Table 1.
Comparison of predicted and experimental gene essentiality using different networks and different growth conditions.
Network | Experiment Condition |
Threshold | Number of Gene Essentiality Predictions | Sensitivity | Specificity | Matthews Correlation Coefficient | |||
---|---|---|---|---|---|---|---|---|---|
TP | FN | FP | TN | ||||||
iNJ661 | In vitro | <1.0 | 153 | 84 | 71 | 236 | 0.65 | 0.77 | 0.42 |
iNJ661m | In vitro | <1.0 | 153 | 85 | 71 | 237 | 0.64 | 0.77 | 0.42 |
GSMN-TB | In vitro | <1.0 | 156 | 85 | 58 | 294 | 0.65 | 0.84 | 0.49 |
GSMN-TBv | In vitro | <1.0 | 160 | 81 | 75 | 277 | 0.66 | 0.79 | 0.45 |
iNJ661v | In vitro | <1.0 | 140 | 98 | 80 | 228 | 0.59 | 0.74 | 0.33 |
iNJ661 | In vitro | ≤0.2 | 135 | 102 | 59 | 248 | 0.57 | 0.81 | 0.39 |
iNJ661m | In vitro | ≤0.2 | 135 | 103 | 59 | 249 | 0.57 | 0.81 | 0.39 |
GSMN-TB | In vitro | ≤0.2 | 152 | 89 | 47 | 305 | 0.63 | 0.87 | 0.52 |
GSMN-TBv | In vitro | ≤0.2 | 156 | 85 | 65 | 287 | 0.65 | 0.82 | 0.47 |
iNJ661v | In vitro | ≤0.2 | 123 | 115 | 63 | 245 | 0.52 | 0.80 | 0.33 |
iNJ661 | In vivo | <1.0 | 16 | 20 | 97 | 242 | 0.44 | 0.71 | 0.10 |
iNJ661m | In vivo | <1.0 | 16 | 20 | 94 | 246 | 0.44 | 0.72 | 0.11 |
GSMN-TB | In vivo | <1.0 | 10 | 34 | 76 | 317 | 0.23 | 0.81 | 0.03 |
GSMN-TBv | In vivo | <1.0 | 16 | 28 | 93 | 300 | 0.36 | 0.76 | 0.09 |
iNJ661v | In vivo | <1.0 | 31 | 5 | 77 | 263 | 0.86 | 0.77 | 0.41 |
iNJ661 | In vivo | ≤0.2 | 11 | 25 | 76 | 263 | 0.31 | 0.78 | 0.06 |
iNJ661m | In vivo | ≤0.2 | 11 | 25 | 76 | 264 | 0.31 | 0.78 | 0.06 |
GSMN-TB | In vivo | ≤0.2 | 10 | 34 | 65 | 328 | 0.23 | 0.83 | 0.05 |
GSMN-TBv | In vivo | ≤0.2 | 16 | 28 | 83 | 310 | 0.36 | 0.79 | 0.11 |
iNJ661v | In vivo | ≤0.2 | 29 | 7 | 52 | 288 | 0.81 | 0.85 | 0.47 |
A true positive (TP) prediction refers to a gene correctly predicted to be essential, whereas a false negative (FN) prediction refers to a gene incorrectly predicted to be non-essential. A false positive (FP) prediction refers to a gene incorrectly predicted to be essential, whereas a true negative (TN) prediction refers to a gene correctly predicted to be non-essential. Sensitivity = TP/(TP + FN). Specificity = TN/(TN + FP). Matthews correlation coefficient = (TP × TN - FP × FN)/[(TP + FP)(TP + FN)(TN + FP)(TN + FN)]1/2. GSMN-TBv indicates the GSMN-TB network with its in vivo biomass objective function.