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ABSTRACT

The role of epigenetic alterations in various human chronic diseases has gained increasing attention and has resulted in a paradigm shift in our

understanding of disease susceptibility. In the field of cancer research, e.g., genetic abnormalities/mutations historically were viewed as primary

underlying causes; however, epigenetic mechanisms that alter gene expression without affecting DNA sequence are now recognized as being of

equal or greater importance for oncogenesis. Methylation of DNA, modification of histones, and interfering microRNA (miRNA) collectively

represent a cadre of epigenetic elements dysregulated in cancer. Targeting the epigenome with compounds that modulate DNA methylation,

histone marks, and miRNA profiles represents an evolving strategy for cancer chemoprevention, and these approaches are starting to show

promise in human clinical trials. Essential micronutrients such as folate, vitamin B-12, selenium, and zinc as well as the dietary phytochemicals

sulforaphane, tea polyphenols, curcumin, and allyl sulfur compounds are among a growing list of agents that affect epigenetic events as novel

mechanisms of chemoprevention. To illustrate these concepts, the current review highlights the interactions among nutrients, epigenetics, and

prostate cancer susceptibility. In particular, we focus on epigenetic dysregulation and the impact of specific nutrients and food components on

DNA methylation and histone modifications that can alter gene expression and influence prostate cancer progression. Adv. Nutr. 2: 497–510,

2011.

Prostate cancer is the uncontrolled growth of abnormal
cells originating from the prostate, a small gland in the
male reproductive system. Hallmarks of this disease include
the following: 1) genomic instability; 2) the capacity of ab-
normal cells to resist cell death, evade growth suppression,
and induce proliferative signals; 3) chronic inflammation re-
sulting in tumor promotion; and 4) angiogenesis, invasion,
and metastasis to distant organs (1). These hallmarks are of-
ten driven, at the most fundamental level, by dysregulation
of gene expression. The classic view of cancer etiology is
that genetic alterations, arising from exposure to exogenous
genotoxic agents and endogenous oxidants, damage DNA
and induce mutations, resulting in nonfunctional proteins
that underlie disease progression. Historically, genetic ab-
normalities and mutations were cited as primary causative
factors; however, epigenetic mechanisms are now recognized
as playing an equal or perhaps greater role in cancer devel-
opment (2).

Epigenetics is the study of changes in gene expression
that occur independent of alterations in nucleotide sequence
(3). Importantly, dietary factors can modulate epigenetics
and influence disease susceptibility. The role of epigenetics
in chronic disease development has gained increasing atten-
tion and has resulted in a new understanding of the etiology
and susceptibility to several chronic diseases. Epigenetic
mechanisms implicated in prostate cancer include gene si-
lencing via DNA promoter methylation, histone modifica-
tions, and changes in miRNA profiles (4,5). In the latter
case, ~50 miRNA6 have been reported to be aberrantly ex-
pressed in prostate cancer, only a few of which have been ex-
perimentally verified as direct contributors to the disease
[for review, see Catto et al. (6)]. A comprehensive review
of dietary miRNA modulators has recently been published
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(7). Thus, the present review focuses on DNA methylation
and histone modifications in prostate cancer and the dietary
agents that target these mechanisms, possibly leading to
prostate cancer prevention.

Epigenetic alterations during prostate cancer
DNA methylation. The majority of methylation marks on
DNA are found on CpG dinucleotides, regions in which a
cytosine is followed by a guanine residue in the 59 to 39 di-
rection. The genome contains both CpG-rich and CpG-poor
regions. CpG-rich “islands” within promoter regions are
highly susceptible to methylation. In general, methylation
of CpG islands results in gene silencing. The addition of
methylation marks is catalyzed by DNMT enzymes. The
DNMT family has several members, including DNMT1, a
maintenance enzyme that alters DNA methylation during
cell replication, and DNMT3a and DNMT3b, which are re-
sponsible for de novo methylation. Although DNMT3a and
DNMT3b have been largely associated with de novo meth-
ylation during processes such as embryogenesis, recent re-
search suggests that these enzymes are also important in
the maintenance of DNA methylation patterns. After repli-
cation, DNMT3a and DNMT3b complete the methylation
process and correct errors left by DNMT1 (8). DNA meth-
ylation is an important event in several biological processes
such as X chromosome inactivation and silencing of germ
line-specific genes and repetitive elements. There is a wide
body of evidence that suggests that DNA methylation pat-
terns are tissue specific (9,10). During cancer progression,
there appears to be dysregulation of DNA methylation pat-
terns. For example, cancer cells are characterized by global
hypomethylation of DNA and site-specific hypermethyla-
tion of specific genes involved in cancer progression [re-
viewed in (11,12)].

In prostate cancer cells, disease progression has been as-
sociated with both DNA hypo- and hyper-methylation.
Global cytosine hypomethylation has been associated with
metastatic prostate cancer, chromosome instability, and

disease progression (13–15). Repetitive DNA regions, like
LINE1, are also hypomethylated in a high proportion of
prostate cancer patients (16). There have been a handful
of specific genes that are hypomethylated in prostate cancer;
however, the majority of genes are characterized by site-
specific hypermethylation, including over 50 genes that are
aberrantly hypermethylated [for review, see (12)]. The latter
include genes involved in hormonal response [androgen
receptor (AR)], cell cycle control (cyclinD2 and cyclin-
dependent kinase inhibitor 2a), signal transduction (RASSF1A,
Runx3), tumor invasion (E-cadherin, TIMP metallopeptidase
inhibitor 3), DNA damage repair (O6-methylguanine DNA
methyltransferase), detoxification (glutathione S-transferase
M1 and P1), and apoptosis (Bcl2) (12,17). Importantly,
many of these methylation events are also found in early
high-grade prostatic intraepithelial neoplasia lesions (18,19),
suggesting that aberrant DNA methylation changes occur early
during carcinogenesis.

