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Tumors stimulate angiogenesis to 
meet increasing nutrient and oxy-

gen demands. In addition to their role 
in vascular remodeling, pro-angiogenic 
cytokines and effector cells contribute 
to an immune-inhibitory environment 
associated with advanced malignancies. 
Despite the critical role of angiogen-
esis in tumor growth and dissemination, 
most anti-angiogenic cancer therapies 
have had only limited success selectively 
targeting one of the many factors impli-
cated in this process. Similarly, the effec-
tiveness of tumor immunotherapies has 
been limited by tumor-mediated escape 
mechanisms and immune suppression. 
By combining the two strategies, how-
ever, anti-angiogenic immunotherapy 
offers the possibility to more robustly 
inhibit tumor angiogenesis and simulta-
neously impact the immune-inhibitory 
effects of the pro-angiogenic tumor 
milieu. These potential synergies make 
the combination of immunotherapy and 
anti-angiogenic treatment a promising 
avenue for future research.

Tumor Angiogenesis

Angiogenesis is a critical part of tumor 
growth and dissemination. Tumors greater 
than two to three millimeters have oxy-
gen and nutrient requirements that exceed 
those that can be met by diffusion alone.1 
Consequently, they recruit, remodel and 
expand the existing vasculature to meet 
their metabolic demands. This process is 
critical to development,2 but occurs only 
rarely in the healthy adult: during endo-
metrial proliferation through the men-
strual cycle, and during the process of 
wound healing. Thus, the continued cycle 
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of angiogenesis that occurs in the tumor 
microenvironment has been likened 
to “wounds that never heal.”3 Chronic 
inflammation, inhibition of cellular 
immune responses, and a dysfunctional 
and abnormal vasculature are all hall-
marks of this pathologic environment.

Under normal conditions, angiogen-
esis is a complex process involving regu-
lated changes in endothelial cell growth, 
survival, proliferation, migration and 
tube formation.4 These multiple steps 
require the concerted action of numer-
ous cytokines, cell surface receptors and 
intracellular signaling cascades. Vascular 
endothelial growth factor-A (VEGF-A), 
originally identified as a vascular perme-
ability factor,5,6 is an important cytokine 
mediator of tumor-driven angiogenesis.7 
The remainder of the VEGF family of 
proteins (VEGF-B, C, D and E), placental 
growth factor (PlGF) and the angiopoie-
tins are additional cytokines that have also 
been implicated in this process.8,9

The dependence of growing tumors 
on new blood vessel formation has made 
angiogenesis an appealing target for anti-
cancer therapies. Most notably, a VEGF-A 
blocking antibody, bevacizumab, has 
demonstrated clinical benefit, improv-
ing survival in metastatic colon cancer.10 
Bevacizumab has also demonstrated 
promise and benefit in other malignancies 
including lung, breast, renal cancers and 
glioblastoma.11-14 Tyrosine kinase inhibi-
tors that impact angiogenesis such as 
sorafenib and sunitinib have also proved 
efficacious in diseases such as hepatocel-
lular carcinoma and renal cell cancer.15-17 
Other anti-angiogenic strategies, includ-
ing monoclonal antibodies, kinase inhibi-
tors, IgG fusion proteins, RNA-aptamers 
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due to their ability to increase expres-
sion of platelet endothelial cell adhesion 
molecule-1 (PECAM-1) and vascular 
endothelial (VE)-cadherin and decrease 
expression of vascular-cell adhesion mol-
ecule-1 (VCAM-1), intracellular adhesion 
molecule-1 (ICAM-1) and endothelial 
leukocyte adhesion molecule 1 (ELAM-
1).58 Consequently, inhibiting angiopoi-
etins or other angiogenic mediators may 
restore normal immune cell trafficking 
and increase numbers of tumor-infiltrat-
ing lymphocytes.59,60 For instance, mice 
with tumors engineered to express the 
inhibitory soluble angiopoietin recep-
tor, tie-2, demonstrated increased sur-
vival dependent on increased numbers of 
tumor-infiltrating leukocytes.58

