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Abstract

Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for
autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated
into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis
(MS) yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic
autoimmunity associated with MS, which result from the multiplicity of potential target antigens and ‘‘epitope spread’’,
have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is
unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells
reactive against as many major target antigens/epitopes as possible. We investigated such ‘‘multi-epitope-targeting’’
approach in murine experimental autoimmune encephalomyelitis (EAE) associated with a single (‘‘classical’’) or multiple
(‘‘complex’’) anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-
epitope-protein (designated Y-MSPc) encompassing rationally selected MS-relevant epitopes of five major myelin antigens,
as ‘‘multi-epitope-targeting’’ agents. Y-MSPc was superior to peptide(s) in concomitantly downregulating pathogenic T-cells
reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory
mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells). Y-MSPc was also consistently more effective
than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of ‘‘classical’’ or
‘‘complex EAE’’ or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data
emphasize that a ‘‘multi-epitope-targeting’’ strategy is required for effective immune-specific therapy of organ-specific
autoimmune diseases associated with complex and dynamic pathogenic autoimmunity, such as MS; our data further
demonstrate that the ‘‘multi-epitope-targeting’’ approach to therapy is optimized through specifically designed multi-
epitope-proteins, rather than myelin peptide cocktails, as ‘‘multi-epitope-targeting’’ agents. Such artificial multi-epitope
proteins can be tailored to other organ-specific autoimmune diseases.
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Introduction

Multiple sclerosis (MS) is an inflammatory disease of the CNS

characterized by neurological impairment of variable extent,

resulting from primary demyelination and axonal damage.

Although the etiology of the disease is not yet known, ample

evidence suggests that autoimmune mechanisms directed against

myelin components in the CNS play an important pathogenic role

[1,2]. It is widely accepted that the development/progression of

MS results from a non-physiological activation of potentially

encephalitogenic T cells reactive against CNS components, as

evident from studies showing that transferred activated line T-cells

or clones reactive against a CNS myelin antigen are sufficient to

initiate a full-blown clinical experimental autoimmune encepha-

lomyelitis (EAE) in naı̈ve syngeneic recipients [3,4,5], Accordingly,

among the numerous approaches that have been proposed for

immunotherapy of MS, the immune-specific approach, which can

specifically neutralize the pathogenic myelin-reactive T cells, while

leaving the innocent immune cells intact, is the ultimate goal in

disease therapy.

Several approaches have been proposed for immune-specific

treatment of MS as a prototypic organ-specific autoimmune

disease [2,6]. These include administration of a disease-specific

protein/peptide in a soluble form [7,8,9] or as a DNA vaccine

[10,11], autologous T-cell vaccination [3,12], anti-clonotypic

TCR antibodies [13,14], immunization with TCR peptide

[15,16], or administration of an MS-related monomeric MHC/

peptide polypeptide [17,18]. However, although effective in
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animal models, none of these approaches have been translated into

a practicable therapy for human MS. Among these approaches,

the antigen-based strategies have long been proposed as a

powerful means for induction of antigen-specific peripheral

tolerance and treatment of autoimmune diseases, as systemic

administration of antigen/peptide was shown to be specific and

highly effective in neutralizing pathogenic antigen-specific auto-

immune T-cells in laboratory animals [19,20]. Yet, clinical trials

with injections of soluble myelin basic protein (MBP) [21,22],

native MBP peptide [23], or MBP altered peptide ligand (MBP-

APL) [24,25], for the treatment of MS have yielded disappointing

results. These clinical trials, however, were designed to target

pathogenic T-cells reactive against only a single target antigen/

epitope, without sufficient consideration of the apparent complex-

ity and dynamics of the pathogenic autoimmunity associated with

MS due to multiplicity of target antigens and the emerging

‘‘epitope spread’’ [26].

Indeed, myelin basic protein (MBP), proteolipid protein (PLP),

and myelin oligodendrocyte glycoprotein (MOG) are well-

recognized target antigens in MS [1,27]. More recently, also the

myelin-associated oligodendrocytic basic protein (MOBP) and

oligodendrocyte-specific protein (OSP) have been recognized as

additional important target antigens for the potentially pathogenic

myelin-reactive T cells associated with MS [27]. This multiplicity

of potential target antigens suggests that in different MS patients,

the primary pathogenic anti-myelin autoimmunity initiating the

disease might be directed against different myelin target proteins.

Moreover, the neo-autoreactivities that can emerge as a result of

inter- and intra-molecular ‘‘epitope spread’’ [26,28], as demon-

strated during the course of chronic EAE [29,30] and suggested to

be associated with disease progression in MS [31,32], further

contribute to the complexity and the dynamics of the pathogenic

anti-myelin autoimmunity associated with MS. Such complex and

dynamic autoimmunity imposes major difficulties in devising

antigen-based immune-specific therapy of the disease, as by the

time of the definite disease diagnosis, the primary pathogenic

autoreactive T cells in a given patient may have already shifted or

expanded to reactivity against several myelin antigens. Hence,

since the specificity of the primary pathogenic T cells may not only

be different in different patients, but also can shift or expand in the

same patient with the progression of the disease, targeting

pathogenic autoreactivity directed against a single myelin target

antigen/epitope is unlikely to be a sufficiently effective therapy for

MS. Therefore, a conceivably more effective approach to

immune-specific therapy of MS would be if potentially pathogenic

T-cells reactive against all known major target myelin antigen(s)/

epitope(s) would be concomitantly neutralized, regardless of

against which of the target myelin antigen(s)/epitope(s) the

pathogenic T cells are specifically directed in each given patient

upon disease onset, or at any given time of disease progression.

We have previously demonstrated the feasibility of such a

concomitant multi-targeting approach using an artificial protein

encompassing limited MS/EAE-related epitopes of MBP, PLP,

and MOG, as a multi-epitope targeting agent [33]. This artificial

protein was highly effective in concomitantly downregulating T-

cells reactive against PLP and MOG peptide epitopes [33]. We

have now generated a more comprehensive and human-specific

(HLA-DR2 relevant) multi-targeting agent, designated Y-MSPc

(Y-MS related Protein), the product of a synthetic gene encoding a

wide spectrum of rationally selected MS-relevant epitopes of all

the five known major encephalitogenic target antigens in MS;

MBP, PLP, MOG, MOBP, and OSP. In this study, the specifically

designed artificial multi-epitope protein (Y-MSPc) and a cocktail of

MS-relevant myelin peptides, as strategies for concomitant multi-

epitope targeting, were investigated and compared for their

efficacy in: 1) concomitant downregulation of multiple pathogenic

T-cells reactive against different myelin antigens; 2) induction of

peripheral regulatory mechanisms; and, 3) in the suppression as

well as in the treatment of EAE associated with pathogenic anti-

myelin autoreactivities against a single (‘‘classical’’ EAE) or

multiple (‘‘complex EAE’’) myelin antigens. The results strongly

suggest that antigen-based immune-specific therapy of organ-

specific autoimmune diseases associated with complex autoimmu-

nity, such as MS, by a specifically designed artificial multi-epitope

protein is superior to therapy by single or a cocktail of disease-

relevant peptides.

Materials and Methods

Mice
Female C57Bl/6J and SJL/J mice were purchased from Jackson

Laboratories (Bar Harbor, ME, USA) or obtained from the

Weizmann Institute colony. (C57Bl/6JxSJL/J)F1 (BSF1) mice

were bred at the Weizmann Institute Animal Facility.

C57Bl.FoxP3GFP mice were a kind gift from Dr. Kuchroo,

V. J. [34]. (C57Bl.FoxP3GFPxSJL/J)F1 mice were bred at the

Weizmann Institute Animal Facility. All mice were 2–3 month-old

when used in the experiments. The IACUC of the Weizmann

Institute has approved the experiments, permit number:

03530710-3, which were performed in accordance to its relevant

guidelines and regulations.

