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The molting hormone 20-hydroxyec-
dysone (20E) is an active metabolite 

of ecdysone and plays vital roles during 
ontogeny of the fruit fly Drosophila, 
coordinating critical developmental 
transitions such as molting and meta-
morphosis. Although 20E is known to 
exist throughout life in both male and 
female flies, its functions in adult physi-
ology and behavior remain largely elu-
sive. Notably, findings from previous 
studies suggest that this hormone may 
be involved in adult stress responses. 
Consistent with this possibility, we have 
found that ecdysone signaling in adult 
flies is activated by “stressful” social 
interactions and plays a role in the for-
mation of long-term courtship memory.1 
In addition, we recently reported that 
ecdysone signaling contributes to the 
regulation of sleep, affecting transitions 
between sleep and wakefulness.2 Here 
we first summarize our findings on the 
unconventional roles of 20E in regulat-
ing memory and sleep in adult flies. We 
then discuss speculative ideas concerning 
the stress hormone-like features of 20E, 
as well as the possibility that ecdysone 
signaling contributes to remodeling of 
the adult nervous system, at both the 
functional and structural levels, through 
epigenetic mechanisms.

The Steroid Molting Hormone  
and Stress Responses  

in Adult Flies

The molting hormone 20‑hydroxyecdy‑
sone (20E), an active metabolite of ecdy‑
sone, is the major steroid hormone in the 
fruit fly Drosophila melanogaster. It is well 
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established that precisely controlled pulses 
of 20E trigger and coordinate critical 
developmental events, including embry‑
onic morphogenesis,3 larval molting and 
metamorphosis.4 Additionally, in the 
ovaries of mature adult females, ecdysone 
signaling is essential for particular aspects 
of oogenesis such as follicle development5 
and the timing of border‑cell migra‑
tion.6,7 Although a large body of literature 
describes the functions of 20E in develop‑
ment and reproduction, little attention has 
been devoted to its roles in the physiology 
and behavior of adult flies, despite the fact 
that it is present in both males and females 
throughout life.8

Several notable observations suggest 
that ecdysone signaling plays a role in 
adult stress responses. While 20E levels 
in embryos, larvae and pupae are dictated 
mainly by genetically controlled develop‑
mental programs, those in mature adult 
flies are highly dependent on the external 
environment. For example, 20E concen‑
trations in the ovaries and hemolymph rise 
when adult females are transferred onto a 
sugar diet without a yeast supplement.9 
This elevation of the 20E level apparently 
serves as a signal of nutritional shortage, 
leading to an arrest of oogenesis and the 
induction of apoptosis. As a result, females 
can use the limited energy and nutrients 
that are available for their own survival 
in exchange for reduced reproduction.9 
Likewise, exposing Drosophila virilis to 
thermal stress (38°C, 60 min) results in 
an increase in 20E levels.10 These results 
are consistent with the idea that stress‑
ful conditions induce the production and 
secretion of 20E, altering the physiological 
and behavioral states of adult flies so that 
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the total sleep time, in a  dose‑dependent 
manner2 (Fig. 1A). Consistent with the 
sleep‑promoting effect of 20E, mutants 
in which ecdysone signaling is reduced 
display a short‑sleep phenotype (Fig. 1A). 
Furthermore, these mutants fail to exhibit 
adequate sleep rebound following sleep 
deprivation. In wild‑type flies, the endog‑
enous levels of 20E tend to increase dur‑
ing the light period, possibly due to higher 
activity during the day. We also found that 
the levels of 20E are elevated after sleep 
deprivation, an experience that is likely to 
be highly stressful to animals.2

It is generally thought that reduced 
sleep has adverse effects on the overall 
health of animals and results in reduced 
lifespan. Contrary to this prevailing 
notion, mutants with suboptimal ecdy‑
sone signaling sleep less2 and live longer.13 
This might be explained by assuming 
that in wild‑type flies, normal daily activ‑
ity causes low‑grade chronic activation 
of ecdysone signaling, which is intrinsi‑
cally detrimental and may contribute to 
the generation of potentially harmful by‑
products. Suppressed ecdysone signaling 
due to a reduction in the level of either 
ligand (20E) or receptor (EcR) may lead 
to reduced accumulation of such dam‑
aging materials, and consequently to a 
reduced need for sleep and an extension of 
lifespan—at least under standard labora‑
tory conditions.

