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’ INTRODUCTION

Initial ligand identification is a critical step in modern drug
discovery. Currently, high-throughput screens are the gold stan-
dard.1 These screens take advantage of well-developed biochem-
ical assays, advanced robotics, and parallelization to test tens of
thousands of compounds for potential target binding. Unfortu-
nately, high-throughput screening is often very expensive and
time consuming, placing it beyond the reach of many scientists in
both academia and industry.

Consequently, many researchers are turning increasingly to
computational techniques for ligand identification and optimization.
While some advanced computational techniques like thermo-
dynamic integration,2 single-step perturbation,3 and free-energy
perturbation4 in some cases approach experimental assays in
accuracy,5 in practice these techniques are currently too time
consuming and resource intensive for high-throughput applications.

Faced with this challenge, researchers have developed other
computational techniques that sacrifice some accuracy for in-
creased speed. These techniques, which include computer dock-
ing programs and their associated scoring functions, are typically
not accurate enough to properly characterize any single ligand;
however, when applied to many thousands of potential ligands,
they can enrich a pool of candidate compounds for true binders.
Subsequent biochemical testing is required to verify binding.

Recently, Durrant et al. introduced a neural-network scoring
function called NNScore6 designed to aid the computational
characterization of predocked small-molecule ligands. While the
test cases included in the original NNScore paper demonstrated
the utility of the program, the application examples were limited.

The purpose of the current work is to further confirm that neural-
network scoring functions are effective, even when compared to
the scoring functions of state-of-the-art docking programs, such
as AutoDock,7 the most commonly cited program,8 and Auto-
Dock Vina, thought to be two orders of magnitude faster.9

Additionally, we here present a second neural-network scoring
function, NNScore 2.0. To facilitate use, NNScore 2.0 has been
implemented as an open-source python script. A copy can be
obtained from http://www.nbcr.net/software/nnscore/.

’MATERIALS AND METHODS

Database of Receptor�Ligand Complexes.The database of
receptor�ligand complexes used in the current study has been
described previously.6,10 In brief, crystallographic and NMR
structures with corresponding experimentally measured Kd va-
lues were identified using the MOAD11 and PDBbind-CN12,13

online databases. These structures were then downloaded from
the Protein Data Bank.14 Published binding affinities are biased
toward potent binders; to compensate, we used AutoDock Vina9

to dock ligands from the National Cancer Institute’s Devel-
opmental Therapeutics Program (DTP) repository into the
downloaded crystal structures. Those compounds whose best-
predicted pose had a docking score between 0 and �4 kcal/mol
were retained as examples of weakly binding ligands. For the
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purpose of training the neural networks, these docked complexes
were assumed to have Kd values of 1 M.
Docking Parameters. Two computer docking programs,

AutoDock Vina (Vina)9 and AutoDock 4.2 (AutoDock),7 were
used to dock ligands into nine protein receptors obtained from
the directory of useful decoys (DUD) database.15 In all cases, the
docking-box dimensions and location provided by the database
were used. Vina default parameters were selected, as this program
has limited user-specified options. In contrast, AutoDock has
many modifiable parameters; consequently, we used two Auto-
Dock docking protocols for each ligand. One docking protocol,
AutoDockFast, was designed to test lax parameters optimized for
speed. Parameter defaults were employed, except ga_num_evals
was set to 2 500 000, and ga_run was set to 10. A second docking
protocol, AutoDockRigorous, was designed to test more thorough
parameters. Aside from the default parameters, ga_num_evals
was set to 10 000 000, and ga_run was set to 50.
The Vina-docked poses were reevaluated with the original

version of NNScore.6 The default 24 networks that come with
the program were used. For each docked ligand, Vina proposed
several possible poses. Rather than calculating the NNScore of
the top Vina-predicted pose alone, we rescored all poses and
selected the best-scoring pose as judged by NNScore itself.
A similar protocol was used for rescoring with NNScore 2.0.
Measuring Docking-Protocol Utility: Receiver Operating

Characteristic Curves. Receiver�operator characteristic (ROC)
curves16 were used to judge the utility of the virtual screens.
Following docking, a moving cutoff was established, beginning at
the best docking score and sweeping through to the worst. At each
cutoff value, the selectivity (Se) and specificity (Sp) were calcu-
lated, as given by

