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RNA polymerase II traverses nucleo-
somes rapidly and efficiently in the 

cell but it has not been possible to dupli-
cate this process in the test tube. A single 
nucleosome has generally been found 
to provide a strong barrier to transcript 
elongation in vitro. Recent studies have 
shown that effective transcript elonga-
tion can occur on nucleosomal templates 
in vitro, but this depends on both facili-
tated uncoiling of DNA from the octamer 
surface and the presence of transcription 
factors that maintain polymerase in the 
transcriptionally competent state. These 
findings indicate that the efficiency and 
rate of transcription through chromatin 
could be regulated through controlled 
DNA uncoiling. These studies also dem-
onstrate that nucleosome traversal need 
not result in nucleosome displacement.

The study of transcript elongation by RNA 
polymerase II has generated paradoxical 
results. In the nucleus pol II transcribes 
genes packaged in nucleosomes with 
apparent high efficiency at a rate of 3–4 
kb/min.1 On the other hand, many stud-
ies have shown that during transcription 
in vitro pol II is unable to traverse even 
a single nucleosome efficiently.2-5 In the 
absence of additional factors, pol II alone 
tends to pause within the first nucleosome 
it encounters; recovery from these pauses 
is inefficient and very slow.3,4,6-11

Considering the structure of the 
nucleosome, it is not surprising that pol 
II has difficulty in transcribing chroma-
tin templates. The 146 bp of nucleoso-
mal DNA wrapped around the histone 
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octamer core makes 14 consecutive strong 
contacts with the underlying histones.12 
Packaging the template into nucleosomes 
does result in a greater tendency of pol II 
to pause at sites which were difficult for 
polymerase to cross on pure DNA tem-
plates.2,3,5 However, the pausing pattern 
generated by pol II on nucleosomal tem-
plates is not simply the sum of increased 
pausing at established sites plus a 10 bp 
periodicity of pausing imposed by the 
nucleosome. Significant new insight into 
the mechanism of nucleosome traversal 
has emerged from studies with mononu-
cleosome templates.3-5,13 The strongest 
barrier for pol II in these nucleosomes 
occurred at an interesting location: about 
45 bp within the nucleosome, where the 
polymerase is just beginning to invade the 
template segment organized by the central 
H3/H4 tetramer.3 Once the pol II crossed 
the nucleosomal dyad, there was little 
pausing observed as transcription pro-
ceeded to the end of the nucleosome.3 The 
barriers to pol II imposed by nucleosomes 
assembled over three strong positioning 
elements14 were found to be surprisingly 
polar; that is, traversal was significantly 
more difficult in one of the two pos-
sible orientations.3 Thus, the nucleosomal 
blockade is not simply proportional to the 
overall affinity of the underlying DNA for 
the histone octamer.

In order to explain all of these obser-
vations, the existing crystal structures of 
the nucleosome and a yeast pol II elonga-
tion complex were combined to model the 
structure of RNA polymerase II paused at 
various locations within a nucleosome.15 
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a particularly difficult point in the pro-
cess of unwinding the template from the 
octamer surface.

The traversal pathway shown in 
Figure  1 predicts that alterations in 
nucleosome structure that facilitate the 
critical template unwinding event down-
stream of the Ø-loop should be stimula-
tory for nucleosome traversal. This idea 
has recently been tested by substituting 
H3 or H4 histones with correspond-
ing Sin mutant versions. The Sin muta-
tions are single amino acid changes in 
H3 or H4, originally identified in yeast 
because they remove the requirement for 
chromatin remodelers at certain genes.23 
Nucleosomes assembled with vertebrate 
analogs of Sin mutant histones show spe-
cific loss of histone-DNA contacts imme-
diately flanking the nucleosome dyad.24 
These contacts (squares in Figs. 1 and 2B) 
are the strongest of the 14 major histone-
DNA interaction points in the nucleo-
some.22,24 Breaking these interactions is 
an important part of the overall template 
unwinding that occurs during traversal 
(Fig. 1). As predicted, it was found that 
the incorporation of four different Sin 
mutant H3 or H4 histones caused signifi-
cant reduction in the nucleosomal tran-
scription barrier for both yeast and human 
pol II.25

Weakening of the dyad-proximal 
histone-DNA contacts can also affect 
the survival of the nucleosome upon tra-
versal in vitro. While the majority of 

the loss of a single H2A/H2B dimer but 
the H3/H4 tetramer is not displaced from 
its original location.4,16 These features 
duplicate the apparent effect of pol II pas-
sage through nucleosomes in vivo. Within 
lightly transcribed genes, exchange is 
observed for H2A/H2B but not for H3 
and H4.17-19 Note that a considerably dif-
ferent mechanism, used by RNA poly-
merase III, involves transfer of a complete 
histone octamer from in front of the tran-
scribing enzyme to behind it through the 
obligatory formation of a larger DNA 
loop.20