Myelin antigens, peptides, and the Y-MSPc multi epitope
protein

Recombinant human MOG (rhMOG) was prepared as

described previously [35]. Mouse spinal cord homogenate

(MSCH) was prepared as described previously [4]. The myelin

peptides used in this study, listed in Table S2 (over 80% purity),

were synthesized in the laboratory of Prof. M. Fridkin,

Department of Organic Chemistry, The Weizmann Institute of

Science. Y-MSPc (Y-MS-relevant multi-epitope Protein; the Y is

an arbitrary symbol for the series of multi-epitope proteins

designed for several organ-specific autoimmune diseases in our

laboratory) is a recombinant artificial protein encompassing

multiple human myelin epitopes as depicted in Fig. 1A. The Y-

MSPc was generated as described in detail in Text S1 (S1.3.). The

DNA and deduced amino acid sequences, and the expression of Y-

MSPc gene in E. coli and the isolation of the Y-MSPc protein are

also shown and detailed in Text S1 (S1.3.).

T-cell lines and T-cell proliferative responses
Antigen-specific T-cell lines were selected in vitro as described

previously [4] from LN cells of mice that had been primed 9 days

before with antigen (100 mg myelin peptide) emulsified in CFA

containing 150 mg Mycobacterium tuberculosis H37Ra (Cat. No:

3114-25, Difco Laboratories, Detroit, MI). All T-cell lines were

maintained in vitro in medium containing IL-2 with alternate

stimulation with the antigen, every 10–14 days as previously

described [4]. Proliferation assays of T-cell lines were performed as

previously described [4,36].

Induction of ‘‘classical’’ EAE or ‘‘complex EAE’’
(C57Bl/6J6SJL/J)F1 mice were injected subcutaneously at one

site in the flank with 200 ml of emulsion containing PLP139-151

(100 mg), or rhMOG (200 mg) in CFA containing 300 mg

Mycobacterium tuberculosis H37Ra (‘‘classical’’ EAE). Active

‘‘Complex EAE’’ was induced by injecting 200 ml of emulsion

containing a mixture of different encephalitogenic peptides,

Multi-Antigen/Epitope Approach to Therapy of MS
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hMOG34-56, hPLP139-151, hMOBP15-36, hMBP89-104,

hOSP55-80 (75 mg of each peptide) in CFA as above, or with

6 mg MSCH in CFA containing 250 mg Mycobacterium tubercu-

losis H37Ra. Mice received 300 ng pertussis toxin in 500 ml PBS

in the tail vein immediately and 48 h after immunization.

Following the encephalitogenic challenge, mice were observed

and scored as previously described [37,38].

Adoptive transfer of ‘‘classical’’ EAE or ‘‘complex EAE’’
Cell transfer experiments were conducted as previously

described [4,36]. Briefly, irradiated (400 rads) naive syngeneic

BSF1 mice were injected i.v. with pathogenic line T cells specific

for a single encephalitogenic epiotpe (‘‘classical’’ EAE), or with a

mixture of five different line T-cells, each specific for a different

encephalitogenic myelin epitoe (hMOG34-56, hPLP139-151,

hMOBP15-36, hMBP89-104, hOSP55-74) (‘‘complex EAE’’).

The line T-cells were activated with their specific peptide for

three days prior to transfer, as previously described [4], and the

number of cells injected is indicated in the legend to figures. Mice

were observed and scored as previously described [37].

Cytokine analysis
IL-2, IFN-g, IL-4, and IL-10, were measured by ELISA

according to standard protocols from PharMingen (San Diego,

CA), as described previously [39]. The capture antibodies were rat

anti-mouse IL-4 (18191D; PharMingen), rat anti-mouse IL-2

(18161D; PharMingen), rat anti-mouse IL-10 (AMC0102; Bio-

Source International, Camarillo, CA,) and rat anti-mouse IFN-c
(AMC4834; BioSource International). The biotinylated antibodies

used were rat anti-mouse IL-4 (18042D), rat antimouse IL-2

(18172D), rat anti-mouse IL-10 (18152D) and rat anti-mouse IFN-

c (18112D; all from PharMingen). IL-17 was measured by ELISA

using a DuoSet ELISA Development kit (DY421; R&D Systems,

Inc., Minneapolis, MN). TGF-b was measured by ELISA

according to the standard protocol from R&D Systems (Minne-

apolis, MN), using recombinant human TGF-ß sRII/Fc chimera

as capture reagent (341-BR; R&D Systems) and biotinylated anti-

human TGF-ß1 antibody (BAF240; R&D Systems). Recombinant

human TGF-ß1 (240-B; R&D Systems) was used to construct the

standard curve.

Flow cytometric analysis
The flurochrome labeled monoclonal antibodies, PE conjugated

anti mouse CD152 (murine CTLA-4), and APC conjugated anti

mouse CD4, were purchased from BioLegend and used according

to the manufacturer’s protocols. Cells were analyzed on Cytomics

FC 500 system (Beckman Coulter) and analyzed by Beckman

Coulter software. Isotype controls were routinely used in all the

experiments.

Results

The generation and immunofunctional properties of the
MS-related multi-epitope protein, Y-MSPc

Figure 1A shows the scheme for the construction of the synthetic

gene encoding Y-MSPc. Y-MSPc was designed to encompass in

tandem only rationally selected epitopes of each of the major

encephalitogenic target myelin proteins relevant to MS, MBP,

PLP, MOG, MOBP, and OSP. The Y-MSPc includes epitopes

(Fig. 1A) that have been selected for each of the myelin proteins

according to following criteria: reports on preferential reactivity

against the epiopes by MS T-cells, and/or epitopes with

encephalitogenic potential in laboratory animals, and/or accord-

ing to bioinformatical data predicting registers of preferred

binding to the MS-associated HLA-DRB1*1501 (HLA-DR15)

and/or HLA-DQB1*0602 (HLA-DQ06). The rationale for

selecting the epiopte clusters (shown in Fig. 1A) from each of the

primary target antigens MOG, MBP, PLP, MOBP, and OSP is

detailed in Text S1 (S1.1.). As described in Text S1 (S1.1.), each of

the 20 epitope clusters present in Y-MSPc may contain several

non-overlapping and overlapping myelin T-cell epitopes for HLA-

DRB1*1501 and/or HLA-DQB1*0602 molecules of HLA-DR15,

the most prominent haplotype among the Caucasian MS patients.

Using structural bioinformatics we predicted that about 100

overlapping and non-overlapping potential myelin epitopes for

(C57Bl/6JxSJL/J)F1 (BSF1) (I-Ab6I-As) mice are encompassed by

the Y-MSPc [Text S1 - S.1.2.], containing the human myelin

epitope clusters. It should be noted that the human myelin epitope

clusters are highly homologous to the counterpart mouse myelin

epitope clusters, and many of them are potential T-cell epitopes

also for the mouse MHC. Epitope clusters within the Y-MSPc

encompassing at least one major encephalitogenic epitope are

Figure 1. Generation of Y-MSPc and its immunofunctional properties. (A) Scheme for the construction of the Y-MSPc-encoding gene. **,
denotes epitope clusters containing human sequences that are encephalitogenic for C57Bl/6J (H-2b) [36,39,55,56] or SJL/J (H-2s) [57,58,59,60,61,62]
mice and also for BSF1 (H-2b/s) mice (Table S1). DNA and derived amino acid sequences of Y-MSPc are shown in Fig. S1. (B) Y-MSPc is adequately
processed and presented to relevant epitope-specific encephalitogenic T-cell lines. Epitope-specific line T cells (1.56104/well) raised from peptide-primed
LN cells isolated from BSF1 mice were tested for their proliferative response to their priming peptide (5 mg/ml ) or Y-MSPc (5 mg/ml ), in the presence
of syngeneic irradiated APCs (56105/well). Each bar on the histograms represents the mean stimulation index (SI) of triplicate cultures (SD,10%).
Background cpm 6 SD for phMBP89-104-, phPLP139-151-, phPLP175-194, phMOG34-56, phMOBP15-36-, phMOBP55-77-, and phOSP55-74-specific
line T-cells were 249615, 374621, 15556216, 17676436, 29376121, 261669, and 32176426, respectively.
doi:10.1371/journal.pone.0027860.g001
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depicted by two asterisks (Figure 1A). The Y-MSPc-encoding

DNA and derived amino acid are shown in Fig. S1.