Se ¼ TP
TP þ FN

Sp ¼ TN
TN þ FP

where TP is the true-positive rate, FN is the false-negative rate, TN
is the true-negative rate, and FP is the false-positive rate. The ROC
curve was generated by plotting all pairs of (1 � Sp, Se), and the
area under this curve (AUC) was calculated using the composite
trapezoidal rule as implemented in SciPy.17

Measuring Docking-Protocol Utility: Enrichment Factors.
A common virtual-screening technique is to dock a large library
of potential ligands into a receptor of interest and then to
recommend the best-predicted small molecules for experimental
validation. An enrichment factor describes how much better this
set of recommended compounds performs than a set of equal size
selected at random from the entire database. The enrichment
factor is given by

E ¼ Hitsrec
Hitsrec þ Inactivesrec

=
Hitstotal

Hitstotal þ Inactivestotal

where E is the factor itself, Hitsrec and Inactivesrec are the number
of true hits and inactive compounds among those recommended
for experimental validation, respectively, and Hitstotal and In-
activestotal are the number of true hits and inactive compounds
present in the entire compound database, respectively. For a
given virtual screen, E is a simple function of the number of top-
predicted compounds recommended for experimental testing.

Network Structure/Setup. The new neural networks de-
scribed in the current study are similar in many ways to those
described previously6 in that they are feed-forward networks
created using the FFNET python package.18 However, there are
a number of important differences between NNScore 1.0 and
NNScore 2.0. For example, NNScore 1.0 characterizes recep-
tor�ligand complexes using five metrics in its attempts to
identify potent ligands: close-contact (receptor�ligand atoms
within 2 Å), semiclose-contact (within 4 Å), electrostatic-inter-
action, ligand�atom-type, and number-of-ligand-rotatable-bonds
counts are all tallied. These five characterizations ultimately serve
as network input.
In contrast, the receptor�ligand characterizations used by

NNScore 2.0 are more numerous. The binding characteristics
encoded on the networks’ input layers are derived from two
sources. First, Vina 1.1.2 (but not 1.1.1!) correctly outputs the
individual term values used to calculate Vina docking scores.
These values include three steric terms, labeled “gauss 1,” “gauss 2,”
and “repulsion,” a hydrophobic term, and a hydrogen-bond term.
Second, a recently published algorithm called BINANA10 provides
12 distinct binding characteristics, ranging from the number of
hydrogen bonds to rough metrics of active-site flexibility.
BINANA counts the number of receptor�ligand atoms that

come within 2.5 Å of each other and tallies them by their
AutoDock atom types. When this binding characterization was
used as network input, the following atom-type pairs were
permitted: (A, A), (A, C), (A, CL), (A, F), (A, FE), (A, HD),
(A, MG), (A, MN), (A, N), (A, NA), (A, OA), (A, SA), (A, ZN),
(BR, C), (BR, HD), (BR, OA), (C, C), (C, CL), (C, F), (C, HD),
(C, MG), (C, MN), (C, N), (C, NA), (C, OA), (C, SA), (C,
ZN), (CD, OA), (CL, FE), (CL, HD), (CL,MG), (CL, N), (CL,
OA), (CL, ZN), (F, HD), (F, N), (F, OA), (F, SA), (F, ZN), (FE,
HD), (FE, N), (FE, OA), (HD, HD), (HD, I), (HD, MG), (HD,
MN), (HD, N), (HD, NA), (HD, OA), (HD, P), (HD, S), (HD,
SA), (HD, ZN), (MG, NA), (MG, OA), (MN, N), (MN, OA),
(N, N), (N, NA), (N, OA), (N, SA), (N, ZN), (NA, OA), (NA,
SA), (NA, ZN), (OA, OA), (OA, SA), (OA, ZN), (S, ZN), (SA,
ZN). All juxtaposed receptor�ligand atoms that did not corre-
spond to these pairs were ignored.
BINANA also sums the energy of the electrostatic interaction

between receptor�ligand atoms that come within 4 Å of each
other and tallies this sum by atom-type pairs. When this
characterization was used as input for the neural networks, the
same atom-type pairs permitted for the 2.5 Å close-contact
metric were again allowed, with the exception of (CD, OA).
Additionally, the following atom-type pairs were also permitted
for the electrostatic characterization: (A, BR), (A, I), (A, P), (A,
S), (BR, N), (BR, SA), (C, FE), (C, I), (C, P), (C, S), (CL, MN),
(CL, NA), (CL, P), (CL, S), (CL, SA), (CU, HD), (CU, N), (FE,
NA), (FE, SA), (I, N), (I, OA), (MG, N), (MG, P), (MG, S),
(MG, SA), (MN, NA), (MN, P), (MN, S), (MN, SA), (N, P),
(N, S), (NA, P), (NA, S), (OA, P), (OA, S), (P, S), (P, SA), (P,
ZN), (S, SA), (SA, SA). All juxtaposed receptor�ligand atoms
that did not correspond to these pairs were again ignored.
BINANA also counts the number of receptor�ligand atoms