Histone modifications. Chromatin remodeling and histone
modification also play an important role in regulating gene
expression during prostate cancer development. In the nu-
cleus, histone proteins interact with each other and with
DNA to form a structure termed the nucleosome (Fig.
1A). The nucleosome contains 2 copies of 4 core histones
(H2A, H2B, H3, and H4). The amino acid tails of these
histones are susceptible to various reversible, covalent,
post-translational modifications, such as acetylation, meth-
ylation, phosphorylation, ADP-ribosylation, ubiquitination,
sumoylation, and biotinylation (20). In prostate cancer, the
observed histone alterations are commonly associated with
changes in several histone–modifying enzymes such as
HDAC, histone methyltransferases, and histone demethyl-
ases (12). Histone methylation occurs on either arginine
or lysine residues. Arginines can be mono- or di-methylated
by the family of protein arginine methyltransferases and re-
sults in transcriptional activation (21). Lysine residues can
be mono-, di-, or tri-methylated by a diverse set of histone

Figure 1 Histone acetylation and DNA
methylation: epigenetic mechanisms that affect
gene expression. (A) Closed chromatin
structure and transcriptional silencing.
Hypoacetylation due to HDAC activity
combined with localized promoter
hypermethylation, regulated by DNMT. (B)
Open chromatin structure and gene activation.
Dietary compounds, such as SFN inhibit HDAC
and DNMT, facilitating reexpression of silenced
tumor suppressors in cancers, such as p21.
Open chromatin is associated with increased
acetylation of histone tails by HAT and the
recruitment of transcription factors and their
coactivator complexes. DNMT, DNA
methyltransferase; HAT, histone
acetyltransferase; HDAC, histone deacetylase;
SFN, sulforaphane.
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methylation transferases belonging to the SET domain pro-
tein family (22). Depending on the residue and number of
methyl groups added, histone lysine methylation can result
in either transcriptional activation or repression (Table 1).
For example, H3K9 can be either acetylated or methylated.
H3K9ac is an activating mark, whereas, in general,
H3K9me, H3K9me2, and H3K9me3 are repressing marks.
However, H3K9me3 can also result in gene activation and
appears to be dependent on the balance between H3K9 acet-
ylation and methylation (23). Interestingly, histone methyl-
ation marks were originally thought to be irreversible.
However, histone demethylases have also been recently char-
acterized and play an important role in demethylating ly-
sines. Methylated arginines are not directly demethylated.
Instead, peptidylarginine deaminase 4 converts these resi-
dues to citrulline. Upregulation of Enhancer of zeste homo-
log 2, a histone methyltransferase that catalyzes the
trimethylation of H3K27 (24), is associated with repression
of tumor suppressor genes, high proliferation rates, and in-
creased tumor aggressiveness in prostate cancer (25). Over-
expression of lysine-specific demethylase (LSD1) is also
associated with increases in cell proliferation, tumor aggres-
siveness, and hormone refractory prostate cancer. The mo-
lecular mechanism by which this occurs is complicated.
LSD1 removes mono- or di-methyl groups from H3K4.
H3K4 methylation is an activating mark; hence, demethyla-
tion results in repression. In contrast, LSD1 also demethy-
lates H3K9, a repressive mark important in AR-mediated
transcription, resulting in gene activation (26). Aberrant
histone methylation has also been implicated in the regula-
tion of gene expression during epithelial to mesenchymal
transition in the prostate (27).

A considerable amount of research has focused on dysre-
gulation of histone acetylation during cancer. When DNA

tightly interacts with histones through their protein tails, a
closed DNA structure is formed, which is transcriptionally
repressed [Fig. 1A; reviewed in (11)]. This is usually accom-
panied by a high level of methylation of the DNA at cytosine
residues, which is regulated by DNMT. This repressed chro-
matin structure is also generally associated with the hypoa-
cetylation of histone tails, catalyzed by HDAC (Fig. 1A).
Acetylation of histones by HAT and removal of DNA meth-
ylation causes the DNA structure to become more accessible
to transcription factors and their coactivator complexes,
which bind DNA and initiate gene transcription (Fig. 1B).
In cancer cells, the balance between HAT and HDAC activ-
ities is disrupted, often associated with higher levels of
HDAC proteins and epigenetic silencing of tumor suppres-
sor genes [reviewed in (11)]. HDAC can be divided into 4
classes based on their structure and sequence homology:
class I consists of HDAC 1, 2, 3, and 8; class II includes
HDAC 4, 5, 6, 7, 9, and 10; class III enzymes are HDAC orig-
inally found in yeast and include Sir2-related proteins; and
Class IV comprises the sole member HDAC11.

Prostate cancer cells also exhibit aberrant histone and
nonhistone protein acetylation patterns. It has been shown
that HDAC activity increases in metastatic prostate cancer
cells compared with prostate hyperplasia (28). A 4-fold in-
crease in HDAC1 protein in PC3 prostate cancer cells results
in an 1.5-fold increase in cell proliferation and an overall de-
crease in cell differentiation as determined by a marked de-
cline in cytokeratin18 staining and increased cytokeratine
staining (29). Increased expression of HDAC may be of
particular importance in the progression to androgen inde-
pendence, because accumulation of HDAC1 protein as de-
termined by immunohistochemistry or increased nuclear
localization of HDAC4 coincides with loss of androgen sen-
sitivity (30). Lysine acetylation also appears to play an im-
portant role in AR regulation. Many AR coactivators and
repressors alter transcriptional activity via modulation of
acetylation (31). AR activity is downregulated by HDAC1,
HDAC2, HDAC3, HDAC6, and Sirt1. It has also been shown
that Sirt1, the predominant class III NAD+-dependent
HDAC, is overexpressed in both human and mouse prostate
cancers (32). In human patient samples, global decreases in
histone acetylation state corresponded with increased grade
of cancer and risk of prostate cancer recurrence (33). Impor-
tantly, inhibitors of HDAC, including suberoylanilide hy-
droxamic acid, valproic acid, depsipeptide, and sodium
butyrate, are effective against prostate cancer cell lines and
xenograft models (34,35).