Angiogenic cytokines also help recruit 
and stimulate immune-inhibiting mono-
cytes and myeloid suppressor cells. 
Angiopoietin-2 stimulates tie-2 expressing 
monocytes to suppress T-cell activation 
and promote regulatory T-cell activity.61,62 
Populations of myeloid-suppressor cells 
that release immunosuppressive cytokines 
can be recruited by VEGF expression.63,64 
Inhibition of VEGF with bevacizumab 
can reduce levels of these cells in the 
peripheral blood.56

In addition to the potential for anti-
angiogenic therapy to increase anti-tumor 
immunity, there is also evidence to sug-
gest that immunologic approaches may be 
a more successful way of inhibiting tumor 
angiogenesis. As previously mentioned, 
existing anti-angiogenic therapies that 
only target a single agent are limited when 
tumors eventually utilize other pro-angio-
genic mediators.65 Anti-angiogenic immu-
notherapy, in contrast, could potentially 
target multiple angiogenic mediators and 
attack tumor-associated stroma in addi-
tion to tumor cells.66,67 Indeed, poor pene-
tration and resistance of tumor-associated 
stroma may contribute to the limited 
effectiveness of systemic anti-angiogenic 
therapy.22 Targeting immune-inhibiting 
monocytes68 and myeloid-suppressor cells 
could also more successfully inhibit tumor 
angiogenesis, as these cell types have been 
associated with resistance to anti-VEGF 
therapies.69 Finally, anti-angiogenic 
treatment may be most successful when 
administered constantly, preventing the 
re-growth of tumor vasculature during 

tumor antigens are also present on normal 
tissue and can therefore induce immune 
tolerance; moreover, tumors can mutate 
and shift their antigenic profile, thereby 
evading immune attack.37 Additionally, 
in part because of a significant tumor 
burden, patients with advanced malig-
nancies are often relatively immunocom-
promised. Cancers can themselves be 
immunosuppressive in a variety of ways: 
by releasing immunosuppressive cyto-
kines; by inhibiting antigen processing 
and presentation; by increasing num-
bers of inhibitory T-regulatory cells; by 
recruiting tumor-infiltrating macrophages 
and myeloid-derived suppressor cells; 
and by attenuating immune-mediated 
cytotoxicity.37-50

Angiogenesis as a Target  
for Tumor-Immunotherapy

Pro-angiogenic cytokines, receptors and 
effector molecules may be particularly 
good targets of immune-based cancer ther-
apy. As mentioned above, although angio-
genesis is a normal physiologic process, 
it is tightly regulated4 and infrequently 
occurs in the healthy, non-menstruating 
adult. Consequently, anti-angiogenic 
immunotherapy can target a wide variety 
of tumor types yet be tumor-specific. In 
contrast to other tumor-specific therapies, 
targeting the tumor-associated vasculature 
in addition to the tumor itself may make 
anti-angiogenic immunotherapy more 
resistant to immune-escape mechanisms.51 
The mediators of angiogenesis, including 
a number of normal cell types such as the 
vascular endothelium, do not likely pos-
sess the same degree of mutability as can-
cer cells.

Immune-based cancer therapies that 
target angiogenesis may potentiate a 
broader anti-tumor immune response52 
by interfering with tumor-mediated 
immune inhibition. VEGF may function-
ally inhibit the immune system in part by 
preventing the maturation of dendritic 
cells53,54 and inhibiting early T-cell devel-
opment.55 In a study of 19 patients with 
colon cancer, inhibiting VEGF with beva-
cizumab increased the antigen-presenting 
capacity of peripheral blood dendritic 
cells.56 The angiopoietins impact inflam-
mation57 and affect immune trafficking 

and RNA-interference are being actively 
pursued for these and many additional 
malignancies.9

Despite their promise and encourag-
ing initial results, the benefits of exist-
ing anti-angiogenic therapies have been 
modest, with limited improvements in 
survival. There are many potential expla-
nations for this short-term overall ben-
efit. Existing therapies generally target 
only one or a single family of angiogenic 
mediators. In response, tumors may evade 
this inhibition by utilizing redundant 
pro-angiogenic pathways and cytokines, 
thus eventually resuming angiogen-
esis unabated.18-20 Moreover, tumors can 
potentially bypass angiogenic inhibitors 
by using autocrine loops and angiogenic 
factors sequestered in the tumor micro-
environment, and thereby inaccessible to 
exogenous blockade.21,22

