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The adverse outcomes on the offspring from maternal diabetes in pregnancy are substantially documented. In this paper, we
report main knowledge on impacts of maternal diabetes on early and long-term health of the offspring, with specific comments
on maternal obesity. The main adverse outcome on progenies from pregnancy complicated with maternal diabetes appears to
be macrosomia, as it is commonly known that intrauterine exposure to hyperglycemia increases the risk and programs the
offspring to develop diabetes and/or obesity at adulthood. This “fetal programming”, due to intrauterine diabetic milieu, is termed
as “metabolic memory”. In gestational diabetes as well as in macrosomia, the complications include metabolic abnormalities,
degraded antioxidant status, disrupted immune system and potential metabolic syndrome in adult offspring. Furthermore, there
is evidence that maternal obesity may also increase the risk of obesity and diabetes in offspring. However, women with GDM
possibly exhibit greater macrosomia than obese women. Obesity and diabetes in pregnancy have independent and additive effects
on obstetric complications, and both require proper management. Management of gestational diabetes mellitus and maternal
obesity is essential for maternal and offspring’s good health. Increasing physical activity, preventing gestational weight gain, and

having some qualitative nutritional habits may be beneficial during both the pregnancy and offspring’s future life.

1. Introduction

Compelling evidence exists suggesting that exposure to
an adverse fetal and/or early postnatal environment may
enhance susceptibility to a number of chronic diseases in the
future life of offspring. Gestational diabetes mellitus (GDM)
and obesity are both complications which occur during
pregnancy and substantially influence the development of
offspring during fetal life and postnatally. Indeed, fetuses
from mothers with gestational diabetes are at high risk of
developing fetal macrosomia [1, 2]. Although most of the
women with GDM return to normal glucose tolerance after
delivery, they have an increased risk of developing diabetes,
mainly type 2 diabetes mellitus [3]. Offspring of women with
gestational diabetes are prone to adverse side effects such as
macrosomia, which is strongly associated with fetal death,
prematurity, birth trauma, and respiratory distress syndrome

[4]. These offspring have a high risk of developing obesity,
impaired glucose tolerance, and type 2 diabetes in adulthood
[4]. The concern of most researchers, during the last decade,
is to explore the physiopathology of the relationship between
the health conditions of offspring born from pregnancy
complicated with diabetes. Our team has evidence in many
experimental studies, in which we have observed a high
incidence of macrosomia in the litters of diabetic animals
[1]. The macrosomic (large-sized) offspring of diabetic
animals exhibit many physiological disorders associated with
metabolic syndrome. However, the mechanisms by which
excess maternal weight and/or diabetes during pregnancy
may lead to disease in the offspring at childhood and adult-
hood are not fully understood. The aim of this paper is to
summarize new knowledge on the various physiological and
pathophysiological aspects of early and long-term offspring
outcomes of maternal diabetes during pregnancy. Specific
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comments on impacts of maternal obesity on offspring
health are also evoked, since the impact of obesity and GDM
on fetus and mother often becomes circular, as the majority
of mothers with GDM are obese and a significant proportion
of those who are obese have GDM [5].

2. Gestational Diabetes: Meaning and Diagnosis

Depending on the diagnostic and screening criteria, it has
been observed that prevalence of GDM ranged from 1.3%
to 19.9% [6]. In obesity context, a meta-analysis [7] showed
that the risk of developing GDM was 2.14-fold higher
in overweight pregnant women, 3.56-fold higher in obese
pregnant women, and 8.56-fold higher in severely obese
pregnant women compared to pregnant women with normal
weight. This analysis prompted the International Association
of Diabetes and Pregnancy Study Groups (IADPSG) to
propose new criteria for the diagnosis of GDM, based on the
Hyperglycemia and Adverse Pregnancy Outcomes (HAPO)
Study [8]. The criteria use a 75-g oral glucose tolerance test
(OGTT) without prior glucose challenge and diagnose GDM
when the fasting glucose is >5.1 mmol/L and/or when the
1-h postload glucose is =10.0 mmol/L and/or when the 2-h
postload glucose is >8.5 mmol/L.