We found that ecdysone signaling 
positively regulates sleep by increasing 
and decreasing the length of sleep and 
wake bouts, respectively, without signifi‑
cantly affecting waking activity. These 
results again indicate that 20E controls 
the transition between the distinct physi‑
ological and behavioral states of adult flies, 
specifically sleep and wakefulness in this 
case. It is reasonable to hypothesize that 
shared mechanisms underlie both the 
transitions between different develop‑
mental stages and the transitions between 
behavioral states in adults, both of which 
are regulated by ecdysone signaling. A 
link between the developmental transi‑
tions and the sleep‑wake regulation is fur‑
ther supported by a recent finding in the 
nematode Caenorhabditis elegans. Raizen 
et al.27 have shown that lethargus—the 
developmentally regulated behavioral qui‑
escence that precedes larval molting—has 

consolidation of memory.14‑16 Intriguingly, 
such a steroid‑mediated strategy for mem‑
ory consolidation seems to be conserved in 
Drosophila. We have found that in adult 
males, 20E levels are significantly elevated 
after these flies are paired with non‑virgin 
females for an extended period of time 
(7 hr). Interestingly, the elevation of 20E 
levels is associated with activation of the 
cAMP response element binding protein 
(CREB), an essential regulator of long‑
term memory formation.1 Presumably, 
this interaction is “stressful” to male flies 
because they repeatedly receive court‑
ship rejection from non‑receptive mating 
partners, and it could result in experience‑
dependent long‑lasting courtship suppres‑
sion. This courtship suppression in flies is 
a representation of associative long‑term 
memory, which lasts at least five days.17,18 
We also found that exogenous adminis‑
tration of 20E to male flies has context‑
dependent effects on courtship long‑term 
memory, and that EcR/+ males are normal 
with respect to short‑term (30 min) but 
defective for long‑term (five days) court‑
ship memory.

During Drosophila ontogeny, pulses of 
20E induce transitions between distinct 
developmental states. Our finding of a role 
for 20E in memory consolidation suggests 
that ecdysone signaling in adult flies may 
play a role in transitions between different 
brain states in response to stressful condi‑
tions, so that memories acquired in the 
presence of high levels of 20E are prefer‑
entially stabilized and lasts longer.

Ecdysone Signaling Promotes 
Sleep in Adult Flies

Sleep is conserved among evolution‑
arily diverse animal species,19‑22 and is 
thought to be fundamental to survival.23,24 
Although the biological functions of sleep 
are not well understood, one possible role 
is to restore physiological conditions that 
progressively disintegrate during the wak‑
ing period.25,26 According to this view, and 
considering that the activation of ecdysone 
signaling seems to have destructive effects 
on the physiology of the adult fly brain, 
substantial increases of 20E levels in adult 
flies should be associated with an increase 
in the need for sleep. As expected, we 
found that feeding adult flies 20E increases 

they can acutely cope with the unfavorable 
environment. Thus, in adult flies, 20E 
may have stress hormone‑like properties.