To study the immunofunctional properties of Y-MSPc, we first

assessed the immunofunctional integrity of the epitopes artificially

assembled within Y-MSPc, using antigen-specific T cell lines that

were raised to peptides representing different encephalitogenic

myelin epitopes encompassed within Y-MSPc. The pathogenic

line T-cells specific to encephalitogenic epitopes of MBP, PLP,

MOG, MOBP, and OSP (Table S1) were tested for their

proliferative response to Y-MSPc as compared to their priming

epitope-containing peptide. Results shown in Fig. 1B indicate that

the relevant epitopes within Y-MSPc can be appropriately

processed and presented by APCs to their respective specific line

T cells, as all the different MBP-, PLP-, MOG-, MOBP-, and

OSP-specific encephalitogenic line T cells (Table S1) that were

derived from BSF1 mice proliferated in response to Y-MSPc

stimulation.

The stimulation of different epitope-specific line T cells by Y-

MSPc indicates that antigenic processing and presentation of the

encompassed epitopes to specific T-cells were not affected by their

being joined together in tandem.

Y-MSPc vs. peptide in suppression of EAE induced by a
single encephalitogenic myelin antigen/epitope

The efficacy of Y-MSPc in suppression of ‘‘classical’’ EAE

(induced by a single encephalitogen/peptide) upon tolerogenic

administration (soluble, i.v.) was assessed, and compared with

tolerogenic administration of the relevant disease inducing

antigen/peptide. As shown in Fig. 2, systemic administration of

Y-MSPc before disease onset almost totally abrogated the

development of EAE actively induced with rhMOG (Fig. 2A) or

PLP139-151 (Fig. 2B), or EAE passively transferred with line T-

cells specific for phMOG34-56 (Fig. 2C) or phPLP139-151

(Fig. 2D). Moreover, upon tolerogenic administration, the Y-

MSPc was more effective than disease-inducing antigen/peptide in

the suppression of active (Fig. 2A&B) or passive (Fig. 2C&D) EAE

induced by MOG or PLP139-151. [The systemic administration

of PLP139-151 consistently delayed, but did not suppress passive

EAE induced in BSF1 mice by PLP139-151-specific T cells, for

reasons not yet understood]. These data suggest that systemic

administration of the disease relevant epitopes when contained

within Y-MSPc is a more effective tolerogenic route than their

administration as individual peptide (even though Y-MSPc was at

lower molar ratio than each peptide ,1:20), and that Y-MSPc is

more efficacious than the relevant peptide in the inhibition of

already committed encephalitogenic T cells (in passive EAE,

Figs. 2C&D). In addition, while Y-MSPc appeared devoid of

adverse effects, the mice induced to develop active EAE with

PLP139-151 and treated by PLP139-151 in PBS suffered from a

hypersensitivity reaction, which resulted in death by anaphylactic

shock (three mice died in the experiment presented in Fig. 2B; the

results presented for this group are for the remaining 2 mice).

Efficacy of Y-MSPc vs. peptide mixture as ‘multi-epitope
targeting’ agents in suppression of ‘‘complex EAE’’

We and others have shown that for EAE induced by several

encephalitogenic myelin proteins/peptides, ‘‘complex EAE’’, a

treatment which targets autoreactivity against only one of these

encephalitogens is not sufficiently effective in abrogating the

development of the disease [20,33] Since upon a definite diagnosis

of MS, the disease is likely already associated with complex anti-

myelin autoreactivity, due to ‘‘epitope spread’’ [26,28,31] , we

assessed the efficacy of the multi-epitope-targeting approach, via

Y-MSPc vs. mixture of relevant peptides, as multi-epitope

targeting agents, in downregulating the multiple pathogenic anti-

myelin autoreactivities, concomitantly. Encephalitogenic T-cell

lines specific for phMBP89-104, phPLP139-151, phMOG34-56,

phMOBP15-36, or phOSP55-74 were derived from BSF1 mice

immunized with the relevant peptide (Table S1). ‘‘Complex EAE’’

associated with multiple pathogenic anti-myelin autoreactivies

against five major encephalitogenic myelin proteins was induced

by transfer of a pool of the five independent encephalitogenic T-

Figure 2. Systemic administration of Y-MSPc suppresses ‘‘classical’’ EAE induced by a single encephalitogenic antigen/peptide more
effectively than peptide administration. (A, B), Suppression of actively induced EAE by Y-MSPc vs. specific antigen/peptide. BSF1 mice were
immunized for induction of EAE by rhMOG (A) or PLP139-151 (B). On days indicated by arrows, the mice (n = 5 per group) received i.v. injection of
soluble rhMOG (75 mg), PLP139-151 (75 mg), or Y-MSPc (75 mg) in 0.5 ml PBS, or PBS alone. Y, denotes mortality in the PLP139-151 treated group
(Fig. 2B) due to anaphylactic shock on days 9 and 11 after immunization (one mouse and two mice, after the third and fourth injections, respectively),
and therefore from day 11, the data are given for the two remaining mice only. (C, D), Suppression of passive EAE by Y-MSPc vs. specific peptide. EAE
was passively transferred in naı̈ve BSF1 mice with phMOG34-56-specific (C) or phPLP139-151-specific (D) line T cells (26106 cells). From days 1 to 5
(arrows), the mice (n = 6 per group) were injected i.v. with 75 mg of hMOG34-56, PLP-139-151, Y-MSPc, or KLH in 0.5 ml PBS, or with PBS alone. Shown
are the clinical scores of one experiment out of two independent experiments that were performed of suppression of active (A, B) and passive (C, D)
EAE. The two independent experiments yielded similar results, and the propensity of PLP peptide to induce high frequency of fatal anaphylactic
shock was observed in the two experiments, as previously reported [52]. *, p,0.05; ** , p,0.005; ***, p,0.0005, compared to PBS control group; two
tailed unpaired Student’s t-test.
doi:10.1371/journal.pone.0027860.g002
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cell lines into naı̈ve BSF1 mice. Fig. 3A shows that tolerogenic

administration of Y-MSPc was superior to single peptide

(phMBP89-104) or even to a mixture of relevant peptides (huPEP

mix) in suppressing the development of passive chronic ‘‘complex

EAE’’. While recipient mice that had been treated with PBS or

with control protein keyhole limpet hemocyanin (KLH) developed

severe chronic EAE (mean maximal clinical score of ,3.5 or 3.0,

respectively), the development of the disease in mice treated with

Y-MSPc was strongly suppressed (mean maximal clinical score of

0.75) (Fig. 3A). Although treatment with soluble huPEP mix

containing five peptides representing the epitopes of the five

encephalitogenic T-cell lines also reduced disease severity, (mean

maximal clinical score of 1.6), suppression by huPEP mix was

significantly less effective than that by Y-MSPc. It should be also

noted that the equivalent proportion of epitopic region in the Y-

MSPc is considerably lower than that of each peptide in huPEP

mix, i.e. molar ratio ,7.5:1 for individual peptide: Y-MSPc.

The insignificant effect of the systemic administration of only

phMBP89-104 on the passively transferred ‘‘complex EAE’’

(Fig. 3A), further emphasize that targeting pathogenic autoim-

mune cells reactive against only a single epitope (peptide) is not

sufficiently effective for treatment of a disease associated with

multiple pathogenic anti-myelin autoimmunity.

Ex-vivo analysis following the different treatments (Fig. 3B)

revealed that disease suppression was associated with downregu-

lation of the transferred pathogenic line T-cells, and that the Y-

MSPc was more effective than huPEP mix in downregulating the

pathogenic T cells reactive against each of the myelin epitopes,

concomitantly. Thus, splenocytes from BSF1 recipients of the five

pathogenic T-cell lines that were treated with Y-MSPc showed

over 90% reduction in the reactivity against the different relevant

peptides, as compared to splenocytes from recipients treated with

PBS, and over 75% reduction when compared to control

treatment with KLH, which showed some non-specific, but yet

significant, downregulation of anti-myelin autoreactivity (Fig. 3B).

Interestingly, although treatment with huPEP mix also resulted in

a concomitant downregulation of T cells reactive against the

different myelin epitopes (25–35%, compared to PBS treatment,

Fig. 3B), albeit less than that by Y-MSPc, the downmodulation of

‘‘complex EAE’’ by huPEP mix was only mild compared to that by

Y-MSPc (Fig. 3A).