With the greater number of pregnancies complicated
with diabetes, it will be interesting to monitor the long-term
impacts of maternal diabetes in pregnancy on the health
condition of offspring.

3. Macrosomia: The Main Adverse Outcome of
Diabetes in Pregnancy

3.1. Studies in Humans. Maternal diabetes is character-
ized by an increased placental transport of glucose and
other nutrients from the mother to the fetus, resulting
in macrosomia [9]. Convincing studies have shown that
either preexisting diabetes (type 1 and type 2 diabetes) or
GDM (diabetes only during pregnancy) are associated with
macrosomia [10-17]. Indeed, epidemiological and clinical
studies have shown that maternal type 1 diabetes during
pregnancy is an important risk factor for fetal overnutrition
and macrosomia and for the development of obesity and
diabetes in offspring [10, 11]. Type 2 diabetes and GDM
are also associated with macrosomia and diabetes in the
progenies [12, 13]. The risk of diabetes in offspring of type
2 diabetes genitors is significantly higher when the mother
rather than the father is diabetic [12]. Moreover, the risk
of insulin resistance is higher in children of mothers with
GDM (diabetes only during pregnancy) than in children
from mothers developing diabetes after pregnancy [14].
Macrosomia, the most commonly reported effect of maternal
diabetes in newborns [15], is usually defined in humans as
birth weight above either 4kg or birth weight above the
95th percentile of the gestational age. In human studies, 43%
of GDM patients had a macrosomia history [16, 17]. In
total, 75% of the diabetic mothers had an episiotomy during
delivery. Babies from GDM patients whose birth weight was
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2.0 SD greater than the mean birth weight of control infants
were considered as macrosomic babies.

3.2. Animal Models. In animal studies, the model reported
here concerns streptozotocin-induced type 1 diabetic preg-
nancy which also leads to macrosomia in offspring [18, 19].
Several modes exist for inducing diabetes with streptozo-
tocin. The group of Van Assche has exhaustively investigated
the consequences of experimental maternal diabetes induced
by streptozotocin on fetus and adult progeny [9, 20].

The streptozotocin, when administered at a high single
dose, induces diabetes by the direct toxic effects on pancreatic
B-islet cells [9]. The fetus is confronted with severe intrauter-
ine hyperglycemia which induces fetal islet hypertrophy and
S-cell hyperactivity and may result in early hyperinsulinemia
[20]. This overstimulation of fetal 8 cells limits their
adaptation, and they become depleted of insulin granules
[20], and incapable to secrete insulin [9]. B-cell exhaustion
results in fetal hypoinsulinemia. Hypoinsulinemia and a
reduced number of insulin receptors on target cells lead to
a reduction in fetal glucose uptake [9]. The growth of fetal
protein mass is suppressed, and fetal protein synthesis is
consistently low, leading to fetal microsomia [9]. Postnatal
development is retarded, and these offspring remain small at
adulthood; however, they develop insulin resistance [9, 21].

However, streptozotocin, administered at low doses
during 5 consecutive days, induces mild type 1 diabetes,
following a T-lymphocyte-dependent process, an autoim-
mune destruction of pancreatic § cells, mediated by both
CD4" and CD8" T cells [22, 23]. The administration of
low doses of streptozotocin to rodents represents a good
model of diabetes development for several reasons [22,
24, 25]. The intrauterine mild hyperglycemia also induces
fetal hyperinsulinemia with hypertrophy of the endocrine
pancreas and hyperplasia of the S cells [20]. Animals
with perinatal hyperinsulinemia display an impaired glucose
tolerance at adulthood only under high glucose [9].

