 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ATX. Corresponding inactive compounds were chosen for their structural similarity to the
actives and low percent inhibition. Selection of the inactive molecules similar in shape to the
active molecules assured steric clashes were not the sole reason for their inability to bind.
The compounds chosen for all sets lacked known Ki’ values, which would indicate a
mechanism other than competitive inhibition and a site of interaction distinct from the
enzyme active site. However, not all chosen actives had been characterized for their
mechanism of inhibition. The active molecules from each training set were flexibly aligned
to one another and shared functional groups identified using the elucidation option in MOE.
The elucidation is an automatic tool that develops pharmacophore queries based on a set of
molecules with shared functional features. The default settings were used with the exception
that the conformational search method was changed to stochastic, and the activity field was
changed to % inhibition with >50 designating actives. This step was different than our
previous pharmacophore modeling study due to the elucidation feature being new in MOE
2009.10,[67] whereas North et al.[55] used the MOE 2008.09 version of the software.

2.3. Pharmacophore performance assessment
The top ten models as ranked by the overlap of active compounds in the training set were
further validated using the in-house ATX inhibitor conformational database as a test set.
Searches were performed in MOE[67] using the pharmacophore search option with default
settings except for hit entries being changed to select, and hits changed to best per molecule.
The models were tested to determine their accuracy in determining active and inactive ATX
inhibitors. The metrics used to compare performance based on the training set and test set,
summarized in Table 1, were overlap and accuracy for the molecules in the training set, as
well as matches, true positives, true negatives, false positives, false negatives, hit rate,
recovery percent, miss percent, and negative accuracy for the molecules in the test set. The
overlap and accuracy scores were generated in the elucidation and are characterized as the
score of the alignment of training set actives and the accuracy of the query in separating
training set actives and inactives, respectively. Matches were defined as compounds the
model chose as active from the test set conformational database. True positives were defined
as matches that have been experimentally confirmed as active. True negatives were defined
as experimentally confirmed inactives that were not selected as matches by the
pharmacophore model. False positives were defined as matches experimentally
demonstrated to be inactive. False negatives were defined as compounds failing to match the
pharmacophore that experiments indicate are active. The hit rate is a percent of matches that
are active (true positives divided by the sum of true positives and false positives, multiplied
by one hundred). The recovery percent is the percent of actives in the test set selected by the
pharmacophore model (true positives divided by the sum of true positives and false
negatives, multiplied by one hundred). The miss percent is the percent of actives in the test
set not selected as actives by the pharmacophore model (false negatives divided by the sum
of true positives and false negatives, multiplied by one hundred). The recovery percent and
miss percent should sum to one hundred. The negative accuracy is the percentage of
inactives in the test set not selected as active by the pharmacophore model (true negatives
divided by the sum of true negatives and false positives, multiplied by one hundred). Using
these metrics, the pharmacophore with the maximized molecular grouping of overlap,
accuracy, and hit rate from each of the four training sets was evaluated against the other
three and the leading pharmacophore of the four chosen for further refinements.

2.4. Docking
Protein DataBank (PDB)[68] entry 3NKM[56] was used as the source of the ATX structure
for docking. The system was simplified by removing all non-protein atoms other than the
catalytic site zinc ions. Hydrogen atoms were added and chelating histidine residues were
tautomerized to the form with an available lone pair directed toward the appropriate zinc ion
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using the MOE[67] software. Active molecules shown in Figure 1 were constructed using
the MOE software in the ionization states expected at pH 7.4. All files were prepared for
docking using Raccoon coupled with MGL Tools version 1.5.4 and flexible docking was
performed using Autodock Vina.[69] The docking box was centered at x, y, z coordinates
21.383, 36.532, 7.403 near the sidechain of N212 and covered a grid of 40, 30, and 30 Å in
the x, y, and z directions.

3. Results
For the first time we have compiled data on all currently published ATX inhibitors. The
resultant in-house database (test set) contains 3710 conformations of 457 compounds. A
threshold of 50% inhibition at 10 µM or IC50 < 10 µM divides these compounds into 111
actives and 346 inactives. Using 4–8 inhibitors selected from this database, four training sets
were developed from different combinations of input compounds. Numerous ligand-based
pharmacophore models were developed for each training set, and the top 10 plus selected
other models chosen based on metrics calculated using the training set molecules were
further evaluated against the complete test set to compute the test set performance metrics.
The pharmacophore models were then compared with the superposition of active training set
compounds generated by docking to evaluate how well the test set performance metrics
recapitulated the bioactive conformations of the active compounds.