Analysis and comparison of the anti-PLP peripheral
regulatory mechanisms induced by treatment with Y-
MSPc vs. single PLP peptide or huPEP mix

The efficacy of the regulatory mechanisms induced following

treatment of PLP139-151-EAE by tolerogenic administration of the

disease inducing peptide (PLP139-151) vs. peptides mixture (huPEP

mix) or Y-MSPc, was elaborated using (C57Bl.FoxP3GFPxSJL/

J)F1 mice. These mice are as susceptible to induction of EAE as the

wild-type BSF1 mice (data not shown). PLP139-151/CFA immu-

nized mice were treated by i.v. injections of soluble phPLP139-151,

Y-MSPc, huPEP mix, Y-DMP, or PBS, on days 3, 5, and 7 post

immunization. The huPEP mix (containing seven encephalitogenic

peptides representing the major encephalitogenic epitopes of five

human myelin proteins) and the non-relevant control recombinant

protein, Y-DMP, are defined in legend to Fig. 4. Three days after

last injection (day 10 post immunization), the effects of the various

treatments on PLP139-151-reactive T-cells in the draining LN were

analyzed ex-vivo. Fig. 4 shows that systemic administration of Y-

MSPc was more potent than treatment with PLP139-151 or with

huPEP mix in the induction of specific anti-PLP peripheral

tolerogenic mechanisms, by most parameters analyzed. Thus, while

Y-MSPc significantly reduced the recall proliferative response to

PLP139-151 by about 80%, compared to PBS, treatment with

pPLP139-151 reduced the response by about 50%, whereas the

effect of the treatment by huPEP mix was only marginal (Fig. 4A).

The downregulation of the PLP response following treatment with

Figure 3. Y-MSPc is more efficacious than peptide cocktail
(huPEP mix) in suppressing passively transferred ‘‘complex
EAE’’ and in concomitantly downregulating multiple patho-
genic anti-myelin T-cells. ‘‘Complex EAE’’ associated with multiple
pathogenic anti-myelin T-cell autoreactivities was passively transferred
to BSF1 mice with a pool of five activated encephalitogenic T-cell lines:
Recipient mice were injected i.v. with 0.5 ml PBS containing phMBP89-
104-specific line T-cells (0.56106), phPLP139-151-specific line T-cells
(0.56106), phMOG34-56-specific line T-cells (0.76106), phMOBP15-36-
specific line T-cells (0.86106), and phOSP55-74-specific line T-cells
(0.56106). Each of the individual T-cell lines is highly encephalitogenic
(Table S1). (A) Efficacy of Y-MSPc vs. peptide cocktail (huPEP mix), as
‘multi-epitope targeting’ agents, in suppressing passively transferred
‘‘complex EAE’’. Recipients of the pool of encephalitogenic T-cell lines
were injected i.v. daily, from days 1 to 4 after transfer, with phMBP89-
104 (75 mg), a mixture of the 5 relevant peptides at equivalent amounts
(huPEP mix, 150 mg total), Y-MSPc (100 mg), KLH (100 mg) as negative
control, or with PBS, and followed for the development of clinical signs
of EAE. (B), Y-MSPc suppression of passively transferred ‘‘complex EAE’’ is
associated with concomitant downregulation of each of the multiple
encephalitogenic T-cells. Recipients were injected on days 1, 2, 3, and 4
after T-cell transfer with Y-MSPc (100 mg), KLH (100 mg), huPEP mix
(150 mg) in 0.5 ml PBS, or with PBS alone. On day 7, spleen cells were
isolated and tested for their proliferative response to each of the
relevant five peptides (10 mg/ml). The in-vivo and in-vitro suppression
effects presented are from one experiment representative of two (A) or
three (B) independent experiments. ***, p,0.0005 compared to PBS
control group; two tailed unpaired Student’s t-test.
doi:10.1371/journal.pone.0027860.g003
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Figure 4. Analysis of the efficacy of anti-PLP peripheral regulatory mechanisms induced by treatment with Y-MSPc vs. single PLP
peptide or peptide mixture (huPEP mix). (C57Bl.FoxP3GFPxSJL/J)F1 mice were immunized s.c. with PLP139-151 (100 mg) in CFA. On day 3, 5, and
7 post immunization, mice (n = 3/group) were injected i.v. with YMSPc (75 mg/mouse), PLP139-151 (100 mg/mouse), huPEP mix (total 140 mg/mouse),
Y-DMP (75 mg/mouse), or with 0.5 ml PBS. The huPEP mix contained 1:1 ratios of phPLP139-151, phPLP175-194, phMOG34-56, phMBP89-104,
phMOBP15-36, phOSP55-80 and phOSP186-205 (20 mg each peptide), representing the major encephalitogenic epitopes of five human myelin
proteins. A control treatment with non-relevant recombinant protein (Y-DMP) was also included to exclude the possibility that residual bacterial
contaminants contributed to the efficacy of Y-MSPc. (Y-DMP is a diabetes mellitus-related recombinant artificial protein encompassing selected
multiple epitopes of several antigens related to diabetes; The Y-DMP was constructed, expressed and purified similar to Y-MSPc). Three days later (10
days after immunization), draining LN cells from each treatment group were pooled and analyzed for: (A), Ex vivo recall proliferative response to
PLP139-151. The LN cells from each treatment group were cultured for 72 h in microtiter wells in triplicates (0.56106/well) in the absence or presence
of PLP139-151 (5 mg/ml ). [H3]Thymidine was added for the last 18 h. (B–G), Secretion of pro-inflammatory (B–D) and anti-inflammatory (E–G) cytokines.
LN cells from each treatment group were cultured (56106/ml ) in triplicate cultures in the absence or presence of PLP139-151 (5 mg/ml ) for 48 h, and
the supernatants were collected for measuring the secreted INF-c, IL-2, IL-17, TGF-ß,, IL-4 and IL-10 cytokines by ELISA. For each treatment group, the
net values are presented (after subtracting the values obtained in control cultures without PLP peptide). (H), Ex-vivo recall proliferative response to
PLP139-151 in the presence of exogenous IL-2. LN cells from the different treatment groups were cultured in microtiter wells in triplicates without or
with PLP139-151 (5 mg/ml) [as in (A)] and in the absence or the presence of exogenous rIL-2 (3.5 U/ml) for 72 h, with [H3]Thymidine added for the last
18 h. Calculating % reactivation: For each treatment group, the S.I. calculated for the recall proliferative response in the presence of exogenous IL-2
was divided by the S.I. calculated in the absence of exogenous IL-2. (I), Flow cytometry of regulatory T-cells induced following systemic administration of
YMSPc, PLP139-151, huPEP mix, Y-DMP, or PBS. Draining LN cells from different treatment groups were co-stained with anti-CD4-APC and anti-CTLA-4-
PE. The percentage of the FoxP3 (a) or CTLA-4 (b) expressing cells on gated CD4+ cells is shown. The FACS histograms are from one representative
experiment, and the panels at the right end of Ia and Ib are the mean values +/2SD from three independent experiments. (J), Ex-vivo recall
proliferative response to PLP139-151 by primed LN cells in the presence of neutralizing anti- TGF-ß, or anti-CTLA-4 antibodies. Draining LN cells from the
different treatment groups were cultured without or with PLP139-151 (5 mg/ml) [as in (A)] and without or with added neutralizing antibodies anti-
TGF-ß, or anti-CTLA-4 (10 mg/ml), or respective isotype control antibodies. Calculating % reactivation: The S.I. calculated for the recall proliferative
response in the presence of neutralizing antibodies or the respective isotype control antibodies was divided by the S.I. of the recall response in the
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Y-MSPc was associated with strong reduction in the secretion of the

proinflammatory cytokines, INFg (about 70%; Fig. 4B), IL-2 (about

90%; Fig. 4C), and IL-17 (about 70%; Fig. 4D) compared to PBS

treatment. PLP139-151 treatment also reduced secretion of IFN-c
and IL-17 (about 55% and 40%, respectively, compared to PBS

treatment), albeit consistently less than that following Y-MSPc

treatment. In contrast, treatment with huPEP mix was by far less

effective (in several experiments) in reducing the Th1/Th17

cytokines (Figs. 4B,C&D). As shown in Figs. 4F&G, neither Y-

MSPc treatment nor PLP139-151 or huPEP mix treatment elevated

IL-4 or IL-10 anti-inflammatory cytokines, at this time point of

analysis (3 days after treatment; see analysis below on day 7 after

treatment for comparison). This pattern of cytokine secretion was

consistent in the three independent experiments that were carried

out.