A model of diabetic pregnancy and macrosomia through
administration to pregnant Wistar rats of five low doses of
streptozotocin starting on day 5 of gestation is also well estab-
lished [1, 26, 27]. Pups from diabetic pregnant rats whose
birth weights were 1.7 SD greater than the mean birth weight
of the control pups were considered as macrosomic offspring
[1, 26, 27]. As far as the model is concerned, it is important
to note that maternal streptozotocin administration before
pregnancy affects fertility and impairs embryo development
during preimplantation period [28]. However, the induction
of diabetes by streptozotocin injection on day 5 of gestation
[1] has no effect on embryo development [19]. We observed
that 62% to 75% of pups born to diabetic pregnant rats
were macrosomic at birth [1, 27, 29]. These macrosomic
(large-sized) offspring of diabetic dams were hyperglycemic
at birth and maintained an accelerated weight gain until the
monitoring time of 12 weeks [26, 30], compared to offspring
of control rats.

Furthermore, maternal hyperlipidemia during diabetic
pregnancy [1] has been shown to be one of the predisposing
factors of macrosomia in offspring. In fact, high levels of
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triglyceride in maternal circulation of diabetic rats may
create a steep concentration gradient across placenta, which
accelerates their transport and deposition in fetal tissues
[31]. In macrosomic offspring, this hypertriglyceridemia
persists with age and is linked to the development of
insulin resistance and hyperlipogenesis [32]. Besides, mater-
nal hyperglycemia also leads to fetal hyperglycemia, which
stimulates pancreatic islet cells and induces fetal hyperinsu-
linemia [26, 27, 32]. The intrauterine hyperinsulinemic state
results in an increase of fat synthesis and body size [33]. The
increase in body weight is a consequence of an increase in
adipose tissue weight and lipid content at all ages.

Thus, macrosomia appears as the main outcome of
maternal diabetes, and both pathologies are associated with
several metabolic disorders, implicating lipid metabolism
and antioxidant status.

4. Main Metabolic Consequences during
Maternal Diabetes and Macrosomia

4.1. Lipid Metabolism Is Altered during Maternal
Diabetes and Macrosomia

4.1.1. Animal Models. As far as lipid metabolism is con-
cerned, experimental diabetes has been shown to impair
maternal and fetal lipid metabolism [31, 34]. In experimental
models, type 1 diabetic pregnancy in rats is associated with
a significant increase in serum and hepatic triglyceride (TG)
and total cholesterol (TC) [1, 27, 29]. Macrosomic and obese
offspring of diabetic rats exhibit high adipose tissue weight,
together with high adipose tissue lipid contents [27], and
they show high serum and liver lipid levels [1, 26, 29, 30]. The
hypertriglyceridemia and hypercholesterolemia, common
features of experimental obesity, are the direct consequences
of hyperinsulinemia and hepatic hyperlipogenesis [35, 36].
The major findings on fatty acid composition in adult
macrosomic offspring were parallel with those of their dia-
betic mothers. Diabetic pregnancy causes a profound decline
in plasma arachidonic acid (AA, Cy:4n-6) and an increase
in linoleic acid (LA, C;g:2n-6) concentrations in rats and in
their macrosomic and obese offspring [1, 29], and this may
be due to an impaired activity of A5- and A6-desaturases
enzyme [37]. Diabetes-induced low concentration of plasma
AA may have a critical role in maintaining the appropriate
mass and function of islet 3 cells by influencing rates of cell
proliferation and insulin secretion [38, 39].

4.1.2. Studies in Humans. Human studies revealed in GDM
patients that diabetes appeared at second or third trimester of
pregnancy [16, 17] as determined by oral glucose tolerance
test according to the World Health Organization criteria.
GDM patients were hyperglycemic and hyperinsulinemic at
the diagnosis of the disease [16, 17], reflecting a decrease in
insulin sensitivity in diabetic pregnant women [40]. Several
studies including ours have shown that, when compared with
normal values, GDM mothers as well as control mothers
exhibited hypertriglyceridemia and hypercholesterolemia,
throughout pregnancy, and no significant difference exists

between healthy and diabetic women [16, 17, 40-42].
However, macrosomic babies showed high levels of serum
triglyceride and total and free cholesterol compared with
control infants [16, 17].

Thus, maternal diabetes and macrosomia induce an
alteration in lipid metabolism.