Dietary modulators of DNA methylation
Global hypomethylation and site-specific hypermethyla-

tion of cancer-related genes occur in many tumors, includ-
ing prostate cancer. Hypomethylation can result in genome
instability, reactivation of transposons, and upregulation/ac-
tivation of proto-oncogenes. In contrast, hypermethylation
during cancer development can silence genes involved in
cancer protection; targets include genes involved in DNA re-
pair, detoxification, apoptosis, cell cycle control, and other

Table 1. Examples of histone modifications resulting in
transcription activation or repression

Histone Amino acid residue

Acetylation H2A K5, K9, K13 Activating
H2B K5, K12, K15, K20 Activating
H3 K9, K14, K18, K23, K56 Activating
H4 K5, K8, K13, K16 Activating

Methylation H3 K4, K36, K79 Activating
K9,1 K27 Repressing
R17, R23 Activating

H4 R3 Activating
K20 Repressing

Phosphorylation H3 T3, S10, S28 Activating
Y41 Activating

Ubiquitination H2B K120 Activating

Sumoylation H4 K5, K8, K12, K16, K20 Repressing

Biotinylation H4 K8, K12 Repressing

1 H3K9me3 can in some cases be an activating mark (23).
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tumor suppressor genes (36,37). Strategies to alter aberrant
methylation patterns are of considerable interest. Dietary
strategies that influence DNA methylation fall into 3 broad
categories: 1) methyl donors that directly contribute to the
methyl pool and are substrates involved in DNA methyla-
tion; 2) agents that indirectly affect the methyl pool by mod-
ulating the activity of enzymes that regulate the methyl pool;
or 3) compounds that act as DNMT inhibitors (Fig. 2). An
overview of dietary compounds that modulate DNA meth-
ylation in prostate cancer in each of these categories is out-
lined below and summarized in Figure 2.

Methyl donors and one-carbon metabolism nutrients
(folate, vitamins B-12 and B-6, choline, betaine, methi-
onine). Nutrients involved in one-carbon metabolism play a
critical role in maintaining DNAmethylation (Fig. 2). Folate
aids in the transfer of one-carbon units and is involved in
multiple cellular processes, including specific amino acid
synthesis, DNA synthesis, and DNA methylation. The me-
tabolism of folate is a complex process. Folate from dietary
sources is reduced to dihydrofolate and THF. THF can then
go through several different metabolic pathways, including

formation of 5-methyl-THF or 10-formyl THF, and these
intermediates act as cofactors for various enzymes. Of rele-
vance to DNA methylation, folate plays an important role in
the synthesis of methionine as a cofactor in the enzyme me-
thionine synthase. 5-methyl-THF transfers the methyl group
to homocysteine to produce methionine, which plays a criti-
cal role as a precursor to SAM, the universal methylation do-
nor. The methylation reaction catalyzed by DNMT requires
SAM as the methyl group donor, as does the methylation of
histone tails. Thus, factors that limit SAM supply could
have an important impact on DNA methylation and histone
marks. Several other one-carbon metabolism nutrients also
contribute to the methionine pool and DNA methylation in
the cell by acting as either direct methyl donors or cofactors
in enzymes contributing to the methyl pool. For example,
methionine levels can be modulated directly through con-
sumption of methionine in protein-rich diets. Choline is an-
other important methyl donor contributing to the
methionine pool. Vitamin B-12, as methyl-malonyl-cobala-
min, is also an essential cofactor for methionine synthase. Vi-
tamin B-6 is a cofactor for several enzymes involved in
homocysteine regeneration, methionine synthesis, and me-
tabolism of folate. A lack or excess of any of these nutrients
affects one-carbon metabolism, alters the availability of
SAM in the methionine cycle, and has the potential to perturb
DNA and histone methylation patterns (Fig. 2). Diets defi-
cient in methionine, choline, vitamin B-12, or folate induce
global hypomethylation and site-specific hypermethylation
and have been linked to increased cancer development (38–
43). Interestingly, as methyl donors are slowly depleted in
the diet, alterations in histone methylation (to be discussed
in next section) precede alterations in DNA methylation (44).

Epidemiological and human intervention studies utiliz-
ing one carbon related nutrients in prostate cancer have
yielded inconsistent results. In several trials, serum folate, vi-
tamins B-6 and B-12, and homocysteine levels have shown
no association with prostate cancer (45,46). Studies examin-
ing polymorphisms in folate metabolism genes also do not
appear to support significant contributions to prostate can-
cer risk (47,48). Moreover, some reports have shown an in-
crease in prostate cancer risk with increasing folate (49). In a
recent meta-analysis, circulating vitamin B-12 and folate
were positively associated with prostate cancer risk (50). A
positive association between folate and other cancers, such
as colon, has also been observed (51,52). It has been postu-
lated that dose, timing of folate administration, and stage of
cancer may play an important role in the preventive com-
pared to promoting effects of folate (53,54). Because folate
and other one-carbon nutrients function in multiple path-
ways controlling DNA integrity and cell proliferation, their
relative contributions to aberrant DNA and histone methyl-
ation patterns in prostate cancer remain unclear.

Soy isoflavones and phytoestrogens. Epidemiological stud-
ies suggest that the consumption of soy foods is associated
with lower risk of prostate cancer (55). The plasma and se-
rum phytoestrogen concentrations in Japanese men are at

Figure 2 Overview of mechanisms by which diet and dietary
factors influence DNA and histone methylation. DNA methylation
is influenced by the methyl pool involving SAM, which acts as a
substrate for DNMT that transfer one-carbon units to DNA. SAM
also serves as donor for histone methylation. Dietary factors that
can regulate DNA and histone methylation include the following:
1) vitamins: vitamin B-6, vitamin B-12, and riboflavin; 2) minerals:
zinc and selenium; 3) phytochemicals: genistein, tea polyphenols,
and isothiocyanates; and 4) other dietary factors: methionine and
choline. BHMT, betaine-homocysteine methyltransferase; CBS,
cystathionine b-synthase; COMT, catechol-O-methyltransferase;
DHF, dihydrofolate; MS, methionine synthase; MTHFR, 5,
10-methylenetetrahydrofolate reductase; SAH, S-adenosyl
homocysteine; SAM, S-adenosyl methionine; SHMT, serine
hydroxymethyltransferase; THF, tetrahydrofolate.