Important aspects of the transcription 
pattern displayed by pol II within nucleo-
somes in vitro are explained by the model 
in Figure 1. Details of pausing in the 
proximal half of the nucleosome vary with 
sequence, but the strongest stop is always 
near the position where the proposed 
metastable Ø-loop complexes form.3 Very 
little pausing is seen downstream of the 
nucleosome dyad, consistent with the full 
unwinding of the downstream template 
once polymerase has passed the major 
pause site. The reassociation of template 
with the upstream histones which begins 
with the +39 and +49 Ø-loop complexes 
facilitates retention of the nucleosome 
even though downstream unwinding 
must occur to complete nucleosome tra-
versal. Physical studies in which DNA 
was uncoiled from single nucleosomes21,22 
support the importance of the major bar-
rier observed in transcription studies as 

The structure of a complex with pol II 
halted 39 bp into the nucleosome proved 
to be particularly informative. This is just 
upstream of the point that biochemical 
studies had mapped as the major pause site 
(See Fig. 1, complex 2a). In the +39 com-
plex, pol II has swung completely away 
from the octamer surface. Once pol II has 
transcribed 39 bp into the nucleosome, 
the upstream DNA can reassociate with 
the proximal H2A/H2B dimer behind 
the enzyme. After reassociation, very little 
DNA is displaced from the histones; thus, 
this complex was designated a zero-loop 
(Ø-loop) complex (complex 2b in Fig. 1). 
The 2b complex showed an unanticipated 
but critical additional feature: at this 
position, pol II begins to clash with the 
DNA binding to the downstream H2A/
H2B dimer. For transcription to continue 
past +39, the template must unwind from 
the octamer beyond the strong histone-
DNA contacts which flank the nucleo-
some dyad. This downstream unwinding 
is nucleated by the clash between pol II 
and the downstream DNA-H2A/H2B 
dimer interaction (complex 2c, Fig. 1; see 
ref. 15). Once the downstream template is 
available, pol II can continue traversal of 
the nucleosome (step 3 in Fig. 1). This can 
be accompanied by subsequent formation 
of a Ø-loop at the position +49 (see Ref. 
15).

This traversal mechanism has been 
demonstrated for both yeast and human 
pol II.3,15 It is frequently accompanied by 

Figure 1. Proposed mechanism of transcription through nucleosomes (modified from ref. 15). Pol II enters the nucleosome (1), partially displaces 
upstream DNA (2a) and initially forms a Ø-loop at +39 (2b), inducing reversible uncoiling of downstream DNA (2c); transcription is accompanied by 
nucleosome recovery (3). A more detailed description of the uncoiling and traversal pathway is presented in reference 15. Strong DNA-histone interac-
tions which flank the nucleosome dyad are indicated by the squares. Note that the Ø-loop can also be formed at the position +49.
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extendable 3' end.29-31 A number of studies 
have demonstrated that TFIIS does stimu-
late nucleosome traversal by pol II.3,5,6,9,11,32 
However, even at saturating levels of 
TFIIS, nucleosome traversal remains slow 
and incomplete.11 If the primary difficulty 
for pol II during nucleosome traversal is 
transcriptional arrest from backtracking, 
TFIIS should be sufficient to drive pol II 
completely through nucleosomes as TFIIS 
is able to do at arrest sites on pure DNA 
templates.28,33 To appreciate why TFIIS 
alone might not support effective nucleo-
some traversal, it is important to recall 
that the transient disassociation of DNA 
from the octamer surface which could 
allow traversal27 reverses more rapidly 
than the average rate of bond formation 
by pol II alone.11 Thus, when pol II recov-
ers from nucleosomal arrest through the 
action of TFIIS, it is likely that it will be 
unable to continue transcription quickly 
enough and instead will backtrack and 

DNA uncoiling from the octamer as the 
primary part of the barrier. In this con-
text, it is important to note that DNA can 
“breathe” away from the nucleosome sur-
face.27 This transient disassociation would 
reveal the downstream template, allowing 
pol II to avoid pausing and continue tran-
scription. However, the rate at which this 
“window of transcriptional opportunity” 
recloses is considerably faster than the 
bond formation rate for pol II in vitro in 
the absence of additional factors.6,11 Thus, 
it seems likely that successful nucleosomal 
traversal will also depend on transcript 
elongation factors which assist pol II in 
exploiting template uncoiling.