4.2. Antioxidant Status Is Affected during Maternal Diabetes
and Macrosomia. One of the earliest abnormalities observed
in diabetic subjects is the involvement of oxidative stress [43].
Moreover, fetuses from mothers with gestational diabetes are
at increased risk of developing platelet hyperaggregability
and oxidative stress [2]. High blood glucose levels in these
newborns induce oxidative stress [2], which, in turn, induces
the production of highly reactive oxygen radicals, being
toxic to cells, particularly to the plasma membranes where
these radicals interact with the lipid bilayer. Endogenous
antioxidant enzymes (e.g., superoxide dismutase, catalase,
glutathione peroxidase, and reductase) and vitamins are
responsible for the detoxification of deleterious oxygen
radicals [44]. In diabetes as well as in macrosomia, protein
glycation and glucose auto-oxidation may generate free
radicals, which, in turn, catalyze lipid peroxidation [45].
Moreover, disturbances in the antioxidant defense system
in diabetes and macrosomia have been reported as follows:
alteration in antioxidant enzymes activities [46], impaired
glutathione metabolism [47], and decreased ascorbic acid
levels [48].

4.2.1. Studies in Humans. In human studies [17], we assess
the serum antioxidant status through antiradical resistance
(KRL; Kirial International SA, Couternon, France) and levels
of vitamin A, C, and E and activity of superoxide dismutase
(SOD). GDM as well as macrosomia induce an altered total
serum antioxidant defense status [17]. Indeed, gestational
diabetic women exhibit decreased levels of vitamin E and
enhanced concentrations of vitamin C without any changes
in vitamin A. Macrosomia also induces decreased levels
of vitamin E. GDM and macrosomia are also associated
with impaired SOD activities and enhanced levels of serum
thiobarbituric acid-reactive substances (TBARSs), suggesting
an increased oxidative stress [17].

4.2.2. Animal Models. In experimental model [1], type 1
diabetic pregnancy and macrosomia lead to a significant
decrease in the plasma total antioxidant status as measured
by diminished plasma oxygen radical absorbance capacity
(ORAC) in diabetic pregnant rats and their macrosomic
pups [1]. We have also observed increased plasma TBARS,
decreased erythrocyte superoxide dismutase and glutathione
peroxidase activities in diabetic rats and their macrosomic
offspring, and diminished vitamin A levels in diabetic dams
and vitamin C concentrations in macrosomic pups. Several
authors have also shown diminished antioxidant enzyme
activities and vitamin levels in streptozotocin-induced dia-
betic rats [46—48].



To sum up, in animals as well as in humans, maternal dia-
betes and macrosomia are associated with altered antioxidant
status [1, 17].

5. Is Neonatal Obesity Programmed
during In Utero Life? New Concept of
a “Metabolic Memory”

The hypothesis on fetal origin suggests that the fetal malnu-
trition, which, during pregnancy, induces disruption in fetal
growth and thinness at birth, programs latter type 2 diabetes
and metabolic syndrome [49]. At critical and delicate period
of fetal development, the process by which a stimulus
induces long-term impacts on fetus, previously described
and established as “fetal programming” by Hales and Barker
[49], is termed as new concept of “metabolic memory.” In the
same line, all the observed metabolic abnormalities among
gestational diabetic women create an in-utero environment
around the fetus which programs him to diseases during
his adulthood [49, 50]. This in utero programming seems
to create a kind of “metabolic memory,” since physiological
anomalies of gestational period are responsible for the
onset of diseases in offspring at adulthood, such as type 2
diabetes and obesity associated with metabolic syndrome. It
is noteworthy that several alterations in carbohydrate and
lipid metabolism, observed in infants of diabetic mothers
at birth, also persist postnatally. As an example of this
phenomenon of metabolic memory, we can mention a study
of Palinski and Napoli [51] who demonstrated that maternal
hypercholesterolemia during pregnancy is associated with
greatly increased fatty streak formation in human fetal
arteries and accelerated progression of atherosclerosis during
childhood [51]. A good correlation exists between maternal
and fetal plasma cholesterol levels in 5-6-month-old human
fetuses [52, 53]. Moreover, maternal hyperglycemia has
been shown to lead to fetal hyperglycemia which stimulates
fetal pancreatic islet cells to produce fetal hyperinsulinemia
[54]. The ability of fetal hyperinsulinemia to increase the
availability of farnesylated p21-Ras may represent one of
mechanisms of the growth-promoting action of insulin
during fetal development [55].