that come within 4.0 Å of each other and tallies them by the
AutoDock atom type. When this characterization was used as
network input, the same atom-type pairs allowed for the electro-
static characterization were again permitted, except (F, ZN).
Additionally, (A, CU) and (C, CD) were also permitted. All
juxtaposed receptor�ligand atoms that did not correspond to
these pairs were again ignored.



2899 dx.doi.org/10.1021/ci2003889 |J. Chem. Inf. Model. 2011, 51, 2897–2903

Journal of Chemical Information and Modeling ARTICLE

In the original NNScore, a single hidden layer of five neurodes
was employed. As preliminary analysis suggested that an ex-
panded hidden layer might perform better, we use a single hidden
layer of ten neurodes in NNScore 2.0. As before, each of the
neurodes of the input layer is connected to each of the neurodes
of the hidden layer.
The network output of NNScore 2.0 also differs fromwhat was

used previously. The output layer consists of a single neurode
corresponding to the predicted pKd. In contrast, the original
NNScore was a binary classifier that only distinguished between
good and poor binders. As before, all hidden neurodes are
connected to all output neurodes.
Each neurode had a log-sigmoid activation function, given by

σðtÞ ¼ 1
1 þ e�t

where t is the input sum of the respective node. All input and
output values were normalized using a linear mapping to the
range (0.15, 0.85) so that each variable was given equal im-
portance independent of its magnitude.
Different paradigms were used to train the networks; the

number of inputs was varied, as was the training set used.
Regardless, in all cases 1000 networks were trained for each
paradigm. The weights on the network connections were initially
randomized and then optimized/trained by applying 10 000
steps of a truncated Newton algorithm,19 as implemented in
SciPy.17 The scores used for analysis were obtained by taking the
average predicted score of the top 20 trained networks.
Calculating R2.To judge the predictive accuracy of the neural

networks, we first plotted the known vs the neural-network
predicted pKd values. A linear regression was then performed,
and the associated R2 value was used to judge goodness of fit.

’RESULTS AND DISCUSSION

The current study, in which we expand upon our previous
work developing a neural-network scoring function (NNScore),6

can be divided into two parts. First, we compare the accuracy of
the NNScore,6 AutoDock 4 (AutoDock),7 and AutoDock Vina
(Vina)9 scoring functions by docking both known ligands and
physically similar decoys into nine distinct protein receptors.
Second, we describe the development of a second neural-
network scoring function called NNScore 2.0.
Comparing NNScore, AutoDock, and Vina.To compare the

NNScore, AutoDock, and Vina scoring functions, we turned to
the DUD database.15 The DUD database contains 40 protein
targets, each with numerous known ligands. Each of these true
ligands is associated with 36 decoy molecules. These decoys are
not chosen at random; they are rather carefully selected to be
physically similar to the known binders. Consequently, distin-
guishing between the ligands and decoys of the DUD database
using computational methods is likely to be more difficult than
distinguishing between the active and inactive compounds pre-
sent in large databases of diverse small molecules. This challen-
ging set of compounds/receptors is thus useful for robustly
testing novel scoring functions.
Of the 40 available DUD targets, 9 were associated with over

100 known ligands: acetylcholinesterase (AChE); cyclooxy-
genase-2 (COX-2); dihydrofolate reductase (DHFR); epidermal
growth factor receptor, tyrosine kinase domain (EGFr); fibroblast
growth factor receptor 1, tyrosine kinase domain (FGFr1); coagula-
tion factor Xa (FXa); p38map kinase platelet-derived growth factor

receptor kinase (P38); β-type platelet-derived growth factor recep-
tor (PDGFrb); and tyrosine-protein kinase c-src (SRC). These nine
receptors were used for subsequent analysis.
All ligand and decoy molecules were docked into their

respective structures using AutoDock and Vina. Vina-docked
poses were rescored with NNScore. Two AutoDock docking
protocols were used: AutoDockFast was designed to test Auto-
Dock with lax docking parameters optimized for speed, and
AutoDockRigorous was designed to test AutoDock with more
thorough parameters.
Several metrics to judge the effectiveness of virtual screens