500 Ho et al.



least 10-fold higher than their Caucasian counterparts in the
UK (56,57). Soy isoflavones, classified as phytoestrogens, act
as both estrogen agonists and antagonists by differentially
binding to estrogen receptor a or b (58,59) and/or altering
enzymes involved in hormone metabolism (56,58,59). Such
observations led to hypotheses that soy or components in
soy exert anticancer effects. Most have attributed these ef-
fects to soy isoflavones, especially genistein (60). The anti-
carcinogenic effects of genistein are summarized in several
reviews (61,62). More recently, soy isoflavones such as gen-
istein and daidzein have been shown to modulate DNMT
activity and promoter methylation. In both androgen-
dependent and -independent prostate cancer cell lines, gen-
istein (20–50 mmol/L) dose dependently inhibited DNMT
activity (63–66). The IC50 of genistein was w67 mmol/L.
Other isoflavones such as daidzein also inhibited DNMT
but to a lesser extent (67). Kinetic studies suggest that gen-
istein inhibits DNA methyltransferase activity in both a
competitive and noncompetitive manner depending on the
substrate (68), unlike EGCG, which appears to function as
a competitive inhibitor of DNAmethyltransferase (discussed
in the next section). DNMT inhibition with genistein leads
to hypomethylation and reactivation of silenced genes in
prostate cancer, such as GSTp1 and tumor suppressor
proteins such as B-cell translocation gene 3 (BTG3), Ras
association domain family 1 (RASSF1a), and p16INK4a
(67,69,70). However, feeding studies with genistein in-
creased DNA methylation in vivo. For example, Dolinoy
et al. (71) demonstrated that maternal consumption of gen-
istein in mice resulted in hypermethylation in Agouti off-
spring, resulting in gene silencing, a shift in coat color,
and decreased obesity. In studies using differential methyla-
tion arrays, mice fed a genistein-rich diet for 4 wk had in-
creased CpG methylation in the prostate (72). Although
the effects of soy isoflavones on DNA methylation in pros-
tate cancer patients have not been evaluated, Qin et al.
(73) examined mammary intraductal specimens from
healthy premenopausal women for hypermethylated genes
associated with breast cancer. Isoflavone supplementation
and genistein levels were correlated with hypermethylation
of RARb2 and cyclinD2 in these tissues (73). Mechanistic
studies are warranted on target sites for hyper- or hypome-
thylation and additional in vivo studies are necessary to bet-
ter understand the impact of soy on DNA methylation, gene
expression, and cancer outcomes.

Tea polyphenols. Green tea (Camellia sinensis) is one of the
most widely consumed beverages, especially in Asia. The bi-
oactive components of green tea include catechins, EGCG,
epigallocatechin, epicatechin gallate, and epicatechin, and
theaflavins. Catechins are present at high levels in green
tea, accounting for 30–40% of its dry weight (74). Green
tea polyphenols, especially EGCG, exert anticarcinogenic ef-
fects at multiple stages of carcinogenesis. In vitro, EGCG is a
strong antioxidant and an inhibitor of carcinogen activation.
EGCG also induces cell cycle arrest and apoptosis in cul-
tured cancer cells, but which of the various mechanisms

predominates in vivo remains unclear, including during
the attenuation of tumor promotion (75). The actions of
EGCG in prostate cancer prevention and treatment were
summarized by Stuart et al. (76).

Experimental studies show that EGCG is an effective
DNMT inhibitor in vitro [for review, see (68)]. EGCG can
be methylated by COMT using SAM as a substrate (Fig. 2).
This pathway is largely responsible for the biotransformation
and inactivation of catechol molecules. Demethylation of
SAM results in an increase in S-adenosyl homocysteine levels,
which as noted above are inhibitors of DNMT. COMT and
DMNT belong to the same superfamily of SAM-dependent
methyltransferases and share common core structures.
EGCG can act as a mixed-type (competitive and noncom-
petitive) inhibitor for COMT (77). Molecular docking stud-
ies have revealed that EGCG also interacts with the active
pocket of DNMT1, acting as a competitive inhibitor (67).
In vitro, research has shown that EGCG causes a concentra-
tion- and time-dependent reversal of hypermethylation of
tumor suppressor genes in several cancer types (78,79). In
prostate cancer cell lines, EGCG treatment also reactivates
genes silenced by methylation (80).

However, the effects of tea polyphenols on prostate
cancer progression and DNA methylation in vivo are less
conclusive. In both animal models and humans, supplemen-
tation with green tea polyphenols has shown promise as
chemopreventive agents for prostate cancer. In human par-
ticipants with high-grade prostatic intraepithelial neoplasia
lesions, oral supplementation with green tea extracts for
1 y decreased the prevalence of prostate cancer (81). In pros-
tate cancer patients consuming 6 cups of green tea per day
for 3–6 wk prior to prostatectomy, significant increases in
EGCG were found in the prostate tissue, with 48% of total
EGCG in methylated form (82). These studies provide proof
of concept that tea catechins are susceptible to methylation
via COMTand potentially modulate the methyl pool. Using
the TRAMP model, an oral infusion of green tea catechins
resulted in a decrease in prostate tumors (83,84). However,
not all studies using TRAMP mice have observed protection
with tea polyphenol supplementation. Further work sug-
gested that tea polyphenols had limited effectiveness in
advanced disease (85); thus, supplementation might be nec-
essary at early stages of prostate cancer. However, Morey
Kinney et al. (86) provided both wild-type and TRAMP
mice with 0.3% green tea polyphenols in drinking water,
starting at 4 wk of age, and no change was detected in pros-
tate cancer incidence at 12 and 24 wk. In addition, no alter-
nations in markers of DNA methylation were observed.
5-methyl-deoxycytidine levels, methylation of the B1 repet-
itive element, and methylation of the Mage-a8 gene did not
differ from control mice. Genome-wide DNA methylation
profiling using the HpaII tiny fragment enrichment by
ligation-mediated PCR assay also revealed no significant
hypomethylating effect of green tea polyphenols (86). Dis-
crepancies between these studies may be attributed to differ-
ent mouse strains, doses, and/or formulations of green tea
polyphenols, but additional in vivo research is warranted
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before clear conclusions can be made on the role of cate-
chins as DNMT inhibitors in prostate cancer.

ITC. ITC are found in cruciferous vegetables such as broc-
coli, Brussels sprouts, cauliflower, and cabbage. SFN is an
ITC derived from cruciferous vegetables and is especially
high in broccoli and broccoli sprouts (87), where it exists
as the glucosinolate precursor, glucoraphanin. When the
plant is consumed, plant myrosinases or hydrolases present
in gut bacteria convert glucoraphanin to SFN (88). Epidemi-
ological studies have shown an inverse association between
cruciferous vegetable intake and cancer risk in many tissues,
including the prostate. Interestingly, a recent analysis of the
EPIC-Heidelberg cohort study showed a significant decrease
in the risk of prostate cancer specifically with increasing glu-
cosinolate intake (89).