Another example of metabolic memory is revealed by
Franke et al. [56] who have shown that diabetic pregnancy
in rats alters the differentiation of hypothalamic neurons
of newborns (Figure 1). The alterations of hypothalamic
neurons may be avoided by normalizing the glycemia
among diabetic pregnant rats [56]. The increased levels
of neuropeptide-Y (Figure 1) in offspring of hyperglycemic
rats may be explained by a defected programming of the
hypothalamic neurons, due to intrauterine environment
of gestational diabetic milieu [56]. These alterations may
increase the risk of trend in high food taking, overweight,
obesity, and diabetogenic status in offspring at adulthood
(Figure 1). All these observations prove an in utero program-
ming of metabolic syndrome in offspring born to maternal
diabetes.
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6. Modulation of Insulin Resistance
and Inflammation during Maternal Diabetes
and Macrosomia

Gestational diabetes and obesity are two pathologies asso-
ciated with insulin resistance and inflammation which are
profoundly modulated by adipokines and cytokines [16].
Obesity is associated with high adiposity and hyperlipidemia
[57]. Moreover, low-grade inflammation has been reported
to be a link between insulin resistance, obesity, and type
2 diabetes [57]. Thus, it appears that inflammation may
modulate insulin resistance in GDM.

6.1. Studies in Humans. There is evidence that hypoad-
iponectinemia is associated with pathogenesis of GDM
and macrosomia [58]. Adipokines and cytokines, through
their ability to interfere with insulin signaling, have been
implicated in insulin resistance [59]. Adiponectin, a physi-
ologically active polypeptide hormone derived from adipose
tissue, exhibits insulin-sensitizing, antiatherogenic, and anti-
inflammatory properties [60].

In human studies, we and other investigators have
shown that women with GDM, compared with non-
diabetic women, exhibited a decreased concentration of
adiponectin (anti-inflammatory agent) [16, 61], concomi-
tant with an increased concentration of TNF-a and IL-6
(pro-inflammatory cytokines) [16]. Is there any physiologi-
cal crosstalk between the high levels of TNF-a and the low
adiponectin concentrations in women with GDM? It has
been shown that adiponectin and TNF-a produce opposite
effects on insulin signaling, with inhibiting action of TNF-«
[62] and increasing action of adiponectin [63] on tyrosine
phosphorylation of the insulin receptor. Besides, it is also
possible that TNF-a may be responsible for lowered synthesis
of adiponectin in GDM subjects, as suggested by Lihn et
al. [64] that TNF-a and IL-6 downregulate adiponectin
expression (Figure 1). Regarding the long-term effect on the
offspring of gestational diabetic women, it is important to
mention the study of Tsai et al. [65], who have demonstrated
that decreased maternal adiponectin concentration and
insulin sensitivity may increase the risk of fetal overgrowth
in women suffering from GDM. However, our study revealed
that concentrations of TNF-«, IL-6, adiponectin, and leptin
are decreased in macrosomic babies compared to control
infants [16]. Furthermore, IL-6 has been shown to be one
of the mediators of hyperinsulinemic state [66], 10%—35%
of the body’s basal circulating IL-6 is derived from adipose
tissue, and a positive correlation has been found between
insulin resistance and circulating IL-6 [57].