Tumor Immunotherapy

Evidence supporting the immune system’s 
potential role in the treatment of estab-
lished malignancy is rapidly expanding. 
Tumor-infiltrating lymphocytes have been 
associated with improved outcomes in 
various malignancies including melanoma 
and cancers of the ovary, esophagus, pros-
tate, breast, kidney and colon.23-32 Two 
drugs used in the treatment of high-risk 
and advanced melanoma, interferon-
α-2b and interleukin-2, are hypothe-
sized to work by augmenting anti-tumor 
immunity,33,34 and an additional drug, 
the immunomodulatory anti-Cytotoxic 
T-Lymphocyte Antigen 4 (CTLA-4) anti-
body ipilimumab, was recently approved 
by the FDA based on its ability to increase 
survival in metastatic melanoma patients 
refractory to previous therapy.35 Finally, a 
prostate cancer dendritic cell vaccine tar-
geting prostatic acid phosphatase was also 
recently approved by the FDA after a ran-
domized trial demonstrated its ability to 
increase median survival by approximately 
4 months in metastatic castrate-resistant 
prostate cancer patients.36

Although our ability to manipulate 
the immune system and identify poten-
tial tumor antigens has increased, tumor 
immunotherapies are still limited by the 
ability of advanced malignancies to evade 
immune recognition. Many potential 
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against macrophage inhibitory factor 
(MIF) that functionally inhibited MIF-
induced expression of tie-2 on mono-
cytes and also inhibited the production 
of MMP-9. Thus, functional inhibition 
of monocytes as a result of this anti-MIF 
antibody response may act in concert with 
antibodies directed pro-angiogenic cyto-
kines to inhibit tumor angiogenesis.

Future Prospects and Conclusion

The number of anti-angiogenic therapies 
available or undergoing active investiga-
tion has rapidly expanded in recent years, 
as has the potency and potential impact 
of anti-tumor immunotherapies. Whether 
these existing and investigational thera-
pies can be used in tandem for a synergis-
tic benefit is of much interest. Combining 
anti-angiogenic treatment with tumor 
immunotherapy may help circumvent the 
weaknesses of either treatment adminis-
tered individually (Fig. 1).

Future work should delineate the spe-
cific types of anti-angiogenic treatments 
and anti-tumor immunotherapies that 
work best together and the optimal timing 
of each therapy when used in combina-
tion. Alternatively, angiogenic mediators 
can be targeted directly with immuno-
therapeutic approaches. Anti-angiogenic 
immunotherapy may also be successful 
when combined with conventional tumor-
directed treatments such as chemotherapy 
and radiation, thus increasing the ability 
to target the tumor and tumor-stroma 
simultaneously.96 Although the anti-
tumor effects of these different treatments 
may be additive or even synergistic, their 
toxicities are likely to be very different, 
thereby increasing the potential therapeu-
tic benefit.

Research continues to identify the 
complex interactions that exist between 
cancer, angiogenesis and the immune sys-
tem. As wounds that never heal, cancer’s 
continued angiogenic drive incites inflam-
mation and recruits systemic mediators to 
aid in tumor growth and metastasis. These 
factors contribute to the abnormal tumor 
microenvironment and at least partially 
mediate the resistance of advanced malig-
nancy to conventional and experimental 
treatments. Anti-angiogenic immunother-
apy could potentially circumvent multiple 