SFN is an effective chemoprotective agent in carcinogen-
induced animal models (87,90,91) as well as in xenograft
and genetic models of prostate cancer (92,93). Recent stud-
ies suggest that SFN may target aberrant gene hypermethy-
lation by modulating DNMT expression. SFN decreased
expression of DNMT1 and DNMT3a in breast cancer cells
(94). Similarly, in LnCap prostate cancer cells, SFN treat-
ment downregulated DNMT1 and 3b but not DNMT3a
(95). These results suggest that the responses of individual
DNMT to SFN treatment may differ according to cancer
cell type. Our recent study indicated that SFN may downre-
gulate DNMT, resulting in demethylation of the cyclin D2
promoter and enhanced transcription of cyclin D2 mRNA,
suggesting a novel mechanism behind SFN’s growth inhibi-
tory effects on prostate cancer cells (95). Other ITC have
shown an ability to alter DNA methylation patterns. For
example, PEITC caused demethylation and reactivation of
GSTp1, a commonly hypermethylated gene in LnCap pros-
tate cancer cells (96).

Minerals (selenium and zinc). Several trace elements can
indirectly affect one-carbon metabolism and methyl donor
availability. Selenium has been proposed to react with ho-
mocysteine to form selenohomocysteine. This reaction
may limit homocysteine in the methionine cycle. Indeed,
rats supplemented with SM show decreases in global hypo-
methylation and site-specific increases in methylation of p53
(97,98). Although there has been considerable interest in se-
lenium as a prostate cancer chemoprevention agent (see next
section), the modulatory effects of selenium on methylation
events in the prostate remain to be clarified.

Zinc also acts as key cofactor in several enzymes involved
in the methionine/transsulfuration pathway, a key pathway
for generating methyl donation equivalents such as SAM
and betaine (Fig. 2). Betaine-homocysteine methyltransfer-
ase and methionine synthase are also zinc-dependent
enzymes (99). Serine hydroxymethyltransferase, a key en-
zyme in folate metabolism that helps transfer methyl units
from serine into the methionine cycle, is regulated by
zinc-dependent transcription factors, including metal-regu-
latory transcription factor 1. This strongly suggests that zinc

likely has an important function in maintaining methylation
status in the cell. Thus, zinc deficiency may cause a methyl
deficiency similar to other methyl donors like folate, re-
sulting in abnormal gene expression and developmental de-
fects. In rats, zinc deficiency decreased turnover of SAM and
depressed DNA and histone methylation in the liver (100).
In Agouti mice, supplementation with methyl donors (cho-
line, betaine, folate, vitamin B-12, methionine) and zinc epi-
genetically regulated the expression of Agouti in the
offspring (101).

Similar to selenium, there is also considerable interest in
zinc in prostate cancer development. The prostate contains
the highest concentration of zinc of any soft tissue and se-
cretes high amounts of zinc in the prostatic fluid. Zinc con-
centrations in malignant prostate tissues are w10–25% of
that in healthy prostates (102), suggesting that high zinc
concentrations may be essential for the maintenance of
prostate health. Several mechanisms by which zinc may pro-
tect prostate cells from malignancies have been proposed,
including zinc as an inhibitor to mitochondrial-aconitase
activity, apoptogenic effects, and as a protector for DNA in-
tegrity [for review, see (103)]. The possible interplay be-
tween zinc and DNA methylation may be a novel
mechanism by which zinc deficiency increases the risk of
prostate cancer.

Dietary modulators of histone modifications
The use of Class I and Class II HDAC inhibitors in cancer

chemoprevention and therapy has gained considerable in-
terest (104). Modulators of histone methylation and other
histone marks have not been extensively investigated in pros-
tate cancer. 3-deazaneplanocin-A, a pharmacological inhibi-
tor for histone methylation, has been studied in various
cancers (105) and has recently been shown to limit tumor
growth in prostate cancer cells both in vitro and in mouse
xenografts (106). To date, specific dietary modulators of his-
tone methylation have not been clearly identified. In contrast,
considerable work has been done with targeting histone acet-
ylation in prostate cancer, both utilizing pharmacological and
dietary approaches. Several clinical trials are currently ongo-
ing aimed at establishing the chemotherapeutic efficacy of
HDAC inhibitors, based on evidence that cancer cells undergo
cell cycle arrest, differentiation, and apoptosis in vitro and
that tumor volume and/or tumor number may be reduced
by such agents in preclinical animal models. HDAC inhibitors
have been shown to increase global acetylation as well as acet-
ylation associated with specific gene promoters (107). Al-
though the equilibrium is shifted toward greater histone
acetylation after treatment with HDAC inhibitors, the expres-
sion of only a relatively small number of genes is altered in an
upward or downward direction (107). Importantly, only neo-
plastically transformed cells appear to respond to increased
acetylation by undergoing differentiation, cell cycle arrest,
or apoptosis; normal cells, despite the increased acetylation,
do not respond in this manner to HDAC inhibitors (108).
An overview of several diet-based histone modulators follows.
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Dietary fiber (butyrate). Butyrate is one of the earliest and
smallest known HDAC inhibitors [reviewed in (109)], con-
taining a simple 3 carbon spacer attached to a carboxylic
acid group. Most of the chemoprevention research with bu-
tyrate has focused on colorectal cancer, because the colono-
cytes are the primary site of production. Butyrate decreases
HDAC activity and triggers cell cycle arrest or apoptosis,
likely as a competitive HDAC inhibitor (110). The effects
of butyrate in prostate cancer are less well studied, especially
given that high concentrations of butyrate (mmol/L range)
are necessary to exert HDAC inhibitory and proapoptotic ef-
fects (111,112). In prostate cancer cells, sodium butyrate (>1
mmol/L) decreased bothHDAC2 andHDAC3 expression. In
addition, sodium butyrate had effects on the AR. The tran-
scriptional activities of AR and other members of the nu-
clear receptor superfamily are modulated by coregulatory
proteins. In particular, the corepressor SMRT forms a com-
plex with NCOR and with HDAC3 regulate AR expression
(113). Recent research suggests that the addition of sodium
butyrate to androgen-responsive prostate cancer cells may
decrease AR expression by modulating the SMRT corepres-
sor interaction (114).