Interestingly, addition of exogenous IL-2 to the microcultures

enhanced the recall proliferative response to PLP139-151 by the

Y-MSPc-treated, but not by PLP139-15-, huPEP mix-, or PBS-

treated primed LN cells (Fig. 4H), suggesting that only treatment

by Y-MSPc induced a state of anergy in PLP139-151-reactive T-

cells. In contrast, analysis of 7AAD/Annexin-V staining of CD4+
LN cells from Y-MSPc- vs. PLP139-151- or huPEP mix-treated

mice, revealed that systemic administration of phPLP139-151 or

huPEP mix, but not Y-MSPc, significantly elevated the apoptosis

by about 10% over the PBS treatment (p,0.05) and over Y-MSPc

treatment (p,0.005) Fig. 4K). However, as shown in Fig. 4E, only

primed LN cells from Y-MSPc-, but not phPLP139-151- or

huPEP mix-, treated mice secreted significant amount of TGF-ß,

suggesting that downregulation of PLP139-151-reactive T-cells by

Y-MSPc may involve induction of regulatory T-cells. Indeed,

FACS analysis of PLP139-151-primed LN cells from mice treated

with PBS, Y-MSPc, PLP, or huPEP mix, showed that 7.3% of the

CD4+ LN cells from Y-MSPc-treated mice were FoxP3+ cells,

compared to 4%, 3.5%, or 5% FoxP3+ cells of total CD4+ T-cells

from phPLP139-151-, huPEP mix-, or PBS-treated LN cells,

respectively (Fig. 4Ia histograms). Similarly, in the same

experiment, 9.5% of the CD4+ T-cells of LN cells from Y-

MSPc-treated mice were CTLA-4+ cells, compared to 5.4%,

6.3%, or 6.4% CTLA-4+ cells of total CD4+ T-cells from

phPLP139-151-, huPEP mix-, or PBS-treated LN cells, respec-

tively (Fig. 4Ib histograms). The increase in Foxp3+ and CTLA-4+
cells following treatment with Y-MSPc was consistent in all the

three independent experiments that were carried out (Figs. 4Ia&b,

right end panels). The results (Fig. 4J) showing that the

neutralizing antibodies anti-TGF-ß or anti-CTLA-4 increased by

about 55% or 45%, respectively, the recall proliferative response

to PLP139-151 by primed LN cells only from Y-MSPc-treated, but

not from PLP139-51-, huPEP mix-, Y-DMP, or PBS-treated mice

(Fig. 4J), indicated the functionality of the Foxp3+/CTLA-4+ Treg

cells, and further supported the possibility that suppression of EAE

by treatment with Y-MSPc, but not with PLP139-151 peptide or

with huPEP mixture of peptides, involves induction of CD4+
regulatory T cells.

The data presented in Fig. 4 strongly suggest that treatment

with Y-MSPc is superior to treatment with PLP139-151 in the

induction of anti-PLP peripheral regulatory mechanisms, explain-

ing the higher efficacy of Y-MSPc in the suppression of actively or

passively induced classical EAE (Fig. 2). Also, the more effective

anti-PLP peripheral regulatory mechanisms induced by Y-MSPc

compared to huPEPmix, is commensurate with the higher efficacy

of Y-MSPc vs. huPEPmix in the suppression of passively induced

‘‘complex’’ EAE (Fig. 3).

Downregulation of pathogenic autoimmunity against
PLP last longer following treatment with Y-MSPc than
with a single peptide or peptide mixture

The efficacy of anti-PLP peripheral regulatory mechanisms was

assessed also 7 days after the last tolerogenic administration of the

different agents. Splenocytes from mice that were immunized with

PLP139-151/CFA and treated with Y-MSPc, phPLP139-151,

huPEP mix, Y-DMP, or PBS (as in Section 3.4), were analyzed (on

day 14 post immunization and 7 days after last treatment) for their

ex-vivo recall proliferative responses against PLP139-151, and for

their cytokine secretion pattern, as above. The results presented in

Fig. 5 show that the downregulation of PLP-reactive T-cells

following treatment with Y-MSPc remained quite potent (about

70% compared to PBS treatment) also 7 days after last systemic

administration (Fig. 5A), while downregulation following treat-

ment with phPLP139-151or huPEP mix was only about 23% and

27%, respectively, compared to PBS treatment) (Fig. 5A).

Although the treatment with Y-MSPc, as well as with

phPLP139-151 or huPEP mix reduced secretion of IFN-c and

IL-17 to a significant levels (Figs. 5C&D), the secretion of IFN-c,

IL-17 and IL-2 was more profoundly reduced following treatment

with Y-MSPc (75–90%), compared to that following treatment

with phPLP139-151 or huPEP mix (Figs. 5C&D). In addition,

contrary to the results obtained with LN cells three days after last

systemic administration (Fig. 4F&G), the secretion of IL-4 and IL-

10 anti-inflammatory cytokines became significantly elevated, but

only by primed PLP-reactive splenocytes from mice treated by Y-

MSPc, but not by phPLP139-151 or huPEP mix (Figs. 5F&G).

Moreover, only primed PLP-reactive T-cells from mice treated by

Y-MSPc could be reactivated ex-vivo in the presence of exogenous

IL-2 (Fig. 5H), indicating that PLP-reactive T-cells are still under

anergy also 7 days after cessation of Y-MSPc treatment. As shown

in Fig. 5I, the presence of neutralizing anti-CTLA-4, but not anti-

TGF-ß, antibodies increased the proliferative response of spleno-

cytes only from Y-MSPc-treated mice, suggesting that CTLA-4-

associated regulation is still operative 7 days after last treatment

with Y-MSPc. However, unlike 3 days after cessation of treatment

(Fig. 4Ia&Ib), we could not observe a significant elevation of

FoxP3+ or CTLA-4+ cells in the spleen of Y-MSPc-treated mice,

compared to PLP-, huPEP mix-, treated mice (data not shown), or

secretion of TGF-ß, by the primed splenocytes (Fig. 5E). Also

contrary to 3 days after treatment, a significant increase in

apoptosis could not be detected in splenocytes of any of the

treatment groups by day 7 after cessation of treatment (data not

shown).

Overall, the results of Figs. 4&5 altogether show that following

systemic administration, Y-MSPc was clearly more effective than

PLP139-151 or huPEP mix in inducing peripheral tolerogenic

absence of neutralizing or isotype control antibodies, respectively. (K), Percent apoptotic cells in CD4+ T cell population of different treatment groups.
Apoptosis was determined by FACS analysis of Annexin V/7-AAD staining on gated CD4+ cells. The data presented in A, H, I (the panels a and b at the
right end), J, and K, are the mean values from three independent experiments. Data presented in B–G are the mean +/2SD of triplicate cultures of
pooled LN cells from one experiment representative of three independent experiments showing a similar pattern. The significance of the effect of Y-
MSPc treatment compared to PBS control treatment was p = 0.0003 in A; p = 0,001 in B: p = 0.0001 in C: p = 0.02 in D: p = 0.0002 in E: p,0.00001 in H;
p = 0.03 in Ia: p = 0.04 in Ib; and p = 0.05 in K. The significance of the effect of Y-MSPc treatment compared to huPEP mix treatment: *, p,0.05; **,
p,0.005; ***, p,0.0005 (two tailed Student’s t-test).
doi:10.1371/journal.pone.0027860.g004
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mechanisms that resulted in a more profound downregulation of

pathogenic PLP139-151-reactive T-cells. These results also

indicated that the immunomodulatory effect of Y-MSPc could

not be attributed to residual bacterial components, as treatment

with the control recombinant Y-DMP had no effect on

downregulation of PLP139-151-reactive T-cells (Figs. 4A&5A).