Leptin is not only produced by the placenta but prin-
cipally by the adipocytes, secreted into the bloodstream
[67], and involved in weight gain regulation and lipid
metabolism. Leptin is an appetite-suppressant agent, and
it exerts its effects by interacting with neuropeptide-Y in
the hypothalamus (Figure 1) [68]. Contradictory results
have been reported about leptin secretion during GDM
and macrosomia. GDM is either associated with high levels
of leptin [69], no change [70], or reduced level of leptin
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Figure 1: In GDM, adipose tissue secretes low adiponectin (anti-inflammatory and positive stimulator of insulin sensitizing) and high
TNF-a and IL-6 which contribute to inflammatory state and insulin resistance in diabetic pregnancy as well as in macrosomia. Leptin, being
pro-inflammatory, is highly produced by adipose tissue during diabetic pregnancy and insulin resistance (experimental study [75]) and
implicated in the pathogenesis of weight gain in macrosomic babies. Leptin may exert its effects by interacting with neuropeptide-Y in the
hypothalamus. The intrauterine hyperglycemia may act on the fetal hypothalamus and create a kind of “metabolic memory” which programs
obesity and metabolic syndrome in the offspring during adulthood. (+) positive regulation (—) negative regulation. NPY, neuropeptide-Y.

[71]. Our previous reports have shown high leptin level
in mothers with GDM and reduced level of leptin in their
macrosomic infants [16]. This discrepancy could be a result
of the difference in the time of maternal blood collection (i.e.,
gestational age). However, elevated leptin concentrations
during diabetic pregnancy may be due to its secretion by
adipocytes in presence of elevated estrogen [72] and by
placenta [73]. In fact, leptin, acting as a signal for sufficient
energy supply, is persistently increased in women with GDM
after delivery and associated with hyperglycemia and insulin
resistance [69]. Hence, leptin, as a pro-inflammatory factor,
may contribute to the inflammatory state during gestational
diabetes. In contrast, low leptin level in macrosomic babies
may contribute to the weight gain, since leptin-deficient
rodents [68] and human [74] have been shown to develop
obesity.

6.2. Animal Models. In order to investigate the relation-
ship between insulin resistance and inflammation along
with the obesity-related parameters such as adiponectin

and leptin and pro-inflammatory markers, we have very
recently undertaken a study in insulin-resistant offspring
born to streptozotocin-induced diabetic pregnant mice [75].
Adiponectin and leptin expression is positively correlated
with the epididymal adipose tissue mass which decreases
in insulin-resistant offspring of diabetic mice [75]. Hence,
reduced adiponectin contributes to insulin resistance as this
adipokine, an anti-inflammatory agent, has been shown
to enhance insulin sensitivity [63, 76]. Insulin resistance
induces high expression of IL-6 and TNF-a mRNA in
epididymal adipose tissue [75]. Adipose tissue secrete IL-
6 and TNF-a during insulin resistance [77], and high
levels of TNF-« and IL-6 may downregulate the expression
of adiponectin [64] (Figure 1). During insulin resistance,
increased IL-6 might not only diminish insulin sensitivity
by suppressing insulin signal transduction but also interfere
with anti-inflammatory effect of insulin, and might favour
inflammation during insulin resistance [57].

All these clinical and experimental observations suggest
that TNF-«a and IL-6 may be involved in the pathogenesis



of insulin resistance, and there is a positive correlation
between insulin resistance and inflammation in GDM and
macrosomia.

7. Immune System Modulation during Maternal
Diabetes and Macrosomia

There is a growing body of evidence that suggests the
implication of a pathological role of immune system and
inflammation in type 1 diabetes, type 2 diabetes, and
GDM. Indeed, T-cell-derived cytokines are involved in the
autoimmune destruction of pancreatic islet cells leading to
type 1 diabetes [22] whereas type 2 diabetes is associated with
a generalized activation of innate immune system, in which
there is a chronic, cytokine-mediated state of low-grade
inflammation [78-80]. Moreover, evidence from human and
experimental models suggests that a shift between Thl and
Th2 cells may modulate the severity of type 1 diabetes
[22, 41], in which Th1 cytokines are highly produced during
the islet inflammatory response and may partially explain
the ability of CD4* T cells to cause f3-cell destruction [23].
In the nonobese diabetic (NOD) mouse, the most common
animal model of human type 1 diabetes, it is observed an
autoimmune destruction of pancreatic § cells, mediated by
both CD4% and CD8% T cells [23].

