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Abstract
Aims—To investigate associations between novel human cytochrome P450 (CYP450)
combinatory (multigene) and substrate-specific drug metabolism indices, and elements of
metabolic syndrome, such as low density lipoprotein cholesterol (LDLc), high density lipoprotein
cholesterol (HDLc), triglycerides and BMI, using physiogenomic analysis.

Methods—CYP2C9, CYP2C19 and CYP2D6 genotypes and clinical data were obtained for 150
consecutive, consenting hospital admissions with a diagnosis of major depressive disorder and
who were treated with psychotropic medications. Data analysis compared clinical measures of
LDLc, HDLc, triglyceride and BMI with novel combinatory and substrate-specific CYP450 drug
metabolism indices.

Results—We found that a greater metabolic reserve index score is related to lower LDLc and
higher HDLc, and that a greater metabolic alteration index score corresponds with higher LDLc
and lower HLDc values. We also discovered that the sertraline drug-specific indices correlated
with cholesterol and triglyceride values.

Conclusions—Overall, we demonstrated how a multigene approach to CYP450 genotype
analysis yields more accurate and significant results than single-gene analyses. Ranking the
individual with respect to the population represents a potential tool for assessing risk of
dyslipidemia in major depressive disorder patients who are being treated with psychotropics. In
addition, the drug-specific indices appear useful for modeling a variable of potential relevance to
an individual’s risk of drug-related dyslipidemia.
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Metabolic syndrome, a cluster of conditions associated with increased risk of cardiovascular
disease, morbidity and mortality, has long been associated with schizophrenia, and more
recently, with second-generation antipsychotics [1–5]. A growing body of evidence is
emerging linking metabolic syndrome elements of obesity, hypertension, and glucose and
lipid alterations with depression and antidepressant pharmacotherapy [6–8].

Major depressive disorder (MDD) has been associated with increased risk of obesity,
hypertension, and diabetes, but not with dyslipidemia [7,9,10]. Patients with MDD are at
higher risk of developing Type II diabetes, and patients with diabetes mellitus exhibit a high
rate of depression [11,12]. MDD patients more frequently have elevated measures of body
fat, including waist circumference [3], visceral fat [13] and BMI [14]. The relationship
between hypertension and depression is unclear; some studies demonstrate a strong
correlation, while others show little or no association [7,15–17].

Although dyslipidemia has not been associated with MDD, certain antidepressant treatments
have been shown to be positively correlated with elevated low density lipoprotein
cholesterol (LDLc) and triglycerides and diminished high density lipoprotein cholesterol
(HDLc) serum levels [10]. Interestingly, there appears to be inter-individual variation in the
appearance and extent of dyslipidemia as a side effect of antidepressant treatment. One
study found that depressed patients with elevated cholesterol levels were more likely to be
fluoxetine nonresponders [18]. Another study concluded that, compared with responders,
patients with treatment-resistant depression demonstrated higher baseline triglycerides [19].
Increases in total serum cholesterol were associated with imipramine and doxepin, while
decreases in HDLc and elevated triglycerides were associated with treatment with
imipramine, amitriptyline and nortriptyline [10,20]. Further studies have found that selective
serotonin reuptake inhibitors were associated with increases in LDLc [21–23], although
other studies could not reproduce this association [20,24]. Mirtazapine and duloxetine were
also found to affect serum lipid and triglyceride levels [25–27].

The cytochrome P450 (CYP450) isoenzyme system is responsible for 70–80% of all phase-
I-dependent metabolism in approximately 40–45% of all marketed drugs [28,29].
Accordingly, the high carrier prevalence of altered (non-reference) CYP450 alleles has
significant implications for healthcare management. The majority of the population carries
single nucleotide polymorphisms on CYP2C9, CYP2C19 or CYP2D6 genes. A pilot study
found that the presence of polymorphisms across multiple genes (combinatory
polymorphism) is particularly elevated in psychiatric patients [30]. Multiple psychoactive
medications are principally metabolized by combinations of products of the CYP450 gene
family [31,32]. The value of DNA typing to assess the risk for, or in some cases to evaluate
retrospectively drug side effects and treatment resistance has been documented in various
case reports and studies [33–36]. Uninformed prescribing of psychotropics to patients with
highly compromised biochemical activity for the CYP450 isoenzymes may expose 50% of
patients to preventable, severe side effects [36].