3.1. Training Set A
Training set A includes two active compounds (KM04131 and PF8380) with activities in the
sub-micromolar range, as well as two inactive compounds (ChemBridge 6035829 and
703705) as shown in Figure 1. The elucidation procedure generated 13896 pharmacophore
models with 4–5 pharmacophore points each. Table 2 summarizes the test set search results
of the top ten pharmacophores (sorted by overlap score) as well as the first pharmacophore
sorted by overlap score with the highest accuracy resulting from training set A .

The 10 pharmacophore models with the highest overlap scores showed training set
accuracies ranging from 0.5 to 0.75. None of these models were able to identify active
compounds from the test set at a hit rate substantially better than the 24% representation of
actives within the 457 test compounds. It is notable, however, that the only models showing
negative accuracy values above 80% were model 14 with a training set accuracy of 1.00 and
models 2 and 3 with training set accuracies of 0.75.

Due to the relatively poor performance of the pharmacophores resulting from training set A,
the 111 actives (including the training set actives) were docked into the autotaxin crystal
structure once it became available. Figures 2A and 2B show the superposition of the docked
training set actives in the enzyme, supporting the idea that these actives share a binding site
and are good candidates for the development of a pharmacophore model. The dichloro-
substituted aromatic ring of PF8380 and the heterocyclic ring of KM04131 are superposed
in a hydrophobic pocket formed by F273, A217, A304, and L216. The aromatic groups at
the opposite ends of each structure are superposed in a more polar pocket, although lacking
specific hydrogen bonding interactions. The binding site for these actives is distant from the
divalent metal cations at the active site, with the closest atom in either ligand greater than 8
Å from either metal ion. Figures 2C–2D show how the superpositions of actives with the
greatest negative accuracies (#2 and #14 in Table 2) compare with the docked superposition.
The pharmacophore features and distances between the features for these two models are
shown in Tables 3 and 4. The overall volume overlap for #2 is quite good, and
pharmacophore points overlap with (or project from) appropriate chemical functionality
both in the ligand-based superposition and in the docked superposition. The overall volume
overlap for #14 is poor due to a self-interacting folded conformation identified in the ligand-
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based superposition that does not superpose well on the more extended conformation of the
docked structures.

The entire set of 111 active compounds included a total of 50 compounds that docked in a
common volume with the training set A actives. This common volume is defined to be
within 4.5 Å of any atom of the two training set actives. The pharmacophore models derived
from these training molecules should only be expected to identify the 50 actives that share a
common binding site (10.9% of the test set database). Table 2 shows true positives and hit
rates recalculated on the basis of defining actives as only the 50 actives sharing a binding
site. This reanalysis indicates that all except one of the models that showed significant
discrimination within the training set (models 2, 3, 4, 6, 9, 10 and 14) have hit rates that
exceed the 10.9% representation of commonly-docked actives in the test set.

3.2. Training Set B
Training set B added one active, pipemidic acid 27, and inactive, NSC 47725, compound to
those included in training set A (Figure 1) in the hope that improved performance would be
obtained. The added active compound was chosen due to its lack of a flexible linker between
two aromatic end groups in the hopes that self-interacting conformations such as that shown
in Figure 2D would be prevented. The elucidation procedure with this training set generated
1683 pharmacophore models with 4–5 pharmacophore points. Table 5 summarizes the test
set search results of the top ten pharmacophores (sorted by overlap score) as well as the first
pharmacophore sorted by overlap score with the highest accuracy resulting from training set
B.

The 10 pharmacophore models with the highest overlap scores showed training set
accuracies ranging from 0.5 to 0.67. The 31st model as ranked by overlap score showed a
training set accuracy of 1. All models failed to identify actives in the larger test set at a hit
rate higher than the 24% representation of actives in the set.