have been used. One technique is to calculate the area under
a ROC curve.16 ROC curves seek to simultaneously measure
two important characteristics of a virtual screen: the ability to
correctly identify true ligands and to discard decoys. The area
under a ROC curve (AUC) is thought to correspond to the
probably that a randomly picked known ligand will rank better
than a randomly picked decoy molecule. If the AUC is 0.5, the
screen has performed no better than selecting potential ligands at
random. If the AUC is 1.0, the virtual screen is optimal.
With the remarkable exception of DHFR, AutoDock per-

formed poorly as judged by the ROCAUC, regardless of whether
or not the AutoDockFast or AutoDockRigorous protocol was used
(Table 1). The AUC of the AutoDock screens was generally less
than 0.5, meaning identifying true ligands by random selection
would have been more effective. Vina performed somewhat
better, with an average AUC of 0.58 over the nine proteins.
The original NNScore algorithm, however, was the most effec-
tive, with an average AUC of 0.64. Clearly the best scoring
function for a given project is highly system dependent; how-
ever, in the absence of specific evidence that would recommend
a particular function, docking with Vina and rescoring with
NNScore is often the best choice.
While ROC curves are certainly useful metrics, in practice one

is rarely interested in the results of an entire virtual screen from
the best-predicted binder to the worst. Often, researchers are
more interested in only the best-predicted binders, the com-
pounds that will ultimately be recommended for experimental
validation. An enrichment factor is a useful metric that indicates
howmany times better a recommended set of docked compounds
performs than a set of the same size selected at random from the
entire small-molecule library. For example, suppose a library of 100

Table 1. Virtual screen AUC ROC values corresponding to
nine protein targets and five distinct docking programs/
scoring functions. a

NNScore 1.0 NNScore 2.0 AutoDockFast AutoDockRigorous Vina

AChE 0.55 0.57 0.48 0.53 0.67

COX-2 0.74 0.49 0.38 0.43 0.31

DHFR 0.72 0.83 0.83 0.95 0.76

EGFr 0.47 0.51 0.51 0.49 0.61

FGFr1 0.58 0.55 0.41 0.35 0.46

FXa 0.76 0.52 0.44 0.47 0.63

P38 0.75 0.58 0.40 0.37 0.54

PDGFrb 0.60 0.62 0.50 0.36 0.53

SRC 0.58 0.63 0.65 0.58 0.69

Average 0.64 0.59 0.51 0.50 0.58
a Italic indicates ROC AUC less than 0.5. Bold indicates that the given
docking program/scoring function is best suited to the corresponding
receptor.
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compounds containing 10 true ligandswere docked into a receptor
of interest. Further suppose that the top 20 compounds were
recommended for subsequent experimental validation; among
these, 5 were ultimately shown to be true ligands. Given that
10% of the entire library contained true ligands, one would expect
2 of the 20 recommended compounds to be actives by chance
alone. Because 5 were in fact active, the enrichment factor is
5/2 = 2.5. Thus, for a given virtual screen, the enrichment factor
can be expressed as a function of the number of top-predicted
ligands selected for subsequent experimental validation.
Judged by this metric, the scoring function best suited for a

given project appears to be highly system dependent. Among the
previously published scoring functions tested, NNScore 1.0 was
arguably the best choice for docking into P38, FGFr1, FXa, and
SRC. AutoDockRigorous appears to be best suited for docking into
AChE, EGFr, PDGFrb, and DHFR. These two functions per-
formed comparably when docking into COX-2. We note, how-
ever, that AutoDockRigorous is by far the slowest of the docking
protocols tested. When a single processor is used to dock a single
ligand, Vina takes at most a few minutes, and rescoring a Vina-

docked pose with NNScore takes only seconds. In contrast,
AutoDockFast and AutoDockRigorous take 11.4 min and 3.5 h on
average, respectively. For projects where many thousands of
ligands need be docked, Vina docking with NNScore rescoring
may be the most reasonable protocol (Figure 1).
As Vina is a new docking program/scoring function, its reasonable

performance against AChE, COX-2, DHFR, and PDGFrb, even in
the absence of NNScore rescoring, is also noteworthy (Figure 1).
NNScore 2.0: Neural-Network Setup. Encouraged by the