In this research we examined associations between CYP2C9, CYP2C19 and CYP2D6
combinatory genotypes and dyslipidemia in 150 psychiatric inpatients. Physiogenomic
methods were used to quantify the genotypes according to the CYP450 combinatory and
drug-specific metabolism indices described previously, namely the drug metabolism reserve
index (metabolic reserve), drug metabolism alteration index (metabolic alteration), allele
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alteration index and gene alteration index [37,38]. This multigene physiogenomic analysis
revealed significant correlations between all four indices and elevated LDLc, HDLc and
LDLc:HDLc ratio. The investigators also present evidence supporting the utility of drug-
specific indices when assessing side-effect risk for particular psychotropic medications. Our
physiogenomics approach has previously elucidated new pharmacological mechanisms
related to statin neuromuscular side effects [39,40], anti-psychotic-induced metabolic
derangements [41] and thiazolidinedion-related weight gain [42], as well as gene
associations with variability in diet-induced weight loss [43,44].

Methods
Sample collection & cohort description

The sample cohort consisted of 150 consecutive, consenting participants of the ages 18–78
(median 40); 39% male, 61% female with a diagnosis of MDD and treated with
psychotropic medications through the inpatient psychiatric services at the Institute of Living
at Hartford Hospital (CT, USA), admitted January–March, 2007. Self-reported ethnicities
were 65% Caucasian, 28% Hispanic and 7% African–American. Data obtained included
demographic, clinical and treatment information. Clinical data were acquired through a
questionnaire given to patients at the time of enrolment. Treatment data were retrieved from
paper and electronic medical records as well as questionnaire responses. Laboratory data,
including lipids, glucose and triglycerides, were determined upon admission. HDLc
cholesterol methodology was immunoturbidmetric Roche Cobas; LDLc cholesterol was
calculated using the Friedewald formula. All specimens were obtained prior to breakfast
being eaten. All 150 patients were treated with psychotropics during hospitalization. A total
of 98% received antidepressants (45% received more than one during hospitalization, 17%
concurrently, mean = 1.49). A total of 65% were taking antipsychotics (12% multiple
antipsychotics). Demographic and psychotropic medication data for the entire cohort (n =
150) and the lipid cohort (n = 96) are summarized in Table 1. An overview of prescriptions
by history and hospitalization at Institute of Living is provided in Table 2. The study was
approved by the Hartford Hospital IRB and each patient signed a statement of informed
consent that included permission to use the sample for CYP450 genetic testing.