A connection between the molt‑
ing hormone and the stress response in 
adult flies is further supported by several 
intriguing phenotypes in mutants for 
ecdysone signaling. The actions of ecdy‑
sone are primarily mediated by ecdysone 
receptors (EcRs), which are members of 
an evolutionarily conserved family of 
nuclear hormone receptors.11 Reflecting 
the indispensable nature of nuclear 
receptor‑mediated ecdysone signaling 
during development, homozygosity for 
loss‑of‑function mutations in EcR causes 
developmental lethality.12 Although EcR 
heterozygous mutants (EcR/+) are fully 
viable and display no obvious abnormal‑
ity in development, fertility or general 
activity, Simon et al.13 discovered that 
EcR/+ adult flies are significantly more 
resistant to various stresses (e.g., heat, 
dry starvation and oxidative stress) and 
exhibit a remarkable 50% life‑span exten‑
sion compared to appropriate genetic 
controls. Consistent with these findings, 
flies heterozygous for DTS-3—a mutant 
allele of molting defective (mld) (personal 
communication, Maroy P, University 
of Szeged, Szeged, Hungary) character‑
ized by lower 20E titers—show stress 
response and longevity phenotypes simi‑
lar to those observed in EcR/+ flies. The 
increased stress resistance and the exten‑
sion of lifespan in DTS-3/+ adults are 
more likely caused by the low 20E titers 
in adults than by disturbed develop‑
ment, because the mutant phenotypes are 
readily reversed by feeding adults 20E.13 
These results suggest that frequent or 
chronic activation of ecdysone signaling 
in adult flies is intrinsically harmful to 
their overall health, even though the same 
signaling may have beneficial, short‑term 
effects, under certain circumstances, e.g., 
in the acute management of unfavorable 
environmental conditions.

Ecdysone Signaling Plays a Role 
in Formation of Long-Term  

Courtship Memory in Adult Flies

In humans and mammalian model ani‑
mals, steroid hormones released in response 
to a stressful experience are critical for the 
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Global Modulation of the Adult 
Nervous System by Ecdysone

What are the neuronal consequences of 
ecdysone signaling activation in the adult 
brain? How does ecdysone activity influ‑
ence the functional properties of the ner‑
vous system? We speculate that ecdysone 
signaling may be involved in the tuning of 
neuronal circuits in the brain. One of sev‑
eral provocative theories about sleep is the 
synaptic homeostasis hypothesis, which 
argues that the function of sleep is to 
down‑scale brain synapses that are stimu‑
lated and potentiated through the neural 
activity during the waking period.28,29 In 
support of this theory, Gilestro et al. have 
found that the levels of several synaptic 

Because the major developmental 
 transitions (e.g., molting and metamor‑
phosis) involve massive metabolic altera‑
tions and drastic tissue reorganization, 
they are expected to increase the amount 
of potentially harmful by‑products. 
Although such functional and structural 
changes are necessary for normal develop‑
ment, they must have significant adverse 
effects on animal physiology. Entry into 
a sleep‑like state during development may 
help maintain or reestablish normal physi‑
ological conditions prior to, during or after 
the major developmental transitions. In 
this sense, developmentally programmed 
behavioral quiescence and adult sleep may 
share not only regulatory mechanisms, 
but also a role in homeostatic regulation.

sleep‑like properties  including  reversibility, 
reduced responsiveness and homeostasis.
Developmentally programmed quies‑
cence featuring sleep‑like properties may 
be a common phenomenon; it has been 
observed in species other than flies and 
worms. For example, people have long 
known that, prior to each molt, silkworm 
larvae stop eating and become immobi‑
lized, displaying a characteristic posture 
in which the anterior portion extends 
vertically. Interestingly, this developmen‑
tal period of behavioral quiescence in 
the silkworm has been termed “Min” in 
Japanese, which literally means “sleep”. It 
is likely that “Min” in the silkworm has 
sleep‑like features similar to those of leth‑
argus in the nematode.