success and utility of the original NNScore, we have developed a
second neural-network scoring function calledNNScore 2.0. The
original NNScore function accepted as input a limited number of
binding characteristics, including tallies of close-contact atoms,
close-contact electrostatic-interaction energies, ligand atom types,
and rotatable bonds. However, many more binding characteristics
can be imagined. Consequently, a far greater number of binding
characterizations were considered when training the neural net-
works of NNScore 2.0 (see the Material and Methods Section).
The network output of NNScore 2.0 also differs fromwhat was

used previously. The original version of the scoring function was

Figure 1. Virtual-screen enrichment factors. Enrichment factors are shown as a function of the number of top-predicted ligands recommended for
experimental testing. NN1.0 corresponds to the original NNScore scoring function, NN2.0 corresponds to the NNScore 2.0 scoring function, ADFast

corresponds to AutoDock 4.2 using parameters optimized for speed, ADRig (ADRigorous) corresponds to AutoDock 4.2 using more rigorous parameters,
and Vina corresponds to AutoDock Vina. Note that the independent variable is shown on a logarithmic scale.
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a binary classifier; the output layer included two neurodes, where
(1,0) represented strong binding and (0,1) represented weak
binding. In contrast, NNScore 2.0 contains only one output
neurode corresponding simply to the predicted pKd of binding.
We believe these changes will significantly improve the usability
of the program.
As described below, different paradigms were used to train the

neural networks. Specifically, the number of input neurodes was
varied according to the binding characteristics considered, and
different subsets of a database of receptor�ligand complexes that
has been described previously6,10 were used for training and
validation.
NNScore 2.0: Which Binding Characteristics Should Serve

as Network Inputs? A number of programs can analyze
receptor�ligand binding; the output of these programs can
potentially serve as the input for a neural-network scoring
function. The first program, Vina 1.1.2 (but not 1.1.1!), can
correctly output the individual terms used to calculate Vina
docking scores, without redocking. These values include three
steric terms, labeled “gauss 1”, “gauss 2”, and “repulsion”, a
hydrophobic term, and a hydrogen-bond term. Second, a re-
cently published algorithm called BINANA10 provides twelve
distinct binding characteristics, ranging from the number of
hydrogen bonds to rough metrics of active-site flexibility. Im-
portantly, BINANA includes binding metrics similar to all those
used in the original NNScore algorithm.
To prevent overtraining, it is in theory best to use as few

network inputs as possible while still maintaining the network’s
ability to accurately predict pKd. Overtraining can occur when
the networks manage to identify small quirks in the data set that
allow for accurate prediction that is not generally applicable to
other, albeit similar, data sets. By keeping the number of network
inputs to a minimum, any inductive bias is likely to be based on
true principles of molecular recognition.
Given that Vina has been used successfully to identify novel

ligands in the past (see, for example, ref 20), we first allowed the
neural networks to consider Vina output alone in attempting to
predict the pKd values of 4284 receptor�ligand complexes.6,10

One thousand neural networks were trained using the Vina score
and its five constituent terms as input; a single score was then
calculated for each receptor�ligand complex by averaging the
predicted pKd values of the 20 best-performing individual
networks.
The importance of the BINANA metrics was less certain. We

therefore initially trained 12 sets of 1000 neural networks, again
using all the receptor�ligand complexes of the database. As
input, the networks of each set considered a different BINANA
binding characteristic, always together with the six Vina-derived
terms. A single composite score for each receptor�ligand com-
plex was again determined by calculating the average score of
the 20 best-performing individual networks. For each set of
networks, an R2 value was obtained from a linear regression
describing the correlation between predicted and known pKd

values. The best set of inputs was considered to be that which led
to the greatest improvement in R2.
Once the best set of inputs was thus determined, 11 more

networks were created using these same inputs plus an additional
BINANA descriptor. This process was repeated in a stepwise
fashion, adding with each round the BINANA characterization
that had the largest impact on goodness of fit.
The results of this analysis are given in Figure 2. The ability of

the networks to accurately predict pKd values rose quickly when,

in addition to the Vina binding characteristics, the networks were
also “told” about the receptor�ligand atoms that camewithin 4 Å
of each other and about the electrostatic energy between those
atoms; indeed, with only these characterizations, the R2 value
rose above 0.95. With the addition of other binding character-
istics, R2 continued to improve, albeit more modestly.
NNScore 2.0: Verifying that the Networks Are Not Over-

trained. The networks described in the previous section were
trained on all the database receptor�ligand complexes available;
there was no validation set, so it was not possible to assess for
overtraining. We could not verify that the inductive bias was
based on true principles of molecular recognition, rather than the
random, isolated quirks of our particular data set.
To test for overtraining, we partitioned the database of