Garlic compounds. Epidemiological studies suggest that in-
creased dietary intake of Allium vegetables, such as garlic, is
associated with protection against prostate and other cancers
(115). The protective effects of garlic have been attributed to
several organosulfur compounds that are released when
these foods are crushed and/or chewed, such as diallyl sul-
fide, DADS, and DATS. Some of these compounds have re-
ported HDAC inhibitory activity. For example, in colon
cancer cells, DADS causes histone acetylation both in vitro
and in vivo (116). Preclinical studies in vitro and in animal
models also support the notion that administration of these
garlic-derived organosulfur compounds results in prostate
cancer chemoprevention. DATS treatment also potently in-
duces cell cycle arrest, apoptosis, and repression of the AR
in prostate cancer both in vitro and in vivo (117–120).
Increases in histone acetylation and apoptosis with DAD
treatment is found in prostate cancer cells (121). Like
DADS, S-allylmercaptocysteine, and several other garlic
compounds (116,121), DATS can be metabolized to AM, a
competitive HDAC inhibitor. The effects of AM on prostate
cancer cells are not known, but treatment of human colon
cancer cells with AM induced rapid histone acetylation
along with HDAC inhibition (122). As a consequence, in-
creased association of acetylated histones and Sp3 transcrip-
tion factor binding to the promoter element of p21Waf1
occurred, thereby increasing both p21 mRNA and protein
expression, triggering cell cycle arrest (122).

SFN and other ITC. Multiple mechanisms have been pos-
tulated for the chemopreventive effects of SFN. The majority
of studies focused on SFN as a potent Phase 2 enzyme in-
ducer, with additional evidence for cell cycle arrest and ap-
optosis in vitro. More recently it has been found that SFN
metabolites inhibit HDAC activity in vitro, the greatest

inhibition involving SFN-NAC and SFN-Cys metabolites
[reviewed in (123)]. Molecular modeling in the active site
of an HDAC enzyme provided evidence for SFN-Cys as a
possible competitive inhibitor (124). In BPH1, PC3, and
LnCap prostate cancer cells, SFN inhibited HDAC activity
with a concomitant increase in global histone acetylation,
increased acetylated histone H4 interactions with the p21
and Bax promoter, induction of p21 and Bax mRNA and
protein levels, and increased cell cycle arrest (125).

In addition to competitive enzyme inhibition, recent re-
search has shown that SFN lowers the expression of specific
HDAC proteins. Thus, treatment of transformed prostate
cells with 15 mmol/L SFN caused a selective decrease in
both HDAC3 (class I) and HDAC6 (class II) proteins
(126). Loss of HDAC6 has important implications in mod-
ulating the acetylation of nonhistone proteins such as tubu-
lin and HSP90, which have roles in controlling apoptosis/
autophagy pathways and AR stability, respectively. Loss of
HDAC3 may be related to turnover/degradation pathways
triggered by disruption of the HDAC3/SMRT corepressor
complex and nuclear/cytoplasmic trafficking (127). Interest-
ingly, similar to pharmacological HDAC inhibitors, we have
found that 15 mmol/L SFN causes potent HDAC inhibition
and G2/M arrest in LnCaP and PC3 cancer cells but has no
effect on normal prostate epithelial cells (126). These data
support the hypothesis that HDAC inhibition may be an im-
portant mechanism of chemoprevention for SFN and simi-
lar pharmacological HDAC inhibitors, producing cytotoxic
effects specific to cancer cells and not normal cells. SFN
may also coordinate its effects by altering other histone
marks, such as histone phosphorylation and histone methyl-
ation. As reported in the earlier section, SFN modulates DNA
methylation patterns; thus, the epigenetic effects of SFN may
not be limited to HDAC inhibition. Possible coordination be-
tween these other histone marks and/or DNA methylation
represents an important area for future research.

Other ITC and compounds derived from cruciferous vege-
tables also have reported effects on prostate cancer cells via his-
tone modifications and HDAC inhibition. Structurally related
ITC such as sulforaphene, erucin, and phenylbutyl isothiocya-
nate had comparable HDAC inhibitory activities in vitro (128).
Phenhexyl isothiocyanate, BITC, and PEITC have shown anti-
proliferative effects in prostate cancer cells as well as chemo-
preventive properties in prostate cancer models in vivo
(129–134). Phenhexyl isothiocyanate administered to
androgen-dependent LnCap cells resulted in decreased
HDAC activity and HDAC1 and HDAC2 expression and in-
creased acetylated histone and p21 expression that was con-
comitant with G1 cell cycle arrest and apoptosis (133).
Similar to SFN, PEITC appears to have dual effects on DNA
methylation and HDAC inhibition (96). Concurrent with de-
methylation effects, PEITC (2–5 mmol/L) inhibited HDAC ac-
tivity and increased acetylated histone status. At the doses
tested, PEITC was more effective toward promoter demethyl-
ation and HDAC inhibition than prototypical DNMT and
HDAC inhibitors, 5-aza and trichostatin A (TSA) (96). Al-
though BITC and HDAC inhibition has not been examined
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in prostate cancer cells, in pancreatic cells, BITC treatment
resulted in HDAC inhibition and decreased HDAC1 and
HDAC3 levels. Importantly, the antiproliferative effects of
BITC were abrogated by HDAC1 or HDAC3 overex-
pression, suggesting that HDAC inhibition was a critical
mechanism leading to BITC-induced cell cycle arrest and
apoptosis (135).

Indoles. I3C is another phytochemical derived from crucif-
erous vegetables. In the acidic environment of the stomach,
I3C undergoes extensive and rapid self-condensation and
produces many oligomeric products. A major condensation
product is DIM, formed from the dimerization of 2 mole-
cules of I3C. DIM was shown to be protective against pros-
tate cancer both in vitro and in vivo (136,137). Interestingly,
DIM alters HDAC expression in human colon cancer cells.
Specifically, treatment with 0–60 mmol/L DIM decreased
the levels of HDAC1, HDAC2, HDAC3, and HDAC8 pro-
teins and there was a decline in the expression of survivin
and Cyclin B1 (138,139). DIM also produced a decline in
the expression of class I HDAC in mice bearing colon cancer
xenografts (139). Change in HDAC expression was associ-
ated with increased Bax, p21, and p27 levels (classic
HDAC target genes) and increased cell cycle arrest and apo-
ptosis (139). Class II HDAC were not affected by DIM and
the selective degradation of class I HDAC was shown to be
mediated by the proteasome (139). A study of similar mech-
anisms in prostate cancer cells appears to be warranted for
DIM and related dietary indoles.