Clinical data corrections
LDLc and HDLc data were available for 96 of the 150 patients and triglyceride (TG) data
were available for 98. A total of 147 patients had data for presence or absence of
hyperlipidemia and 136 had data for BMI. Hyperlipidemia was determined through patient
medical records: a physician diagnosis of lipid metabolism (ICD codes 272.0–272.9)
indicates the presence of hyperlipidemia, otherwise it is considered absent. All clinical data
were corrected for the covariates of age, gender and ethnicity. BMI was found to vary
significantly with HDLc and TG, but not LDLc. Following covariance correction, 91
patients had valid values for HDLc and 93 had corrected values for LDLc. One outlier in the
TG data (TG = 642 mg/dl) was excluded, leaving 92 corrected values for triglycerides. One
outlier in the LDLc cohort (LDLc = 297 mg/dl) and one outlier in the LDLc:HDLc ratio
(LDLc:HDLc = 6.8) were excluded from the analysis, yielding 95 samples for LDLc
analysis and 90 corrected values for LDLc:HDLc analysis. Excluding outliers, LDLc ranged
from 49 to 214 mg/dl with an average of 114.9 mg/dl. HDLc ranged from 30 to 111 mg/dl
with an average value of 53.15 kg/m2. Triglycerides ranged from 39 to 322 mg/dl with a
mean of 129.1 mg/dl and BMI ranged from 16.91 to 56.24 kg/m2 with an average of 28.36
kg/m2.
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CYP450 combinatory & drug-specific metabolism indices
Analysis in this study was done using the CYP450 combinatory and drug-specific
metabolism indices described in our methodologies paper [38]. In summary, there are four
combinatory indices: the drug metabolism reserve (metabolic reserve) index, the drug
metabolism alteration (metabolic alteration) index, the allele alteration index and the gene
alteration index. Each index is created by assigning alleles of the CYP2C9, CYP2C19 and
CYP2D6 genes a numerical value corresponding to its functional status relative to the
reference allele, which is scored as one in the metabolic reserve index and zero in the
alteration indices. The final combinatory index value is a summation of the six allelic scores
for the given index across the three genes. As such, the indices are termed ‘combinatory’ as
a result of the three CYP450 genes contributing equally to the final index. The drug-specific
indices apply coefficients to each of the three contributing gene scores depending on the
pharmacodynamic properties of a particular enzyme substrate. In this study, the substrates of
interest are psychotropic drugs. An isoenzyme that is a major metabolic pathway for a given
drug receives a coefficient of 1.0, while an isoenzyme not involved in the drug metabolism
or activation has a coefficient of 0.0. Isoenzymes that constitute a minor metabolic pathway
for a drug’s metabolism were given a score of 0.25, consistent with the American
Pharmacists Association’s designation of a minor metabolic pathway as responsible for less
than 30% of total metabolism [45].

Single nucleotide polymorphism assays
All 150 patients were genotyped to determine CYP2C9, CYP2C19 and CYP2D6
polymorphisms. Blood samples were collected into tubes containing either
ethylenediaminetetraacetic acid or citrate and were extracted from lymphocytes using the
Qiagen EZ-1 robotic DNA isolation procedure. DNA typing was performed at the Genomas
Laboratory of Personalized Health at Hartford Hospital (CT, USA). The Genomas
Laboratory of Personalized Health is a high-complexity clinical DNA testing center licensed
by the Connecticut Department of Public Health (CL-0644) and certified by the Centers for
Medicare and Medicaid Services (ID #07D1036625) under Clinical Laboratory
Improvement Amendments.

The Tag-It™ Mutation Detection assays (Luminex Corporation, Austin, TX, USA) were
utilized for DNA typing of 5, 7 and 18 alleles in genes CYP2C9, CYP2C19 and CYP2D6,
respectively, as previously described. These assays employed PCR to amplify the desired
gene selectively without co-amplifying pseudogenes or other closely related sequences. In
addition, the kit employs a PCR strategy to amplify fragments that are characteristic of
unique genomic rearrangements in order to detect the presence of the deletion and
duplication alleles in these genes. The kits use multiplexed allele-specific primer extension
to identify small nucleotide variations including single base changes and deletions of one or
three bases on the Luminex xMAP™ system [46].

Physiogenomic plot
To demonstrate the association of a CYP450 combinatory index [38] value with any given
quantitative phenotype we plotted the index value as a function of phenotype using the
locally weighted scatter plot smooth fit. Locally weighted scatter plot smooth is a method to
smooth data using a locally weighted linear regression [47,37]. At each point in the plot, a
quadratic polynomial is fitted to the data in the vicinity of that point. The data are weighted
such that they contribute less if they are further away, according to the tricubic function:
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where x is the abscissa of the point to be estimated, xi are the data points in the vicinity, and
d(x) is the maximum distance of x to xi

Results
All four combinatory indices were found to be significantly correlated with dyslipidemia
markers of total cholesterol, LDLc, HDLc and LDLc:HDLc ratio. No significant correlation
was found between the combinatory indices and either BMI and triglycerides. Elevated
triglycerides were found to correlate directly only with the sertraline drug-specific metabolic
and allele alteration indices.