receptor�ligand complexes into training and validation sets.
Training sets of 500, 1000, 1500, 2000, 2500, 3000, 3500, and
4000 complexes were created by selecting crystallographic and
docking-derived structures at random. For each training set, a
corresponding validation set was created from the remaining
crystallographic complexes only. The networks were subse-
quently trained on the complexes in the training set; to determine
predictive accuracy, the trained networks were then used to
evaluate the complexes of the validation set, complexes that the
networks had never “seen” before.
Figure 3 shows the results of this analysis. As a baseline, each of

the complexes in the validation sets was evaluated with Vina, and
the linear-regression R2 value of the correlation between the
docking score and the pKd value was plotted in blue. As no
training took place, this R2 was understandably independent of
the training-set size. Interestingly, simply feeding the Vina score
and its constituent five terms into the neural networks led to
significant improvements in predictive accuracy (Figure 3 in
green), suggesting that the neural networks may be better suited
for combining these terms into a single score than is the weighted
sum currently employed by Vina.9

Figure 2. R2 values improve as the networks are allowed to consider
additional binding site characteristics, suggesting the development of a
genuine inductive bias based on learned principles of molecular
recognition.
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Additional networks that considered not only Vina binding
characteristics but also tallies of the receptor�ligand atoms that
came within 4 Å of each other and the electrostatic energy
between those atoms fared even better (Figure 3 in red).
Furthermore, networks that considered all the Vina and BINA-
NA binding characteristics performed better still (Figure 3 in
light blue).
Importantly, in all cases there was little evidence of widespread

overtraining. As the training-set size increased, the accuracy with
which the networks predicted the pKd values of the complexes in
the validation set improved; as the networks were exposed to
more examples of receptor�ligand complexes, they became
better able to predict the pKd values of complexes they had
never “seen.” If anything, one wonders if the accuracy could have
been improved even further had more examples of complexes
with known binding affinities been available.
Additionally, the validation-set accuracy of the networks also

improved as they considered more and more binding character-
istics; the inductive bias is likely based on an improved “under-
standing” of the principles of molecular recognition rather than
overtraining. Consequently, the 20 best networks trained on all
the receptor�ligand complexes of the database, using as input all
Vina and BINANA characteristics, were selected for further
analysis and were subsequently incorporated into the published
version of NNScore 2.0.
NNScore 2.0: Use as a Docking Scoring Function. To verify

that NNScore 2.0 can serve as a useful scoring function, we used
the new neural networks to analyze the same DUD data set
described above. The original NNScore still performed best as
measured by the ROC-AUC metric (Table 1). However, NN-
Score 2.0 arguably performed better than any other scoring fun-
ction tested, including NNScore 1.0, when docking into COX-2,
PDGFrb, and DHFR. The performance in the DHFR screen was
particularly notable.

Identifying the Best Docking Program for a Given Project
is Highly System Dependent. The current study confirms that
no single docking program/scoring function is perfectly suited
for all receptor systems. While the neural-network scoring
functions arguably performed better on average, they were
not consistently the best scoring functions for all systems. For
example, the AutoDockRigorous docking protocol had a remark-
able ROC AUC of 0.95 in the screen against DHFR, a perfor-
mance superior to that of the neural-network scoring functions.
However, in general the ROC AUC of the AutoDock screens was
less than 0.5, suggesting that selecting random compounds from
the library would have been a better way of identifying true ligands.
Similarly, while NNScore 2.0 performed remarkably well

against DHFR and other receptors, it performed poorly against
targets like AChE and FGFr1. Clearly, using known ligands
(positive controls) to validate a docking program/scoring func-
tion for a given receptor is critical. Only when a scoring function
has been confirmed effective can a virtual screen of a diverse
molecular library be reasonably undertaken. Fortunately, the
neural-network scoring functions here described appear to be
well suited for many protein receptors.

’CONCLUSION

The purpose of the current work was two-fold. First, we
confirmed that neural networks can be effective scoring functions
by comparing NNScore6 directly to AutoDock7 and Vina9 using
two different metrics for docking efficacy and nine distinct
receptor systems. Second, we developed a new neural-network
scoring function called NNScore 2.0. To facilitate use, NNScore
2.0 has been implemented as an open-source python script. A
copy can be obtained from http://www.nbcr.net/software/
nnscore/.
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