Selenium and its metabolites. Based on both epidemio-
logical and preclinical studies, there has been considerable
interest in the mineral selenium as a prostate cancer chem-
oprevention agent. Many studies have focused on the role of
selenium in selenoproteins, such as glutathione peroxidase
and thioredoxin reductase, and their involvement in antiox-
idant and redox function in the cell [reviewed in (140)]. The
biological activity of selenium is highly dependent on the
chemical form (i.e. inorganic or organoselenium com-
pound) and metabolic conversion in the cell. Depending
on the form of selenium used and/or metabolic trans-
formation in the cell, the molecular targets, including epige-
netic targets, can differ markedly. In vitro, inorganic selenite
caused decreases in HDAC activity, increases in acetylated
histones, and reactivation of GSTp1. At the same time, sele-
nite decreased DNMT1 and methylated H3K9 expression as-
sociated with the GSTp1 promoter (141).

More recently, a-keto acid metabolites of organoselenium
compounds have also been identified as novel HDAC inhibi-
tors in prostate cancer cells. From the diet, the major organo-
selenium compounds are MSC and SM. These forms can
either be metabolized by b/g lyase elimination reactions
forming methylselenol or undergo transamination/oxidation
reactions forming a-keto acids. Methylselenol has been impli-
cated as the putative “active”metabolite responsible for mod-
ulating cell signaling and redox pathways leading to apoptosis
[for review, see (142)]. However, a-keto acids such as MSP

and KMSB may exert epigenetic effects. Specifically, MSP
formed from the transamination of MSC and KMSB gener-
ated from the transamination of SM both inhibited HDAC
activity, increased acetylated histones and p21 promoter activ-
ity, and triggered cell cycle arrest and apoptosis in prostate
and colon cancer cells at concentrations as low as 2 mmol/L
(143,144). Further research revealed that whereas both trans-
amination reactions occur in liver, in prostate cancer cells,
MSC is effectively converted to MSP, whereas SM is poorly
metabolized to KMSB.

To date, large-scale, prospective, randomized, double-
blinded, placebo-controlled prostate cancer trials utilizing
selenium, such as the SELECT trial, have yielded disap-
pointing results (145,146). In the SELECT trial, healthy
men were randomized to supplementation of SM (200
mg/d) alone or in combination with vitamin E (400 IU/d)
and prostate cancer incidence was monitored. SM supple-
mentation had no effect on prostate cancer and caused a
nonsignificant increase in the incidence of diabetes (146).
As a result, the SELECT trail was halted in 2008. Some re-
searchers have postulated that the inability of prostate can-
cer cells to metabolize SM to the a-keto acid and the lack of
HDAC inhibition could be a contributing factor to poor re-
sponses in this trial (147). As a corollary, MSC may have
been a better candidate due to its conversion to the
HDAC inhibitor MSP. Further research is needed on
form, dose, tissue-specific metabolism, and HDAC inhibi-
tion by mechanistically relevant organoselenium com-
pounds in prostate carcinogenesis.

Curcumin. The polyphenol curcumin is a natural phyto-
chemical derived from the spice turmeric. Evidence suggests
that curcumin suppresses multiple stages of carcinogenesis:
initiation, promotion, and progression. The antiinflamma-
tory actions and inhibition of NF-kB have been most widely
studied as mechanisms accounting for the efficacy of cur-
cumin [for review, see (148)]. Curcumin exhibits chemo-
preventive potential in a wide variety of cancers in both
preclinical and clinical trials [reviewed in (149)], although
one confounding factor may be in vivo uptake and bioavail-
ability following typical oral/dietary intake. Recent research
suggests that curcumin modulates global histone and NF-kB
acetylation and alters proinflammatory processes as a
HAT inhibitor (150). In PC3 prostate cancer cells, curcumin
promoted proteasome-dependent degradation of the HAT
p300/CREB binding protein (CBP) (151). In addition to
HAT inhibition, there are also several reports of possible
HDAC inhibitory effects of curcumin. In lymphoma cells, cur-
cumin treatment decreases HDAC1, HDAC3, and HDAC8
protein expression (152). However, in monocytes/macro-
phages, curcumin treatment inhibited inflammation and over-
came glucocorticoid resistance by upregulating HDAC2
activity in lung (153). In other sites, including prostate,
HDAC and HAT responses to curcumin are not well under-
stood; however, HAT compared to HDAC effects may depend
on tissue type and related pathophysiological conditions, such
as oxidative stress and chronic inflammation.
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Tea polyphenols. The majority of epigenetic studies with tea
polyphenols have focused on EGCG as a DNMT inhibitor;
however, recent research also suggests that catechins modu-
late histone marks. Similar to DNA methylation, EGCG ap-
pears to be the most potent histone modifier among the tea
catechins (154). Addition of green tea polyphenols to prostate
cancer cells decreased HDAC1 and HDAC3 expression and
increased acetylated histones H3 (K9/18) and H4 (80). It is
not clear if the effect of green tea polyphenols on histone acet-
ylation is an independent event or if it is related to the cross
talk between DNA methylation and chromatin remodeling to
control gene silencing. Interestingly, DNMT1 also appears to
direct histone modifications by recruiting HDAC (155).
Methylation of CpG sequences by DNMT1 binds specific
MBD proteins such as MeCP2 and MBD2. This MBD bind-
ing complex recruits a complex of transcriptional repressors,
including HDAC, which results in chromatin-associated gene
silencing (156,157). Green tea polyphenol also decreased the
expression of MBD1, MBC4, and MeCP2 and decreased the
association of MBD2 with the GSTp1 promoter (80). These
studies clearly demonstrate a dual potential of green tea poly-
phenols to alter both DNA methylation and histone modifi-
cations and the associated players involved in chromatin
remodeling. Cell-specific effects of tea catechins and their me-
tabolites on HATand HDAC have not been thoroughly exam-
ined in prostate or other tissues.

Sirtuin modulators. Compared to Class I and II HDAC in-
hibitors, studies examining the modulation of sirtuins in
prostate cancer are much more limited. The sirtuins are
Class III HDAC that utilize NAD as a cofactor (158). Seven
homologs (Sirt1–7) have been identified in the human ge-
nome and predominantly target nonhistone proteins for de-
acetylation. Each Sirt has a conserved structure, but their
targets and cellular localization differ. Sirt1 is the best char-
acterized sirtuin in mammals and has a wide variety of targets
in both the nucleus and cytoplasm. Of particular relevance to
cancer, Sirt1 appears to play an important role in DNA repair,
recombination, and cell survival. Some examples of Sirt1 tar-
gets include AR, p53, RB protein, forkhead transcription fac-
tors, Bax, Ku70 repair protein, and p300 (159).