Total cholesterol was found to be higher in patients with low metabolic reserve (p = 0.099)
and in those with high metabolic (p = 0.008), allele (p = 0.039) and gene alterations (p =
0.020). Similarly, LDLc was higher in patients with low metabolic reserve and with high
alteration (p = 0.075, p = 0.002, p = 0.009 and p = 0.001 for metabolic reserve, metabolic
alteration, allele alteration and gene alteration indices, respectively). HDLc demonstrated the
opposite pattern; HDLc was lower in patients with low metabolic reserve (p = 0.252) and
higher in those with high metabolic (p = 0.073), allele (p = 0.059) and gene alterations (p =
0.011). The LDLc:HDLc ratio was inversely related to metabolic reserve (p = 0.016) and
directly related to metabolic alteration (p = 0.005), allele alteration (p = 0.017) and gene
alteration (p = 0.001).

Those patients in the top quartile for LDLc (LDLc >139) had an average drug metabolism
reserve index value of 4.78 and drug metabolism alteration index value of 1.78 whereas
those with LDLc less than or equal to 139 mg/dl had an average drug metabolism reserve
index value of 5.40 and drug metabolism alteration value of 1.21 (p = 0.030, and p = 0.003
for reserve and alteration indices, respectively). Those patients in the top quartile for HDLc
(HDLc >57) had a mean drug metabolism reserve index score of 5.59 and a mean drug
metabolism alteration index of 1.18 compared with those patients with HDLc of less than or
equal to 57, who had a mean metabolic reserve index of 5.08 and metabolic alteration index
of 1.47 (p = 0.009 and 0.04 for reserve and alteration indices, respectively). In summary,
greater drug metabolism reserve yielded higher HDLc and lower LDLc values. A greater
number of alterations affecting drug metabolism was associated with higher LDLc and
lower HDLc.

The combinatory index ranking curves are also useful in identifying possible extremes in
metabolic capacity to correlate with clinical data [38]. For instance, those patients
approximately in the bottom 25th percentile for drug metabolism reserve (index ≤4.5) have
an average LDLc of 127.2 mg/dl compared with the remainder of the sample whose mean
LDLc is 110.10 mg/dl (p = 0.044). Similarly, those individuals approximately in the top
25th percentile for drug metabolism alteration (index >1.5) have an average LDLc of 127.30
mg/dl compared with the bottom 75th percentile who have an average LDLc of 108.90 mg/
dl (p = 0.021). Those individuals in the bottom 30% of the metabolic alteration had a 5%
chance of having hyperlipidemia compared with those patients in the remaining 70% who
had a 23% chance (p = 0.001). Similarly, those individuals in the bottom 50% of the drug
metabolism reserve ranking have a 25% chance of exhibiting hyper-lipidemia compared
with the 10% chance of those in the top 50% (p = 0.016).
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Table 3 provides a summary of the linear correlations between cholesterol and each CYP450
combinatory drug metabolism index. In all models, LDLc and metabolic reserve are
inversely related, whereas all alteration indices and LDLc are directly related. Conversely,
HDLc and metabolic reserve are directly related, and HDLc and alteration indices are
inversely related. These relationships are true for all combinatory as well as single gene
indices. Table 3 shows that, in nearly all cases, both the proportion of variability (as
indicated by R2) and the significance (as indicated by the p-value) of the single variable
linear model correlations are more strongly related to the combinatory indices than to any
single gene index. In the case of HDLc, CYP2C9 and CYP2D6 contributed most while
CYP2C19 was unrelated. Combining only the CYP2C9 and CYP2D6 indices yielded the
greatest significance for HDLc, but not for LDLc. Figures 1 & 2 are physiogenomic plots
that demonstrate the relationship between the combinatory drug metabolism indices and
cholesterol levels.