It is well established that recovery from 
backtracking and arrest on pure DNA 
templates by pol II requires the transcript 
elongation factor TFIIS.28,29 This factor 
stimulates the backtracked polymerase 
to cleave the nascent RNA adjacent to 
the active site, thereby regenerating an 

nucleosomes are not displaced by tran-
scription, an increased tendency for the 
nucleosome to be released from the DNA 
was observed when Sin mutant histones 
were incorporated into the octamer.25 Two 
related mechanisms, shown schematically 
in Figure 2B, can be envisioned to explain 
this effect. Retention of the nucleosome as 
pol II advances from the Ø-loop position 
at +39 is dependent on the continuous 
reassociation of upstream template onto 
the octamer surface as pol II begins to 
displace the downstream DNA away from 
the histones.15 If complete downstream 
uncoiling occurs at position +39, as may 
be the case with Sin mutant histones, 
then the octamer is more likely to be dis-
placed into solution (Model 1, Fig. 2B). 
This is consistent with footprinting results 
with bacterial RNA polymerase halted 
at the relevant location within nucleo-
somes assembled from wild type or Sin 
mutant histones.25 An alternative possibil-
ity is that full dissociation of the down-
stream DNA could occur on Sin mutant 
nucleosomes before any stable reasso-
ciation of the upstream DNA with the 
octamer has occurred (Model 2, Fig. 2B). 
Transcription-dependent loss of nucleo-
somes in vivo due to Sin-like mutations 
has been reported for one Sin mutant.26

The pathway of template uncoiling 
away from the octamer surface seems to 
be one key to understanding nucleosome 
traversal, since facilitating this pathway 
clearly facilitates transcription through the 
nucleosome. However, it is also clear that 
the nucleosome alterations tested to date do 
not render the nucleosome transparent to 
pol II.10,25 At physiological ionic strength, 
traversal of even the most permissive sin-
gle nucleosomes by pol II remains incom-
plete over a time course of 5 min; also, the 
rate at which full traversal is achieved is 
distinctly slower than elongation rates on 
the equivalent pure DNA templates.6,10,25 
Significantly, those polymerases that fail 
to complete traversal are often trapped at 
strong, nucleosome-specific pause sites. 
At these locations, the initial pause is fol-
lowed by extensive backtracking along the 
template,5 which separates the transcript 
3' end from the active site and leaves pol 
II arrested and transcriptionally inactive. 
It has been shown that pausing precedes 
backtracking and arrest,5 which implicates 

Figure 2. Proposed mechanism of transcription through Sin nucleosomes (modified from  
ref. 25). (A) DNA-histone interactions (from refs. 24 and 44) affected by the particular Sin muta-
tions investigated in reference 25. Histone H3 residues R116 and T118, and H4 residues V43 and 
R45  are indicated by white arrows. White diamond indicates the nucleosome dyad. (B) Pol II 
enters the nucleosome, partially displaces upstream DNA (2a) and forms a Ø-loop at +39 (2b), in-
ducing reversible uncoiling of downstream DNA (2c); transcription is accompanied by nucleosome 
recovery. However, strong DNA-histone interactions (squares) are weakened in Sin nucleosomes, 
causing a larger downstream DNA region to be displaced (2d and 2e), favoring nucleosome loss.
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In summary, the nucleosome is not an 
insurmountable barrier to transcription in 
the test tube. Investigations of transcrip-
tion of mononucleosome templates, along 
with biophysical studies, have shown that 
the nucleosome is poised for successful 
traversal through the spontaneous breath-
ing of the template away from the octamer 
surface and the uncoiling of the DNA in 
response to invasion by pol II. The nucleo-
somal barrier can be overcome when tem-
plate uncoiling is facilitated and factors 
are available to maximize pol II’s catalytic 
competence. It is important to emphasize 
that the extent of DNA uncoiling from the 
octamer during transcription through a 
nucleosome is large relative to the interac-
tions that remain, so further small desta-
bilizations or more efficient transcription 
can strongly affect the rate of traversal. 
For the immediate future, there are several 
clear challenges in advancing the study of 
transcription of chromatin templates in 
vitro. It will be essential to obtain a better 
understanding of how template uncoiling 
from the nucleosome surface is driven in 
the cell. It will also be important to extend 
these approaches to more physiological 
templates consisting of arrays of nucleo-
somes. This will allow us to address the 
importance of nucleosome-nucleosome 
interactions in controlling nucleosome 
traversal by pol II.
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