Figure 1. (A) Sleep is enhanced by feeding adult flies the steroid molting hormone 20-hydroxyecdysone (20E). In contast, sleep is suppressed when 
ecdysone signaling is reduced by a loss-of-function mutation in either molting defective (mld) or in Ecdysone receptor (EcR). mld encodes a nuclear zinc 
finger protein required for ecdysone biosynthesis (personal communication, Maroy P) and EcR encodes an ecdysone-dependent transcription factor 
(modified from the figures in ref. 2). (B) The levels of 20E in mature adult flies are dependent on the external and internal environments. Different un-
favorable environmental stimuli increase the 20E levels and trigger ecdysone signaling. Ecdysone signal is mediated mainly by EcRs, which form het-
erodimers with the retinoid X receptor homologue Ultraspiracle (USP) and act as ligand-activated transcription factors. The EcR/USP complex recruits 
various co-activators and co-repressors. Some of these co-regulators are capable of modifying the chromatin structure, which leads to epigenetic 
changes in patterns of gene expression. Ecdysone-induced changes in gene expression may reinitiate some of the molecular and cellular processes 
that are employed for normal neural development, and enhance structural and functional reorganization of the adult nervous system. Such neuronal 
remodeling could result in stable or dynamic alterations in behavioral outputs.
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The notion that epigenetic 
 mechanisms play a critical role in regu‑
lating synaptic plasticity and memory 
is strongly supported by accumulating 
evidence.45 Particularly intriguing is the 
recent finding in mice that epigenetic 
alterations mediated by histone acety‑
lases and DNA methylases are critical 
for the beneficial effects of the steroid 
hormone estrogen on memory consoli‑
dation.46 If the mechanisms underlying 
steroid‑induced memory enhancement 
are evolutionarily conserved, it is possible 
that chromatin modifications also play a 
significant role in the ecdysone‑mediated 
formation of long‑term courtship mem‑
ory in adult flies.

While the epigenetic changes that lead 
to formation of long‑term memory must 
be fairly stable, recent reports demon‑
strated that chromatin modifications can 
also be very dynamic—undergoing cycli‑
cal changes within hours to minutes.47 
Therefore, it is reasonable to speculate that 
dynamic epigenetic regulation contrib‑
utes to the maintenance of, or transitions 
between, sleep and wake states. Ecdysone 
may also influence such a regulatory 
process through various co‑activator or 
co‑repressor of EcRs that have different 
chromatin modifying activities.

Non-Genomic Actions  
of the Steroid Hormones  

in Regulating Adult Behaviors

DTS-3/+ flies (reduced ecdysone levels) 
and EcR mutants (reduced receptor activ‑
ity) both sleep less than their control coun‑
terparts. Although both mutants suppress 
ecdysone signaling, their phenotypes are 
not exactly same. In particular, the average 
daytime wake‑bout duration is drastically 
increased in DTS-3/+ flies, but is unal‑
tered in EcR mutants, and administration 
of 20E significantly reverses the increased 
wake‑bout duration in the DTS-3/+ 
flies.2 These results imply that wake‑bout 
durations may be controlled by an EcR‑
independent ecdysone signaling pathway. 
A molecular component that could poten‑
tially mediate such an EcR‑independent 
ecdysone signaling pathway is a recently 
characterized G protein‑coupled recep‑
tor, DopEcR.48 Using in vitro cell culture 
systems, Srivastava et al.48 showed that 

in sleep regulation. The molecular and 
 cellular mechanisms underlying these pro‑
cesses may be at least partly shared. In this 
context, it is intriguing that sleep increases 
in flies exposed to social conditions under 
which long‑term courtship memory is 
induced.36 This finding implies that sleep 
regulation and memory consolidation, 
both of which are influenced by ecdysone 
signaling, are linked both functionally 
and anatomically.

Possible Involvement  
of Chromatin Modifications  

in Ecdysone-Mediated Behavioral 
Regulation in Adult Flies

Microarray analyses have demonstrated 
that in Drosophila, as in vertebrate ani‑
mals, the transitions between sleep and 
wake states are accompanied by wide‑
spread changes in gene expression in the 
brain.37,38 EcRs, which form heterodimers 
with the retinoid X receptor homologue 
Ultraspiracle (USP), act as ligand‑acti‑
vated transcription factors.39 Although it 
is unknown exactly which genes are acti‑
vated or suppressed through the action of 
ecdysone signaling in the mature adult 
brain, the EcR/USP complex must have a 
significant role in gene transcription dur‑
ing memory formation, as well as in the 
regulation of sleep and wake states.