It is also useful to consider the drug-specific indices in order to evaluate the impact of a
particular drug. We investigated the correlation between lipid levels and drug-specific
indices. Sertraline was selected for substrate-specific analysis because it has been previously
associated with dyslipidemia [22,23] and evidences a distributed substrate affinity, including
CYP2C9, CYP2C19 and CYP2D6. Furthermore, the sertraline sub-cohort size of 24 patients
in this study is relatively large. Sertraline’s metabolism reserve index correlated inversely (p
= 0.013, Figure 3a) with the LDLc:HDLc ratio phenotype, as well as to triglycerides (p =
0.042). Sertraline alteration indices correlated positively (p = 0.009, Figure 3b for metabolic
alteration) with LDLc:HDLc. Similar results were found for the phenotypes LDLc and
HDLc separately (data not shown). By contrast, the combinatory drug metabolism indices
demonstrated no significant correlation with lipid values for the 24 patients who had taken
sertraline prior to hospitalization, and the CYP2D6 single-gene index (a minor metabolic
pathway for sertraline) was particularly unrelated.

Discussion
This study highlights the clinical relevance and benefits of benchmarking innate drug
metabolism reserve using the CYP450 combinatory approach described in our index
methodologies paper [38]. We found that lipid measures of LDLc, HDLc and the
LDLc:HDLc ratio varied significantly with combined drug metabolism reserve and
alteration index values. Notably, these correlations could not be found to the same degree
when using a single-gene index. In this MDD cohort, average cholesterol levels were not
significantly elevated, which is consistent with earlier studies that found no link between
MDD and elevated lipids [9]. However, dyslipidemia has been associated with psychiatric
pharmacotherapy [8,10,21,20]. Our findings build upon these observations by demonstrating
that drug intolerance, as a result of decreased innate liver enzyme capacity, may result in an
increased lipid effect in some patients.

Owing to the timing of the cholesterol measurements upon admission it is difficult to
associate dyslipidemia with any particular psychotropic. In such an instance, the
combinatory drug metabolism indices are particularly useful. By quantifying innate drug
metabolism capacity, they allow for analysis of drug response and effect when numerous
enzymes and substrates are relevant to the analysis. Table 2 indicates that a wide variety of
psychotropics were administered to this cohort. CYP2D6 serves as a primary metabolic
pathway for many of the most prescribed drugs, including fluoxetine, paroxetine, trazodone,
venlafaxine and risperidone. However, CYP2C9 and/or CYP2C19 are major metabolizers for
citalopram, escitalopram, fluoxetine and sertraline. Table 3 shows that particularly for
LDLc, CYP2D6 is often the strongest contributor to the model, consistent with the CYP2D6
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isoenzyme’s primary role in psychotropic metabolism. However, CYP2D6 scores alone
never supersede in significance the combinatory analysis.

The flexibility of the CYP450 combinatory drug metabolism indices allow for a rigorous
and thorough analytical approach. In Table 3 we demonstrate how each combinatory index
can be broken down into single-gene indices. In the case of HDLc, we were able to note that
CYP2C9 and CYP2D6 gene-specific indices were the primary contributors to the
relationship, and therefore create a new combined index omitting the less-relevant CYP2C19
and generating a more accurate model. Moreover, we demonstrate in this study how drug-
specific indices, which utilize the metabolism pathway coefficients shown in Table 2, are
useful in predicting the effect of a particular drug. While the lack of a treatment timeframe
weakens any conclusive determination of causality, it is notable that the sertraline-specific
indices correlated more closely with dyslipidemia phenotypes than the combinatory indices
for patients treated with this drug prior to hospitalization. Since lipid tests were performed at
the time of hospitalization, it remains possible that other medications administered prior to
this may have influenced the lipid values in our dataset. A future study could be specifically
designed to investigating the drug-specific indices and their relation to cardiometabolic
markers.