More recently, Sirt1 was shown to be overexpressed in
prostate cancer cells compared to normal controls (160).
Sirt1 inhibition with nicotinamide and RNAi strategies led
to significant growth inhibition and cell death in the cancer
cells, with no effects in normal cells, suggesting that Sirt1
may have oncogenic activity. In addition to Sirt1, overex-
pression of nicotinamide phosphoribosyltransferase, the
rate-limiting enzyme for regenerating NAD, also has been
reported in prostate cancer (161). However, there is consid-
erable controversy as to whether Sirt1 is actually an onco-
genic or tumor suppressor protein. In contrast to work in
vitro, studies in vivo suggest that Sirt1 acts a tumor suppres-
sor. Deletion of the Sirt1 gene in mice resulted in prostatic
intraepithelial neoplasia, and genome-wide expression anal-
ysis of these lesions revealed that loss of Sirt1 in the prostate
resulted in an inhibition of autophagy pathways (162).

Dietary strategies that target Sirt1 are extremely limited at
present. Resveratrol, a putative activator of sirtuins, has been
studied in prostate and appears to have antiproliferative ef-
fects (163,164). However, Sirt1 inhibitors have also shown
an ability to limit prostate cancer development. Kikuno
et al. (165) showed that genistein treatment caused demeth-
ylation and acetylation of H3K9. At the same time, reduc-
tions in Sirt1 activity were detected and associated with
acetylation of H3K9 at p53 and forkhead transcription factor
3a promoters. It is likely that the impact on Sirt1 depends on
factors such as the level of expression and timing of the dis-
ease. For example, endogenous Sirt1 may be essential for
maintaining prostate gland early during development,
whereas aberrant overexpression of Sirt1, with age or during
later stages of carcinogenesis, may lead to enhanced prolifer-
ation and tumor development. In this scenario, knockdown
of endogenous levels of Sirt1 early in life may be cancer pro-
moting, whereas Sirt1 inhibition after cancer has developed
may be protective. Additional studies are necessary both in
vitro and in vivo to address these issues and identify key
Sirt1 targets involved in prostate cancer development.

Conclusions
Great strides have been made in recent years in advancing
our understanding of diet-gene interactions and their influ-
ence on cancer development. In the burgeoning field of ep-
igenetics, an increased understanding of the mechanisms
that regulate gene expression has produced a paradigm shift
in how we consider cancer etiology and the relevant molec-
ular biomarkers for cancer prevention. In contrast to genetic
alterations, epigenetic marks are potentially reversible, mak-
ing them promising targets for both cancer prevention and
therapy. Researchers have identified new and novel epige-
netic mechanisms for many candidate dietary chemopreven-
tion agents. However, control of gene expression often
requires the cooperation, interaction, and interplay among
multiple epigenetic mechanisms. For example, the relation-
ship between DNA methylation and chromatin remodeling
suggests significant cross-talk among distinct epigenetic
pathways that control gene silencing/unsilencing. Indeed,
the combination of pharmacological DNMT inhibitors and
HDAC inhibitors has been explored as a potential antitumor
therapy (166,167). However, both HDAC and DNMT inhib-
itor drugs have potential hazards and side effects, including
cardiotoxicity in some clinical scenarios (168,169). Interest-
ingly, several miRNA are known to be regulated by DNA
methylation status in cells. In a recent study, up to one-third
of dysregulated miRNA loci showed consistent patterns of
DNA methylation and H3K9 acetylation (170), highlighting
the complex interplay among multiple epigenetic regulators.
Dovetailing this work with mechanistic studies of dietary ep-
igenetic modulators deserves greater attention. In particular,
understanding the relevant doses, timing, and possibly syn-
ergy and/or antagonism of various epigenetic marks to coor-
dinate biological effects is of utmost importance.

To complicate matters, there is also significant interplay
between genetic and epigenetic targets. For example, the
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traditional dogma for chemoprotection by SFN considered
reactive thiol groups in Keap1 as key targets, promoting
Nrf2 dissociation, nuclear trafficking, and activation of
ARE-driven gene expression. Recent studies, however, have
found that Nrf2 itself is under epigenetic regulation. Yu
et al. (171) demonstrated that Nrf2 expression was sup-
pressed in prostate tumors derived from TRAMP mice.
Moreover, silencing of Nrf2 was attributed to both promoter
hypermethylation and histone modifications. Pharmacolog-
ical DNMT inhibitors and/or HDAC inhibitors restored the
expression and activity of Nrf2 (171). Thus, dietary agents
such as SFN may coordinate Nrf2 activation at the epige-
netic/chromatin level in addition to effects on Keap1. As
we move forward, the lines between diet-genome and diet-
epigenome interactions are becoming increasingly blurred.
Individual susceptibility to disease and efficacy of specific
nutrients and phytochemicals may be determined by a com-
bination of both genetic and epigenetic control mechanisms.
No doubt, these will be important issues in the future devel-
opment of better optimized dietary chemoprevention
strategies.

Understanding the precise actions of dietary bioactive
nutrients in cancer prevention is a complicated and difficult
task. Many such compounds exhibit pleiotropic effects,
which can be viewed as either beneficial or deleterious. Ad-
vocates consider the benefit of targeting multiple players
along the pathway to malignancy, whereas skeptics typically
cite potential “off-target” concerns. For many nutrients, the
relative priority of genetic compared to epigenetic mecha-
nisms remains poorly defined. Importantly, additional re-
search on dose, metabolism, timing, and tissue specificity
is sorely needed. It is possible that doses that optimally target
epigenetics may not target other known genetic targets and
vice versa. Establishing dose responses, including possible
toxicities, will be extremely important prior to making rec-
ommendations. Nonetheless, targeting the epigenome with
modifiers of miRNA, DNA methylation, and histone marks
provides an attractive avenue for future research, with con-
siderable promise for cancer clinical trials. Identification of
dietary epigenetic modulators and their clinical application,
either alone or in combination, may enhance the efficacy of
ongoing anticancer therapies/prevention strategies while re-
ducing the unwanted side effects.
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