As in the case of most transcription 
factors, EcRs activate or repress target‑
gene expression by recruiting various 
co‑regulators to the EcR/USP complex, 
and recent studies have revealed that 
many of the EcR‑specific co‑activators 
and co‑repressors serve as chromatin‑
modifying proteins during development. 
The developmental co‑regulators of EcRs 
include TAIMAN (histone acetylase),7 
Trithorax‑related (TRR) (histone lysine 
methyltransferase),40 DART1 (histone 
arginine methyltransferases),41 BRAHMA 
(ATP‑dependent chromatin remodeler),42 
NURF (ATP‑dependent chromatin 
remodeler),43 and DEK (histone chaper‑
one).44 It will be interesting to examine 
whether these epigenetic factors, which 
influence EcR‑mediated transcription 
in the nervous system during develop‑
ment, are likewise involved in transcrip‑
tional regulation in the nervous system in 
mature adult flies.

marker proteins in the Drosophila brain 
change (with some increasing and oth‑
ers decreasing) during waking and sleep‑
ing, respectively. Notably, these changes 
correlate with sleep‑wake states rather 
than with time of day, and are observed 
in fairly widespread areas of the brain.30 
Such global modifications of the nervous 
system in association with sleep‑wake 
transitions could well be regulated by hor‑
mones, and our findings suggest that spe‑
cifically 20E is a good candidate for such 
a regulator. With regard to this possibil‑
ity, it is noteworthy that developmental 
studies have demonstrated a significant 
role for EcR‑mediated ecdysone signaling 
in neuronal remodeling during forma‑
tion of the adult nervous system.31‑34 For 
example, when EcR‑mediated ecdysone 
signaling is blocked during the remod‑
eling of neurosecretory Tv neurons, fili‑
podial activity and axonal sprouting are 
severely inhibited, resulting in adult Tv 
neurons with a significantly reduced, mis‑
shapen axonal arbor.35 Thus, 20E is able 
to trigger and coordinate the molecular 
processes necessary for proper neuronal 
remodeling during development. It is 
tempting to speculate that some neurons 
in the mature adult brain remain sensitive 
to ecdysone signaling and undergo fine 
neuronal remodeling in response to 20E 
during sleep and wakefulness. Although 
ecdysone signaling for larval‑adult neu‑
ronal remodeling during development 
is controlled by genetically determined 
programs, it may be that the ecdysone 
signaling that leads to remodeling in the 
adult nervous system is dictated by envi‑
ronmental cues.

As mentioned above, previous work in 
our laboratory demonstrated that ecdy‑
sone signaling is required for long‑term 
courtship memory. That study also sug‑
gested that the activation of ecdysone 
signaling during experience‑dependent 
courtship conditioning causes functional 
modifications of brain neurons, and that 
these contribute to the formation of long‑
term courtship memory.1 Such functional 
modifications are likely accompanied by 
structural reorganization of the relevant 
neurons. An attractive hypothesis is that 
ecdysone signaling is involved in the neu‑
ronal reorganization related to memory 
formation, as well as to that involved 
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non‑genomic actions of 20E may also play 
a role in neural plasticity. Such modifica‑
tions in the nervous system may lead to 
significant changes in behavioral outputs 
(Fig. 1B). It is expected that the advanced 
genetic tools available in Drosophila will 
contribute to a better understanding of 
steroid‑mediated regulation of behavior in 
mature adults. Considering the functional 
importance of steroid‑mediated behavioral 
regulation, the underlying molecular and 
cellular processes must be well conserved 
evolutionarily. Thus, the study of this regu‑
lation in Drosophila would provide invalu‑
able insight into our understanding of the 
relationship between steroid hormones and 
behavior in higher vertebrates, including 
humans. Because dysfunction in steroid 
hormone signaling is closely related to a 
number of neurological and psychiatric dis‑
eases including depression, schizophrenia 
and post‑traumatic stress disorder, having 
a basic understanding of how steroid hor‑
mones function in regulating the nervous 
system would also be clinically significant. 
With new roles of the molting hormone 
20E becoming recognized, this long known 
steroid has shed its old cuticle and opened a 
new field of research in Drosophila.
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