Besides, in normal pregnancy, Thl cytokines are down-
regulated, whereas Th2 cytokines are upregulated [81, 82],
in animals as well as in humans. Even though the induction
of type 1 diabetes is closely associated with high expression
of Thl cytokines, IFN-y in particular [81], experimental
and clinical studies reveal that, in pregnancy complicated
with type 1 diabetes, Thl cytokines are downregulated in
diabetic pregnant rats and in women with GDM [16, 29].
Type 1 diabetic pregnancy in rats and GDM in women also
induce increased level of IL-10, a Th2 cytokine [16, 29]. The
level of IL-4 (another Th2 cytokine) is either decreased in
diabetic animals [16, 83] or unchanged in GDM patients
[16], due to the presence of diabetes [25]. Diminished Th1
cytokines and increased IL-10 (a Th2 cytokine) may be
implicated in maintaining the pregnancy in diabetic rats
and GDM patients (Figure 2). In fact, the shift of Th1/Th2
ratio to a protective Th2 phenotype during pregnancy (in
animal and humans) has been shown to encourage vigorous
production of antibodies which not only combat infections
during pregnancy but also offer passive immunity to fetus
[84]. On the other hand, the downregulated Thl profile
in diabetic pregnant animals and GDM patients (associated
with successful pregnancy) may be contributed by elevated
levels of reproductive hormones like hCG (human chorionic
gonadotrophin) whose administration is known to diminish
the production of Th1 cytokines [85].

As far as macrosomia is concerned, evidence in animals
and humans reveals that macrosomia and obesity are asso-
ciated with the shift of Th1/Th2 ratio to the Thl phenotype
(16, 29].

To sum up, it is interesting to note that diabetes during
pregnancy in animals and human shifts the balance of
Th1/Th2 cells to a protective Th2 phenotype, whereas,
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in macrosomic and obese offspring of diabetic dams, the
Th1/Th2 balance is shifted to a pro-inflammatory Thl
phenotype (Figure 2). This upregulated Th1 profile in obese
offspring may confer to these animals a potential pro-
inflammatory and “diabetogenic status,” as revealed by
the hyperglycemia and hyperinsulinemia observed in these
animals in adulthood [27]. All these observations presume
the long-term effects of maternal diabetes on the health of
the offspring during their adulthood.

8. Problems Associated with Obesity and
Diabetes during Pregnancy

The prevalence of obesity is increasing across the world [86].
Using the WHO criteria, obesity can now be defined by
three grades of severity: grade I obesity with 30 < BMI <
34.9kg/m?, grade II or severe obesity with 35 < BMI <
39.9kg/m?, and grade III or massive obesity with BMI >
40 kg/m?. Overweight is defined as 25 < BMI < 29.9 kg/m?.
People whose BMI is comprised between 18.5 and 24.9 kg/m?
are considered as being normal weight (subjects with a BMI
below 18.5 kg/m? are considered as being underweight).

Obesity pandemic is affecting all groups of age, including
children, adolescents, young adults, and adults [87, 88].
Consequently, there are a growing number of obese women
who are becoming pregnant.

To an extent, obesity epidemic is explained by the
increase in availability and consumption of energy-dense
foods and a reduction in physical activity. However, there
are additional putative factors which may explain the entire
explosion in obesity prevalence [89]. These putative contrib-
utors operate through genetic factors, reproductive behav-
iors, and/or the intrauterine milieu, matters of importance
for those involved with obesity and diabetes in pregnancy
[89].

Naturally in normal pregnancy, there is a physiological
trend of insulin resistance from the second trimester. But in
context of obesity, hyperinsulinemia associated with insulin
resistance leads to the occurrence of GDM [90]. Moreover,
it is known that obesity is linked to high adiposity and
hyperlipidemia [57]; however, central fat, rather than periph-
eral adiposity, is more associated with insulin resistance, a
predisposing factor to GDM [91, 92].