Due to the relatively poor performance of the pharmacophores resulting from training set B,
the docking results for these actives were compared. Figures 3A and 3B show the
superposition of the docked actives in the enzyme, indicating that the added active
compound shares only a portion of the binding site occupied by the two actives originally
selected for training set A, making the combined set of three compounds poor candidates for
the development of a pharmacophore model. Figure 3C shows how the superposition of
actives with the highest overlap score (#1 in Table 5) compares with the docked
superposition. Table 6 shows the pharmacophore features and distances between features of
this model. The overall volume overlap is biased toward the two compounds that dock into a
common site, and three of four pharmacophore points overlap with (or project from)
appropriate chemical functionality in the ligand-based superposition but only relate well to
two of three compounds in the docked superposition. Figure 3D shows how the
superposition of actives with the greatest accuracy (#31 in Table 5) compares with the
docked superposition, and is similar to the superposition shown in Figure 3C. Table 7 shows
the pharmacophore features and distances between features of this model. The selection of
the more rigid pipemidic acid 27 as an active compound successfully selected against self-
interacting conformations, but led to poor results due to the divergence of the binding site
for this active compared to the other two actives in the training set.

3.3. Training Set C
Training set C included one compound from training sets A and B, Pfizer 8380, and added
three other active, thiazolidinedione 17, HA130 and ChemBridge5186522, and four inactive,
thiazolidinedione 64, NSC 120657, ChemBridge5847961 and NSC 79731, compounds
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(Figure 1). The elucidation procedure with this training set generated 64 pharmacophore
models with 4–5 pharmacophore points. Table 8 summarizes the test set search results of the
top ten pharmacophores (sorted by overlap score) as well as the first pharmacophore sorted
by overlap score with the highest accuracy resulting from training set C.

The 10 pharmacophore models with the highest overlap scores showed training set
accuracies ranging from 0.5 to 0.625. The 42nd model as ranked by overlap score showed a
training set accuracy of 0.75. All models failed to identify actives in the larger test set at a
hit rate notably higher than the 24% representation of actives in the set.

Due to the relatively poor performance of the pharmacophores resulting from training set C,
the docking results for these actives were compared. Figures 4A and 4B show the
superposition of the docked actives in the enzyme, indicating that the active compounds
share only a portion of the binding site (left front side as shown), and diverge into four
different subpockets, making these four active compounds poor candidates for the
development of a ligand-based pharmacophore model. Figure 4C shows how the
superposition of actives with the highest overlap score (#1 in Table 8) compares with the
docked superposition. The overall volume overlap is poor due to the poor overlap of docked
actives. Figure 3D shows how the superposition of actives with the greatest accuracy (#42 in
Table 8) compares with the docked superposition, and shows equally poor correlation
between the ligand-based superposition and the docked superposition. Tables 9 and 10 show
the pharmacophore features and distances between features for these two models from
training set C.

3.4. Training Set D
The active compounds for training set D were selected on the basis of either Michaelis-
Menten kinetic studies confirming a competitive mechanism of action (pipemidic acid 11
and NSC 9616) or on the basis of crystallographic evidence of binding at the active site (HA
130) (Figure 1). The elucidation procedure with this training set generated 8025
pharmacophore models with 4–5 pharmacophore points. Table 11 summarizes the test set
search results of the top ten pharmacophores (sorted by overlap score) as well as the first
pharmacophore sorted by overlap score with the highest accuracy resulting from training set
D.

The 10 pharmacophore models with the highest overlap scores showed training set
accuracies ranging from 0.57 to 0.71 The 135th model as ranked by overlap score showed a
training set accuracy of 0.86. A model with accuracy of 1.0 was ranked as the 1350th model
based on overlap score. This set of pharmacophore models included two exhibiting hit rates
above 40% (entries 4 and 5 in Table 11), a substantial enrichment over the 24%
representation of active compounds in the test set.