While downregulation of PLP139-151-reactive T-cells following

treatment with PLP139-151 was more associated with induction of

apoptosis, Y-MSPc treatment was associated with induction of

anergy and FoxP3+/CTLA-4+ regulatory T-cells (Figs. 4&5), and

with shifting the cytokine secretion profile of PLP-reactive T-cells

from Th1/Th17 pro-inflammatory to Th2 anti-inflammatory

cytokines (IL-4, IL-10) (Fig. 5). Moreover, the regulatory

mechanisms induced following treatment with Y-MSPc were

longer lasting than that induced by PLP139-151 or peptide

mixture (Fig. 5).

Reversal by Y-MSPc of ongoing EAE induced by
pathogenic autoimmunity against a single
encephalitogenic protein/epitope

While systemic administration of Y-MSPc strongly suppresses

disease development (Figs. 2&3), potential approaches to therapy

of MS are only worth considering if their efficacy extends to

treatment of ongoing disease. We therefore assessed the effect of

the treatment by Y-MSPc on the clinical course of ongoing

chronic EAE induced by pathogenic autoimmunity against a single

myelin epitope/antigen. BSF1 mice with established chronic EAE

induced by active immunization with PLP139-151 were treated

(10–12 days after disease onset) every 2–3 days with Y-MSPc or

PBS. As shown in Fig. 6A, tolerogenic administration of Y-MSPc

resulted in an immediate disease amelioration that progressed to

almost a full recovery that lasted until the experiment was

terminated (over three weeks after cessation of treatment). In

contrast, 6 of the 7 mice treated with PBS showed a persistent

chronic clinical EAE until the experiment was terminated (Fig. 6A).

The efficacy of Y-MSPc treatment was than compared with that

of PLP139-151 peptide or huPEP mix in reversal of ongoing EAE,

actively induced by PLP139-151. As shown in Fig. 6B, systemic

administration of PLP139-151 peptide only arrested disease

progression and moderately reduced the clinical manifestations.

Rather intriguingly, the administration of huPEP mix had no effect

on disease progression, while the administration of Y-MSPc resulted

in an immediate disease amelioration and quick reduction in the

clinical manifestations that progressed to a complete recovery.

A similar therapeutic efficacy of Y-MSPc emerged also following

treatment of ongoing passive EAE transferred by committed

Figure 5. Systemic administration of Y-MSPc induces longer lasting peripheral regulatory mechanisms than PLP139-151 peptide or
peptide mixture (huPEP mix). (C57Bl.FoxP3GFPxSJL/J)F1 mice were immunized with PLP139-151/CFA and injected i.v with YMSPc, PLP139-151,
huPEP mix, Y-DMP, or with PBS, on day 3, 5, and 7 post immunization, as in Fig. 4. Seven days after last injection (14 days after immunization),
splenocytes from each treatment group (n = 2/group) were pooled and analyzed as detailed for the LN cells in Fig. 4, for: (A), Ex vivo recall proliferative
response to PLP139-151 (5 mg/ml); (B–G), Secretion of pro- and anti-inflammatory cytokines; (H, I), Ex-vivo recall proliferative response to PLP139-151 as in
(A) but in the absence or presence of exogenous IL-2 (H), or neutralizing antibodies anti-TGF-ß or anti-CTLA-4 (I), or their respective isotype control
antibodies. The ex-vivo analysis of the responses of splenocytes was carried out as detailed in the legend to Fig. 4, respectively. The data presented in
A, H, and I, are the mean +/2SD values from three independent experiments. Data presented in B–G are the mean +/2SD of triplicate cultures of
pooled splenocytes from one experiment representative of three independent experiments showing a similar pattern. The significance of the effect
of Y-MSPc treatment compared to PBS control treatment was p = 0.002 in A; p = 0,0001 in B; p = 0.002 in C: p = 0.0009 in D: p,0.0001 in F: p = 0001 in
G&H. The significance of the effect of Y-MSPc treatment compared to huPEP mix treatment: *, p,0.05; ** , p,0.005; ***, p,0.0005 (two tailed
Student’s t-test).
doi:10.1371/journal.pone.0027860.g005
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pathogenic PLP139-151-specific T cells (Fig. 6C). In contrast, the

systemic administration of PLP peptide (50 mg/injection) had no

significant effect on the clinical course of the disease. However, as

mentioned above, the effect of systemic administration of PLP139-

151 on passively transferred PLP139-151-specific T cells into BSF1

mice is consistently remarkably low, for reasons not yet understood.

Administration of higher amount of PLP139-151 peptide (100 mg/

injection) resulted in high frequency of acute hypersensitivity

reaction (data not shown).

Treatment of chronic ‘‘complex EAE’’ by Y-MSPc vs.
peptide cocktail, as ‘‘multi-epitope targeting’’ agents

Upon definite diagnosis of MS, multiple pathogenic autoreac-

tivities to myelin antigens may already be at play in patients. It is

therefore essential to determine whether or not the therapeutic

effect observed with ongoing EAE induced by autoreactivity to a

single myelin epitope is effective also for ongoing ‘‘complex EAE’’

associated with multiple anti-myelin pathogenic autoimmunity.

Chronic ‘‘complex EAE’’ was induced in BSF1 mice by

immunization with a mixture of five (hMOG34-56, hMBP89-

104, hPLP139-151, hMOBP15-36 and hOSP55-80) peptides

(huPEP mix), each representing encephalitogenic epitope of five

different human myelin proteins represented in the Y-MSPc. In

this model, the expected pathogenic autoimmunity against the

immunizing well-defined encephalitogenic epitopes (peptides),

may be further complicated by emerging neo-autoreactivities

against additional myelin epitopes, due to ‘‘epitope spread’’. Mice

with ongoing ‘‘complex EAE’’ were treated with Y-MSPc.

PLP139-151, huPEP mix, or with PBS. As shown in Figure 7A,

treatment with Y-MSPc resulted in a rapid reversal of clinical signs

of EAE to almost complete recovery, compared to the consistent

clinical signs of EAE in PBS-treated mice. In contrast, only

moderate, albeit clear, beneficial effect was observed upon

treatment with PLP139-151 alone or huPEP mix, however, two

out of five mice treated with huPEP mix died of anaphylactic

shock (Fig. 7A). The efficacy of Y-MSPc in treatment of ‘‘complex

EAE’’ was also highly effective for ongoing ‘‘complex EAE’’

induced by immunization with MSCH, which contains all possible

myelin and non-myelin CNS antigens. Fig. 7B shows that

tolerogenic administration of Y-MSPc into mice with persistent

clinical signs of EAE resulted in almost complete reversal of the

clinical impairments, and the clinical amelioration perdured. In

contrast, treatment with huPEP mix had only a marginal effect on

disease progression (Fig. 7B).

Not less importantly, in the context of potential clinical utility of

an antigen-based immune-specific therapeutic approach that is

based on ‘‘multi-epitope targeting’’ agents, the Y-MSPc was highly

effective even in very small quantities. Thus, as demonstrated in

Fig. 8, tolerogenic administration of Y-MSPc resulted in almost

complete reversal of ongoing PLP139-151/CFA-induced EAE

even at doses as low as 10 mg (Fig. 8).