Beyond the issues surrounding the unspecific timing of drug prescription prior to lipid level
evaluation, this study has further limitations that must be addressed. First, diet and patient
compliance were not measured as covariates, and could contribute to drug response and
dyslipidemia. Ideally, steady-state plasma concentrations and quantitative lifestyle
covariates would be considered. In the case of those patients overdosed to psychotropics by
virtue of their low functional metabolic reserve, a concomitant assay of all present drugs
would have been informative. In addition, the minor metabolic pathway coefficients in the
drug-specific indices have been estimated to have a value of 0.25 for the purposes of this
study. Precise pharmacologically assayed values between 0.0 and 1.0 could be determined
for each drug and metabolic pathway. Covariates such as drug interactions and drug
properties such as self-inhibition or active metabolites should also be modeled into the
indices as described in our methodology manuscript [38]. Indeed, it is known that certain
antipsychotics, such as clozapine and olanzapine, have inherent metabolic side effects that
could exacerbate dyslipidemias in patients so treated, which could be accounted for by drug
covariates [4]. Finally, our sample size, particularly in the case of the drug-specific analyses,
would need to be larger in order to draw conclusions with a higher degree of confidence.
Nevertheless, the strength of our statistical associations, the consistency with previously
published works, and the congruence with models of pharmacokinetic and biological
activity render our discoveries novel and noteworthy.

In conclusion, the results of this study demonstrate the utility and clinical relevance of the
CYP450 combinatory drug metabolism indices. Ranking an individual relative to a
population, as described by our group [38], represents a potential tool for assessing risk of
dyslipidemia in MDD patients being treated with antidepressants and antipsychotics. In
addition, the drug-specific indices appear promising as quantitative measures assisting in
prescription by modeling a variable of potential relevance to an individual’s risk of drug-
related dyslipidemia. The clinical benefits of CYP450 genotyping in psychiatry are growing
increasingly clear, and in this case, considering an array of genes together has proven the
most effective in evaluating risk of adverse drug reactions. By nature, the CYP450
combinatory indices are easily generalized, allowing for the addition of further genes, such
as CYP1A2, CYP3A4, and CYP3A5, as well as new alleles such as CYP2C19*17. Research
indicates that the appearance of any one of the many components of metabolic syndrome
significantly increases the likelihood of developing metabolic syndrome and eventually
dangerous and costly cardiovascular disease [48]. Any information to assist in predicting
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which psychotropic medications may result in dyslipidemia for a given patient would
represent a substantial step forward in controlling these widespread, debilitating and costly
side effects. In this study, the CYP450 combinatory indices and substrate specific indices
have proven more effective than any single gene score when determining risk of
dyslipidemia in depressed patients treated with psychotropics. We anticipate that this
combinatory approach will continue to yield significant clinical pharmacogenetic
applications.
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Executive summary

• Metabolic syndrome, a cluster of cardiovascular risk factors, has been associated
with mental illness and psychotropics.

• Multiple psychoactive medications are principally metabolized by combinations
of isoenzymes coded by the CYP450 gene family.

• We examined associations between CYP2C9, CYP2C19 and CYP2D6
combinatory genotypes and dyslipidemia in 150 psychiatric hospitalized patients
with a diagnosis of major depressive disorder treated with psychotropic
medications (98% received antidepressants, and 65% received antipsychotics).

• Physiogenomic methods were used to quantify the genotypes according to
CYP450 combinatory and drug-specific metabolism indices (metabolism
reserve, metabolism alteration, allele alteration and gene alteration) described in
the companion paper.

• The multi-gene physiogenomic analysis revealed significant correlations among
all four combinatory indices and dyslipidemia measures (LDLc, HDLc,
LDLc:HDLc ratio). Patients with a greater drug metabolism reserve evidenced
lower LDLc, lower LDLc:HDLc ratio and higher HDLc values. Conversely,
patients with a greater number of alterations affecting drug metabolism
evidenced higher LDLc, higher LDLc:HDLc ratio and lower HDLc.