Although good performance was observed for some pharmacophores resulting from training
set D, the docking results for actives in this training set were compared to evaluate whether
the selection of compounds on the basis of similar behavior in Michaelis-Menten kinetic
assays and active site crystallization yielded better overlap of actives. Figures 5A and 5B
show the superposition of the docked actives in the enzyme, indicating that the active
compounds share a common volume adjacent to the divalent metal cations (back left as
shown) with the varying sizes of the active compounds producing varied occupancy of
subsites distant from the divalent metal cations. Figure 5C and 5D show how the
superposition of actives with the highest overlap score (#1 in Table 11) and highest hit rate
(#4 in Table 11) compare with the docked superposition. The overall volume of overlap is
quite good in both cases. Tables 12 and 13 show the pharmacophore features and distances
between features for these two models.
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The entire set of 111 active compounds included a total of 36 compounds that docked in the
active site, defined as compounds having atoms within 4.5 Å of one of the divalent metal
cations. The pharmacophore models derived from training set D molecules should only be
expected to identify the 36 actives that share a common binding site (7.9% of the test set
database). Table 5 shows true positives and hit rates recalculated on the basis of defining
actives as only the 36 actives sharing a binding site. This reanalysis indicates that the two
models exhibiting hit rates above 40% based on the original classification of actives were, in
fact, identifying actives that target the active site and retained hit rates over 40% when re-
analyzed based on active site targeting. Entries 4 and 5 perform at a level far in excess of the
7.9% representation of active site-directed actives in the test set.

4. Discussion
The pharmacophores reported here represent a second-generation set of pharmacophore
models for ATX inhibition. The first-generation pharmacophore models,[55] were
constructed using the first reported non-lipid ATX inhibitors, [48] which showed potencies
in the low to mid micromolar range. These previous models proved able to identify ATX
inhibitors from the NCI database at rates ranging from 19 – 40%. A total of 106 compounds
were selected for screening and 33 were experimentally confirmed to inhibit at least 50% of
ATX activity at a 10 µM concentration. The most potent inhibitors exhibited competitive
inhibition. These compounds are included in the multi-conformer test database. The
pharmacophores reported here were developed using both active and inactive training
molecules, including actives showing 10–100 fold improved potencies over those used to
develop the first generation pharmacophores. Second generation pharmacophores trained
using actives that co-localize to a common region when docked to ATX have also shown
impressive hit rates. It is therefore instructive to compare performance of the current active
site directed pharmacophores (derived from training set D) and our previous, first generation
pharmacophore models on the same multi-conformer test set. Table 14 summarizes the
pharmacophore features and distances between features for the first generation
pharmacophore models.

The features of the first generation pharmacophores have several notable differences when
compared to the features of model 4 obtained from training set D (Table 13). In particular,
aromatic features appear, rather than the more general hydrophobic features. Additionally,
anionic and hydrogen bond donor features are unique to the first generation
pharmacophores.

Table 15 summarizes the performance of these first-generation models against the test
database. These results show that the five and six point first-generation pharmacophores
match very few members of the test set, and only one hit identified by these pharmacophores
is a true positive. The four-point pharmacophores match between 9 and 50 structures from
the test database, with hit rates ranging from 11 to 28%. The majority of matches are a
subset of the 33 active structures screened based on searches in the NCI database with these
pharmacophores. The matches fail to include the entire set of 33 experimentally confirmed
active compounds selected from these searches for several reasons. First, the NCI database
searches were limited to six distance ranges (a limitation of the web interface). Six distances
ranges are sufficient to unambiguously define the position of four points in space, but not
five or six points. The searches with the five and six point pharmacophores were therefore
incompletely constrained and may have identified compounds that did not actually match
the completely constrained pharmacophore. In contrast, the searches performed in the test
set were performed in MOE, using the entire set of features and distances for each
pharmacophore. Thus some compounds identified in the NCI searches with the incompletely
constrained pharmacophores may be excluded in these searches. Second, the set of
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conformations stored in the NCI database and the set of conformations stored in our multi-
conformer test set are unlikely to be exact matches. The pharmacophores may have failed to
select compounds that could match due to under-representation of the conformational space
of some compounds in the multi-conformer test set. The failure of these pharmacophores to
match additional actives in this test set is not surprising given the specific requirement for
one or two aromatic features. LPA analogs that show ATX inhibition are included in the test
set, but most lack aromatic features and would not be selected by the first generation
pharmacophores. Additional actives (such as PF8380) lack an anionic functional group and
would not be selected as matches by the first-generation pharmacophore models.