Discussion

It is now widely accepted that the pathogenic autoimmunity in

MS, as well as in other organ-specific autoimmune diseases, can be

directed against several target antigens. In view of the multiplicity

of potential target antigens in MS, the primary target antigen may

be different in different patients. Moreover, in the same patient,

the pathogenic autoimmunity may also shift or expand to other

CNS target antigens with disease progression due to ‘‘epitope

Figure 6. Treatment with Y-MSPc is more effective than peptide(s) in reversing ongoing ‘‘classical’’ EAE actively or passively
induced by PLP139-151. BSF1 mice were immunized with phPLP139-151/CFA or were infused with syngeneic encephalitogenic PLP139-151-
specific line T cells (26106 per mouse) for the development of actively or passively induced chronic EAE, respectively. (A), The therapeutic effect of Y-
MSPc on chronic EAE is long lasting. On day 27 after immunization, mice with established chronic EAE (about two weeks after disease onset) were
grouped (with equal mean clinical score of ,2/group; n = 7 mice/group) and treated on days indicated by arrows by i.v. injections of Y-MSPc (75 mg
in 0.5 ml PBS) or PBS alone. (B), Reversal by Y-MSPc vs. phPLP139-151 or huPEP mix of actively induced ongoing EAE. On day 17 after immunization, mice
with ongoing EAE (about a week after disease onset) were grouped (with equal mean clinical score of ,2/group; n = 7 mice/group) and treated on
days indicated by arrows by i.v. injections of Y-MSPc (75 mg), phPLP139-151 (100 mg), huPEP mix (7 peptides as in Fig. 4; total 140 mg), KLH (75 mg), or
PBS. (C), Reversal by Y-MSPc vs. phPLP139-151 of passively induced ongoing EAE. On day 10 after transfer, mice with ongoing EAE (4 days after onset)
were treated by i.v. injections with 50 mg of PLP139-151, 75 mg of Y-MSPc, or PBS alone (n = 6 per group). Results are shown as mean clinical score
+/2SE. **, p,0.005; ***, p,0.0005 compared to PBS control group; two tailed Student’s t-test. P = 0.1 (n.s.) for the KLH treatment group, compared to
PBS, for days 28 and 31.
doi:10.1371/journal.pone.0027860.g006
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spread’’ [28,31,40]. Thus, it is likely that upon definite diagnosis, a

complex pathogenic autoimmune process is already at play. In this

study, data from experiments in different mouse models of MS

show that antigen-based treatment with a single antigen/

epitope(peptide) is unlikely to be a sufficiently effective therapy

for organ-specific autoimmune diseases associated with complex

pathogenic autoimmunity. Furthermore, and of major significance

for immune-specific therapy, our data also strongly suggest that

antigen-based therapy of organ-specific autoimmune diseases,

such as MS, is likely to be effective only if the multiple pathogenic

autoimmune T cells reactive against major organ-specific target

antigens/epitopes would be concomitantly targeted. Thus, in

‘‘complex EAE’’, a murine model that better resembles the

complex pathogenic anti-myelin autoimmunity in MS, immune-

specific treatment that targets pathogenic T cells reactive against

only a single MOG or PLP epitope (peptide) is significantly less

effective than treatment with a ‘‘multi-epitope targeting’’ agent

that can concomitantly neutralize multiple pathogenic autoim-

mune T cells reactive against multiple myelin antigens/epitopes.

Such a ‘‘multi-epitope-targeted’’ approach to immune-specific

therapy for MS-like disease was investigated using the artificial

multi-epitope protein, Y-MSPc, or a cocktail of human myelin

peptides (huPEP mix), as ‘‘multi-epitope-targeting’’ agents. As

presented here, treatment with Y-MSPc was consistently more

effective than treatment with relevant peptide cocktail, both in

suppressing the development of ‘‘complex EAE’’ and in amelio-

rating ongoing disease, via the induction of more efficacious and

longer lasting peripheral regulatory mechanisms; and, of most

significance for its potential clinical utility, the Y-MSPc was also

more effective in the reversal of ongoing ‘‘complex EAE’’

associated with multiple pathogenic anti-myelin autoimmunity.

These findings strongly suggest that concomitant targeting of

multiple pathogenic T-cells is more effective when the multiple

epitopes are encompassed within a specifically engineered globular

Figure 7. Efficacy of Y-MSPc vs. huPEP mix in reversal of ongoing ‘‘complex EAE’’ associated with multiple potentially pathogenic
autoreactivities. (A), Treatment of ‘‘complex EAE’’ induced by mixture of encephalitogenic peptides. BSF1 mice were immunized with huPEP mix
emulsified in CFA [a mix of five encephalitogenic peptides, phMOG34-56, phMBP89-104, phPLP139-151, phMOBP15-36 and phOSP55-80, (75 mg
each)]. From day 17 after immunization, the mice (n = 5/group) were treated on days indicated by the arrows by i.v. injection with Y-MSPc (75 mg),
PLP139-151 (100 mg), or huPEP mix (30 mg of each of the five peptides) in 0.5 ml PBS, or with PBS alone. Y, denotes mortality in the huPEP mix-
treated group. Two mice died of anaphylactic shock on day 27 and day 29 after the sixth and seventh injection, respectively; data shown after day 29
are for the remaining 3 mice. (B), Treatment of ‘‘complex EAE’’ induced by MSCH. BSF1 mice were immunized with MSCH as described in Methods. From
day 20 after immunization, mice with ongoing EAE (n = 5/group) were treated on days indicated by the arrows by i.v. injection with Y-MSPc (75 mg) in
0.5 ml PBS, huPEP mix (7 peptides as in Fig. 4; total 140 mg), KLH (75 mg) or with PBS alone. Results are shown as mean clinical scores +/2SE;
*, p,0.05; **, p,0.005; ***, p,0.0005 compared to PBS control group; two tailed unpaired Student’s t-test.
doi:10.1371/journal.pone.0027860.g007

Figure 8. Effective reversal of ongoing PLP139-151-induced
EAE by treatment with low doses of Y-MSPc. BSF1 mice were
induced to develop ‘‘classical’’ EAE with PLP139-151. Starting on day 21
after immunization (6–8 days after disease onset), mice with a clinical
score of at least 2 were grouped into groups with equal mean clinical
score (5 mice/group) and treated with indicated doses of Y-MSPc in PBS
(0.5 ml) or with PBS alone on days indicated by the arrows. Results
shown are the mean clinical score +/2SE of one representative
experiment out of two independent experiments showing a similar
pattern; *, p,0.05 compared to PBS control group; two tailed Student’s
t-test.
doi:10.1371/journal.pone.0027860.g008
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protein rather than presented as a mixture of relevant synthetic

peptides.

Notably, Y-MSPc was also consistently more effective in

treatment of ongoing ’’classical’’ EAE induced by a single

encepalitogenic antigen/peptide (PLP139-151 or hMOG/

hMOG34-56) than treatment with the disease-inducing peptide

itself. The higher efficacy of Y-MSPc could be attributed, at least

in part, to its inherent potential advantage in neutralizing also

pathogenic neo-autoreactivities that could emerge from ‘‘epitope

spread’’. However, the systemic administration of Y-MSPc prior to

disease onset (and before ‘‘epitope spread’’ emerged), suppressed

‘‘classical’’ EAE that was actively or passively induced by a single

antigen/peptide (hMOG/hMOG34-56 or PLP139-151) more

effectively than systemic administration of the relevant disease-

inducing peptide. The superior efficacy of Y-MSPc in suppression

of active ‘‘classical’’ EAE (Figs. 2A&B) was found to be related to

its greater capacity than peptide(s) to induce peripheral tolerogenic

mechanisms [anergy (Fig. 4&5), FoxP3+ CTLA-4+ regulatory T-

cells (Fig. 4&5), and shifting of Th1/Th17 T-cells into anti-

inflammatory Th2 cells secreting IL-4 and IL-10 cytokines; (Fig. 5)]

resulting in more effective downregulation of PLP139-151-reactive

T-cells in mice inoculated by PLP139-151/CFA for the develop-

ment of EAE. In addition, the regulatory mechanisms induced

following treatment with Y-MSPc, but not following treatment

with a single peptide or peptide mixture, were still effective in

downregulation of PLP139-151-reactive T-cells also 7 days after

cessation of treatment. However, the peripheral regulatory

mechanisms that were detected 3 or 7 days after cessation of

treatment could not be detected any more 14 days after last

treatment in the PLP139-151/CFA-immunized mice that were

treated with Y-MSPc. Yet, compared to PBS-treated mice, the

pathogenic T-cell reactivity against PLP in the spleen of mice

treated with Y-MSPc remained quite low, almost at baseline levels,

also after 14 days following cessation of treatment, as determined

by analysis of their ex-vivo recall proliferative responses to

PLP139-151 (data not shown). These data altogether, suggest that

the peripheral regulatory mechanisms that develop during

treatment with Y-MSPc are rather transient after cessation of

treatment. However, the high efficacy of the Y-MSPc-induced

regulatory mechanisms, albeit relatively ‘‘short-term’’ (.7 days

and ,14 days after cessation of treatment), was apparently

sufficient to translate into longer lasting protection against the

pathogenic PLP-reactive T-cells, as evident from the long lasting

suppression and reversal of clinical EAE, weeks after cessation of

treatment (Figs. 2&6).