On the other hand, some investigators have recently
found that maternal weight gain during pregnancy increases
the offspring birth weight and the offspring’s risk of obesity
later in life, independently of genetic factors [93]. Similarly,
Roman et al. [94] have found that maternal obesity was
significantly associated with complications on the mother
as well as on her baby: maternal obesity leads to the
need for oral hypoglycemic agents or insulin, development
of pregnancy-related hypertension, interventional delivery,
and cesarean delivery. Adverse neonatal outcomes were
also significantly increased including stillbirth, macrosomia,
shoulder dystocia, hypoglycemia, and jaundice [94]. How-
ever, recent investigations report that macrosomia appears
to be the predominant adverse outcome in cases of GDM
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[15]. Maternal obesity is an additional risk factor for
complications, regardless of diabetes status [15].

To sum up, there are differences between women with
GDM and obese women in pregnancy, as women with GDM
possibly have greater macrosomia (even after treatment).
There is clearly far greater neonatal hypoglycemia and
jaundice among the offspring of women with GDM than
those from obese women, but this observation and other data
have to be interpreted with caution as some women may have
had undiagnosed preexisting diabetes [5].

9. Management of Long-Term Impact
of Maternal Obesity and Diabetes on
the Offspring

Only few studies are available on pregnancy intervention for
maternal diabetes and obesity during pregnancy. Weight loss
may not be recommended during pregnancy [95]. However,
evidence suggests that obesity’s surgery-associated weight

loss may be linked to less obesity in the offspring [96]. The
outcomes of pregnancy complicated with maternal obesity
or preexisting diabetes (mainly type 1 and type 2 diabetes,
including undiagnosed type 2 diabetes) and GDM depend
upon the intensity of treatment. Some studies show that
treatment of GDM appears to reduce the risk of postpartum
depression symptoms in the mothers [97]. Untreated GDM
may be associated with a 2-fold risk of increased weight
in offspring at 5-7 years [98]. Some observations show
that more intensive treatment with insulin in GDM might
be associated with less adiposity in offspring by 2 years
8 months [99]. However, randomized clinical studies of
the management of GDM showed that treatment of GDM
reduced macrosomia at birth, but did not show a reduction
in BMI at the age 4-5 years [15, 100].

Nutritional strategies have also been proposed, since
experimental and clinical evidence prove the beneficial
effects of omega-3 fatty acid consumption during dia-
betes [101, 102]. Epidemiological studies have shown low
incidence of inflammatory diseases in Greenland Eskimos



and Japanese people [103], and this is attributed to large
consumption of cold water marine fish that contain omega-
3 fatty acids [104, 105]. In experimental studies, omega-
3 fatty-acid enriched diet improves the hyperlipidemia
induced by diabetic pregnancy and macrosomia [1, 27, 34].
Diabetic pregnancy and macrosomia are associated with
increased oxidative stress (see above), and omega-3 fatty acid
consumption also restores the decreased antioxidant status of
diabetic pregnant animals and their macrosomic and obese
offspring [1]. Moreover, omega-3 fatty acid enriched-diet
exerts beneficial effects on immune system by promoting
a protective Th2 phenotype during diabetic pregnancy and
macrosomia [29]. Consumption of omega-3 fatty acid also
prevents long-term metabolic abnormalities associated with
macrosomia [27, 34].

Furthermore, many studies have reported that dietary
supplements by vitamins and minerals prevent or, at least,
attenuate organic deterioration caused by an excessive
oxidative stress in diabetic subjects [106, 107]. As regards
recent observations that many obese women are serologically
vitamin D deficient, it is now recommended in the UK that
Vitamin D supplementation may be provided for all women
with a prepregnancy BMI of 30 kg/m? [108].

10. Conclusion

Maternal diabetes or obesity during pregnancy appears to
be an important risk factor for fetal obesity or macrosomia.
Alterations in macrosomic infants persist postnatally and
conduct to several abnormalities including the development
of insulin resistance, obesity, diabetes, and metabolic syn-
drome at adulthood. Management of GDM and maternal
obesity, including nutritional strategies, may have real
improvement on maternal health and offspring in the future
life.
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