5. Conclusions
We have compiled an extensive database of compounds tested for their inhibition of ATX
phospholipase D activity. This database includes 111 actives defined as those showing
greater than 50% inhibition at a 10 µM concentration or an IC50 less than 10 µM. Thirty-six
of these actives are placed by Autodock Vina near the divalent metal cations at the active
site, and 50 are placed at an alternate common binding site distant from those divalent metal
cations. Prior to the availability of the ATX crystallographic structures, the only
experimental evidence linking different actives to a common binding site was inhibition
mechanism determined by Michaelis-Menten kinetics. Unfortunately, mechanism of
inhibition is reported for a relatively small proportion of the 111 actives represented in our
comprehensive database. We have demonstrated that ligand-based pharmacophore models
developed using actives that dock in common locations show excellent correspondence with
the docked positions of those actives (Figure 2C and Figure 5C,D). Pharmacophore model 2
from training set A showed slight enrichment of actives that dock distantly from the metal
ions (14.3% of hitlist versus 10.9% representation of such actives in the test set, Table 2).
Pharmacophore models 4 and 5 from training set D showed substantial enrichment of actives
that dock at the active site (40.7 and 42.9% of hitlist versus 7.9% representation of such
actives in the test set, Table 5). Pharmacophore model 4 from training set D showed superior
performance at selecting a diverse set of actives from the test set relative to previously
published first-generation pharmacophore models (compare Table 5 and Table 15). These
results highlight the importance of careful training set selection to support the development
of computational tools to guide lead discovery efforts for ATX, due to its very large binding
pocket and extended hydrophobic tunnel leading into that binding pocket,[56, 57] as noted
based on crystallographic results.

Highlights

• A comprehensive database of over 450 ATX inhibitor structures and
corresponding assay data has been compiled.

• Ligand based pharmacophore models based on four different training sets have
been developed and validated against the comprehensive test database.

• The 111 active compounds from the comprehensive database have been docked
against the recently reported ATX crystal structure and have been compared
with the ligand-based pharmacophore models.

• Pharmacophore models based on active site-directed inhibitors show the greatest
hit rate enhancement.
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Figure 1.
Training set compounds used in pharmacophore elucidations.
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Figure 2.
Superpositions of training set A actives. Panel A. Superposition of actives based on docking
with PF8380 shown in red sticks and KM04131 in yellow sticks. Panel B. Superposition of
actives colored as in panel A based on docking showing nearby enzyme surface colored
green for lipophilic and magenta for hydrophilic regions. Panels C–D. Docked superposition
of actives colored as in panel A over ligand-based superposition of actives from Table 2
model #2 (Panel C) and model #14 (Panel D).
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Figure 3.
Superpositions of training set B actives. Panel A. Superposition of actives based on docking
with PF8380, KM04131, and pipemidic acid 27 shown in red, yellow and magenta sticks,
respectively. Panel B. Superposition of actives colored as in panel A based on docking
showing nearby enzyme surface colored green for lipophilic and magenta for hydrophilic
regions. Panels C–D. Docked superposition of actives colored as in panel A over ligand-
based superposition of actives from Table 3 model #1 (Panel C) and model #31 (Panel D).
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Figure 4.
Superpositions of training set C actives. Panel A. Superposition of actives based on docking
with PF8380, thiazolidinedione 17, HA130, and 5186522 shown in red, yellow, cyan, and
green sticks, respectively. Panel B. Superposition of actives colored as in panel A based on
docking showing nearby enzyme surface colored green for lipophilic and magenta for
hydrophilic regions. Panels C–D. Docked superposition of actives colored as in panel A over
ligand-based superposition of actives from Table 3 model #1 (Panel C) and model #42
(Panel D).
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Figure 5.
Superpositions of training set D actives. Panel A. Superposition of actives based on docking
with pipemidic acid 11 and NSC 9616 as well as the crystallographic position of HA130
shown in red, yellow, and cyan sticks, respectively. Panel B. Superposition of actives
colored as in panel A showing nearby enzyme surface colored green for lipophilic and
magenta for hydrophilic regions. Panels C–D. Docked superposition of actives colored as in
panel A over ligand-based superposition of actives from Table 3 model #1 (Panel C) and
model #4 (Panel D).
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Table 1

Pharmacophore model performance metrics.