antibody targeting VEGFR-2, increased 
the numbers of tumor-infiltrating lym-
phocytes. When combined with Her2/
neu vaccination, DC101 induced tumor 
regression by augmenting anti-tumor 
immune responses,89 an effect that was not 
present in mice tolerant to Her2/neu. In 
another study, VEGF inhibition increased 
the infiltration of adoptively transferred 
T cells into tumor implants, increasing 
the efficacy of this treatment.90 Adding 
the CTLA-4 inhibiting antibody 9H10 
to treatment of mice with DC101 and a 
dendritic cell vaccine led to rejection of 
established tumors, an effect that required 
the combination of all three treatments.91 
Finally, the use of the immune-stimulating 
cytokines GM-CSF and IL-12 with anti-
angiogenic factors endostatin and pigment 
epithelium-derived factor had synergistic 
anti-tumor effects in an established wood-
chuck hepatoma model.92 The combined 
treatment was able to induce activation 
of natural-killer cells and reduce expres-
sion of immune inhibitory CTLA-4 and 
programmed death (PD)-1 receptors com-
pared with animals treated with immuno-
therapy alone.

In humans, the use of an autologous 
tumor cell vaccine engineered to express 
high levels of GM-CSF has demonstrated 
success in generating a coordinated anti-
tumor immune response including a lym-
phocytic infiltrate in tumor metastases.93,94 
Interestingly, some long-term surviving 
patients were also noted to develop tumor-
associated vasculopathy with associated 
lymphocytic and granulocytic invasion. 
Further investigation identified VEGF 
family members and the angiopoietins as 
targets of immune recognition in these 
and other patients who demonstrated a 
prolonged response to the autologous vac-
cine.95 These generated antibodies dem-
onstrated functional abilities to inhibit 
binding to the tie-2 receptor, downstream 
signaling, endothelial cell tube formation 
and macrophage chemotaxis. Of note was 
the ability of this autologous tumor cell 
vaccine to generate antibodies directed 
against a panel of angiogenic cytokines, 
potentially preventing the tumor-associ-
ated vasculature from eventually escap-
ing immune recognition and angiogenic 
blockade in these patients. Autologous 
vaccination also led to antibodies directed 

breaks in treatment.70 Immunotherapy 
could deliver this constant therapy without 
the need for repeated drug administration.

Evidence Supporting 
 Anti-Angiogenic Immunotherapy

Studies have demonstrated the poten-
tial effectiveness of using immune ther-
apy to target mediators of angiogenesis. 
Endothelial cell vaccines inhibited tumor 
growth and led to tumor destruction in 
mice.71-74 Other studies have used a variety 
of means to generate a specific anti-VEGF 
immune response that was successful in 
inhibiting implanted tumor cell-types 
including: colorectal, rhabdomyosarcoma, 
fibrosarcoma, hepatoma, melanoma, lung, 
ovarian, pancreatic and mammary cancer 
cells in mice75-78 and spontaneously aris-
ing sarcomas in dogs.79 A number of other 
pro-angiogenic molecules and receptors 
including VEGF receptor-2 (VEGFR2), 
tie-2, fibroblast growth factor (FGF) 
receptor-1, integrin Beta-3, vascular endo-
thelial (VE)-cadherin and matrix-metal-
loproteinase-2 (MMP-2) were similarly 
targeted with success.77,80-85

Combined treatment with angiogenic 
inhibitors and anti-tumor immunotherapy 
has demonstrated initial efficacy in ani-
mal models. Vaccination with dendritic 
cells transfected with angiogenic cytokine 
and receptor mRNA in addition to total 
tumor mRNA demonstrated a synergistic 
anti-tumor effect.86 In a murine prostate 
cancer model, concomitant treatment 
with the anti-angiogenic tyrosine kinase 
inhibitor SU6668 and the recombinant 
immunomodulatory B7.2-IgG fusion pro-
tein significantly inhibited tumor growth 
to a greater degree than either treatment 
alone.87 Lymphocytes obtained from mice 
that received the combined treatment dem-
onstrated a higher proliferative response 
to CD3 stimulation. Administration of a 
GM-CSF-secreting tumor cell vaccine in 
combination with VEGF-blockade sig-
nificantly increased the survival of mice 
implanted with B16 melanoma and CT26 
colon carcinoma cells, increasing over-
all numbers of tumor-infiltrating T-cells 
while decreasing tumor-infiltrating regu-
latory T cells.88 Treatment of mice with 
implanted NT2.5 breast cancer cells with 
DC101, an anti-angiogenic monoclonal 
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