• Those patients in the top quartile for LDLc (LDLc > 139) had an average drug
metabolism reserve index value of 4.78 and drug metabolism alteration index
value of 1.78 whereas those with LDLc ≤ 139 mg/dl had an average drug
metabolism reserve index value of 5.40 and drug metabolism alteration value of
1.21 (p = 0.030 and p = 0.003 for reserve and alteration indices, respectively).

• Those patients in the top quartile for HDLc (HDLc > 57 mg/dl) had a mean drug
metabolism reserve index score of 5.59 and a mean drug metabolism alteration
index of 1.18 compared to those patients with HDLc less than or equal to 57
who had a mean metabolic reserve index of 5.08 and metabolic alteration index
of 1.47 (p = 0.009 and 0.04 for reserve and alteration indices, respectively).

• Sertraline has a distributed substrate affinity, including CYP2C9, CYP2C19 and
CYP2D6 isoenzymes, and therefore was selected for drug-specific analysis.
Sertraline’s metabolism reserve index correlated inversely, and its alteration
indeces directly, with the LDLc:HDLc ratio phenotype.

• The combinatory index ranking curves are useful in benchmarking innate drug
metabolism reserve and identifying patients at the extremes of metabolic
capacity to correlate with clinical outcomes.

• Our results show that combinatory CYP450 genotyping and corresponding
quantitative indices of pharmacogenetic functional status have potential clinical
utility in psychiatry for evaluating the risk of iatrogenic cardiometabolic effects
of psychotropic treatment.
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Figure 1. Physiogenomic plots correlating LDLc with the four CYP450 combinatory drug
metabolism indices
Each plot contains three components: the distribution of the phenotype (bell curve), the
index score of each individual patient (circles) and the LOESS fit of the index value as a
function of phenotype (regression curve). In each of four panels the abscissa represents each
patient’s LDLc. The ordinate indicates the index value for the LOESS curve. The p-value is
derived from a linear analysis associating the index and clinical variable, and the n indicates
the number of samples considered in the analysis. Correction for the comparisons of each
index to five phenotypes in this study (LDLc, HDLc, LDLc:HDLc, triglycerides and BMI)
requires multiplication of the respective p-value by a factor of five.
LDLc: Low density lipoprotein cholesterol; LOESS: Locally weighted scatter plot smooth.
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Figure 2. Physiogenomic plots correlating LDLc:HDLc ratio with the four CYP450 combinatory
drug metabolism indices
Each plot contains three components: the distribution of the phenotype (bell curve), the
index score of each individual patient (circles) and the LOESS fit of the index value as a
function of phenotype (regression curve). In each of four panels, the abscissa represents each
patient’s LDLc:HDLc ratio. The ordinate indicates the index value for the LOESS curve.
The p-value is derived from a linear analysis associating the index and clinical variable, and
the n indicates the number of samples considered in the analysis. Correction for the
comparisons of each index to five phenotypes in this study (LDLc, HDLc, LDLc:HDLc,
triglycerides and BMI) requires multiplication of the respective p-value by a factor of five.
LOESS: Locally weighted scatter plot smooth.
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Figure 3. Physiogenomic plots correlating LDLc:HDLc ratio with sertraline-specific CYP450
combinatory indices
Each plot contains three components: the distribution of the phenotype (bell curve), the
index score of each individual patient (circles) and the LOESS fit of the index value as a
function of phenotype (regression curve). The p-value is derived from a linear analysis
associating the index and clinical variable, and the n indicates the number of samples
considered in the analysis. (A) Shows the inverse correlation between sertraline metabolic
reserve and LDLc:HDLc ratio, and (B) shows the direct relationship between sertraline
metabolic alteration and LDLc:HDLc ratio.
HDLc: High density lipoprotein cholesterol; LOESS: Locally weighted scatter plot smooth.
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