Metrics calculated based on the training set

Overlap Score reflecting volume and functional group overlap of actives, maximum equal to
number of actives

Accuracy Fraction of compounds correctly matched (actives) and not matched (inactives)

Metrics calculated based on the test set

Matches Compounds selected by the pharmacophore model

True positives Matches confirmed by experimental assay to be active

True negatives Non-matches confirmed by experimental assay to be inactive

False positives Matches confirmed by experimental assay to be inactive

False negatives Non-matches confirmed by experimental assay to be active

Hit rate Percent of matches that are true positives

Recovery percent Percent of total actives (true positives + false negatives) in the matches list

Miss percent Percent of total actives not in the matches list

Negative accuracy Fraction of inactives not matching the pharmacophore model
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Table 3

Pharmacophore features and inter-feature distances (Å) for model 2 from training set A.

2: Hydrophobic 3: Hydrophobic 4: Acceptor* 5: Acceptor*

1: Aromatic/Pi 6.85 9.95 5.22 6.64

2: Hydrophobic 7.89 6.83 4.05

3: Hydrophobic 11.92 10.15

4: Acceptor* 8.28

*
Denotes site points with which the noted chemical functionality could interact.
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Table 4

Pharmacophore features and inter-feature distances (Å) for model 14 from training set A.

2: Hydrophobic 3: Hydrophobic 4: Hydrophobic 5: Acceptor*

1: Aromatic/Pi 7.74 6.08 6.45 6.58

2: Hydrophobic 3.42 5.54 9.45

3: Hydrophobic 7.15 6.05

4: Hydrophobic 11.60

*
Denotes site points with which the noted chemical functionality could interact.
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Table 6

Pharmacophore features and inter-feature distances (Å) for model 1 from training set B.

2: Hydrophobic 3: Hydrophobic 4: Acceptor*

1: Aromatic/Pi 11.69 6.94 4.71

2: Hydrophobic 7.39 13.42

3: Hydrophobic 6.50

*
Denotes site points with which the noted chemical functionality could interact.
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Table 7

Pharmacophore features and inter-feature distances (Å) for model 31 from training set B.

2: Hydrophobic 3: Hydrophobic 4: Acceptor* 5: Acceptor*

1: Hydrophobic 3.13 10.48 6.92 11.31

2: Hydrophobic 11.68 8.96 12.37

3: Hydrophobic 6.87 5.61

4: Acceptor* 5.45

*
Denotes site points with which the noted chemical functionality could interact.
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Table 9

Pharmacophore features and inter-feature distances (Å) for model 1 from training set C.

2: Hydrophobic 3: Hydrophobic 4: Acceptor*

1: Aromatic/Pi 7.20 12.00 4.80

2: Hydrophobic 6.00 7.20

3: Hydrophobic 12.00

*
Denotes site points with which the noted chemical functionality could interact.
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Table 10

Pharmacophore features and inter-feature distances (Å) for model 31 from training set C.

2: Hydrophobic 3: Hydrophobic 4: Acceptor* 5: Acceptor*

1: Hydrophobic 6.69 12.35 8.72 11.92

2: Hydrophobic 5.66 5.50 5.92

3: Hydrophobic 7.73 3.63

4: Acceptor* 4.95

*
Denotes site points with which the noted chemical functionality could interact.
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Table 12

Pharmacophore features and inter-feature distances (Å) for model 1 from training set D.

2: Hydrophobic 3: Acceptor* 4: Acceptor* 5: Metal Ligator*

1: Hydrophobic 6.65 15.18 15.16 16.21

2: Hydrophobic 10.32 10.57 11.24

3: Acceptor* 5.75 1.65

4: Acceptor* 4.78

*
Denotes site points with which the noted chemical functionality could interact.
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Table 13

Pharmacophore features and inter-feature distances (Å) for model 4 from training set D.

2: Hydrophobic 3: Hydrophobic 4: Acceptor* 5: Metal Ligator*

1: Acceptor* 2.83 7.40 8.97 8.97

2: Hydrophobic 4.64 15.86 15.86

3: Hydrophobic 11.64 11.64

4: Acceptor* 0.00

*
Denotes site points with which the noted chemical functionality could interact.
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