The basis for the higher immunomodulatory effect of Y-MSPc

compared to single peptide or peptide cocktail is, as yet, unclear.

The likely higher degradation and clearance rate of peptide(s)

compared to globular proteins could not be the sole explanation,

since the treatment with a soluble peptide(s) versus Y-MSPc

induced different regulatory mechanisms (Figs. 4&5). More

efficient in-vivo uptake of Y-MSPc and different pathways of

MHC-class II presentation, which favor presentation of particulate

proteins over exogenous peptides [41,42], is another plausible

explanation for its higher immunomodulatory efficacy. The

processing and presentation of antigens by immature dendritic

cells or other non-activated APCs, such as B-cells or macrophages,

can result in downregulation rather than upregulation of the

antigen-specific immune response [43,44]. Nonetheless, our results

strongly suggest that upon systemic administration, peptidic

myelin epitope(s) are less effective inducers of peripheral regulatory

mechanisms than the same epitope(s) when incorporated within a

globular multi-epitope protein, such as Y-MSPc. Why the multi-

epitope protein is more effective than peptide in the induction of

peripheral tolerogenic mechanisms and appears to operate via

different tolerogenic mechanisms is quite an intriguing question

and of high significance for a better understanding of peripheral

antigen-specific tolerance as well as for antigen-based immuno-

therapy. Unfortunately, however, none of the published studies

could provide experimentally based explanations, and the answer

to this question is now under investigation.

Another multi-epitope targeting approach with splenocytes

coupled with a peptide cocktail of four distinct encephalitogenic

epitopes was recently reported to be effective in preventative

tolerance as well as in the treatment of relapsing EAE [45]. In this

study, the PLP139-151, PLP178-191, MBP84-104, and MOG92-

106 chemically coupled to splenocytes were used as a ‘‘multi-

epitope targeting’’ agent. The efficacy of this multi-epitope

peptidic approach has not been compared with that of the

specifically designed multi-epitope protein, Y-MSPc.

It has been known for several decades that administration of

soluble MBP or the immunodominant peptides of MBP can

prevent and treat MBP-induced EAE [19,46][47]. Similar

observations have been made for prevention and treatment of

PLP- and MOG-induced EAE [9,20,48]. The development of this

immunospecific antigen/peptide-based treatment as an approach

to therapy of MS or of other human autoimmune diseases was

withheld for many years mainly because of the daunting inherent

potential risk that administration of native antigen/peptide would

also provoke pathogenic T cells and lead to disease exacerbation

rather than remission. The injection of Y-MSPc in CFA could

indeed induce EAE, albeit only with mild clinical manifestations

(data not shown). However, Y-MSPc is highly tolerogenic when

administered systemically as a soluble protein. In this context, it

should be noted that following i.v. treatment of chronic EAE with

soluble Y-MSPc, an immediate disease amelioration could be

observed, while disease exacerbations were not observed in any of

our experiments of suppression and treatment of chronic EAE by

Y-MSPc (over dozen experiments). Moreover, and more signifi-

cantly, in clinical trials with a soluble MBP, or with peptide

(MBP8296) representing the major immunodominant epitope of

MBP, infusions (i.v.) of MBP8296 or subcutaneous injection of

MBP or transdermal application of myelin peptides did not cause

disease exacerbations or any significant adverse effects in the

treated patients [21,22,23,49]. Nevertheless, the results of the

clinical trials were disappointing [21,22,23]. Other clinical trials in

MS with MBP altered peptide ligand (MBP-APL) also yielded

disappointing results [24,25]. All of these clinical trials, however,

were designed to target pathogenic T-cells reactive against only a

single target antigen/epitope without taking into consideration the

complexity and dynamics of the pathogenic autoimmunity

associated with MS. In fact, the failure of these clinical trials

corroborates our concept of concomitantly targeting potentially

pathogenic T cells reactive against multiple myelin target

antigens/epitopes as an approach for the treatment of MS.

Of no less significance in our study is the general lack of

hypersensitivity reaction upon treatment with Y-MSPc, while

several mice died of anaphylactic shock following treatment with

an individual peptide or peptide mixture encompassing enceph-

alitogenic epitope(s), as was observed following treatment with

PLP139-151 (Fig. 2B) or huPEP mix (Fig. 7A). The relatively

frequent occurrence of anaphylactic reactions following treatment

of EAE or type 1 diabetes with self peptides has been previously

reported [50,51,52], and has been suggested to be related to the

lack of thymic expression of the epitope encompassed within the

relevant peptide [50]. These observations are likely to be of high

relevance to the human disease, as shown in a trial for treatment of

MS patients with an altered peptide ligand of MBP, which was
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terminated because of systemic hypersensitivity reactions to the

peptide [24,25]. In contrast, only negligible hypersensitivity

reactions were observed in MS patients treated with the glatiramer

acetate (Copaxone) [53]. Obviously, it is of major advantage for its

clinical utility that the Y-MSPc can reach effective reversal of

ongoing EAE by therapeutic doses that do not induce anaphylaxis.

Why hypersensitivity reactions to peptides are far more frequent

than to a globular polypeptide-such as glatiramer acetate or Y-

MSPc is not yet known. However, since the hypersensitivity to

peptide is IgE-dependent [54], the differences in hypersensitivity

responses could be related to higher production of epitope-specific

IgE following peptide treatment, and/or to a higher availability of

the peptidic epitope for cross linking the specific IgE bound to

FceRI on mast cells.

Obviously, since not all potential target antigens have already

been identified, and due to the unpredictable pattern of ‘‘epitope

spread’’, generating a Y-MSPc-like multi-epitope protein that can

target pathogenic T-cells reactive against all potentially pathogenic

antigens/epitopes in MS is not possible. However, assuming that

after decades of intensive investigation by numerous laboratories

worldwide, most of the major encephalitogenic target antigens in

MS have been defined, it is likely that ‘cumulative’ specific

regulatory mechanisms induced by the different major MS-

relevant epitopes encompassed by the Y-MSPc-like multi-epitope

protein may downregulate, via ‘cumulative bystander suppression’,

also autoimmune T-cells reactive against other potential target

(minor) antigens not represented within the ‘‘multi-epitope

targeting’’ protein. In this context, it is of significance that Y-

MSPc fully reversed EAE induced by MSCH, which contains all

possible target antigens/epitopes of the CNS. In addition, the Y-

MSPc could also reverse pre-established chronic EAE induced by

single or multiple encephalitogenic peptides (Figs. 6&7), in which

the ‘‘epitope spread’’-related expansion of neo-autoreactivities is

likely to already be at play.

Overall, our studies using models of ‘‘complex EAE’’ show that

a concomitant ‘‘multi-epitope-targeting’’ approach is required for

effective antigen-based immune-specific therapy of organ-specific

autoimmune diseases associated with complex and dynamic

pathogenic autoimmunity, such as MS. Our studies also favor

the use of a specifically designed MS-relevant multi-epitope

protein over cocktail of myelin peptides, as ‘‘mutli-epitope

targeting’’ agents, for effective treatment of chronic MS-like

disease. Such an artificial multi-epitope protein can be adapted to

other organ-specific autoimmune diseases.
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open reading frame with the ATG of pRSET expression vector by
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Bacterial expression of the Y-MSPc-encoding gene and isolation

of Y-MSPc. Coomassie blue-stained SDS-PAGE analysis: Lane 1,

molecular weight standards; lane 2, bacterial extract before IPTG

induction; lane 3, after IPTG induction; lane 4, recombinant Y-

MSPc isolated by metal-chelate affinity chromatography on Ni-

NTA agarose (2 mg); lane 5, Ni-NTA-isolated Y-MSPc after high
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rads) syngeneic naı̈ve recipients. Recipients were followed for

development of clinical signs of EAE and scored as described [43].
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