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Abstract

Background: Mutations of human aA-crystallin cause congenital cataract by protein aggregation. How mutations of aA-
crystallin cause disease pathogenesis through protein aggregation is not well understood. To better understand the cellular
events leading to protein aggregation, we transfected cataract causing mutants, R12C, R21L, R21W, R49C, R54C, R116C and
R116H, of human aA-crystallin in HeLa cells and examined the formation of intracellular protein aggregates and aggresomes
by confocal microscopy.

Methodology/Principal Findings: YFP-tagged human aA-wild-type (aA-wt) was sub-cloned and the mutants were
generated by site-directed mutagenesis. The aA-wt and the mutants were individually transfected or co-transfected with
CFP-tagged aA-wt or aB-wild-type (aB-wt) in HeLa cells. Overexpression of these mutants forms multiple small dispersed
cytoplasmic aggregates as well as aggresomes. Co-expression of aB-wt with these mutants significantly inhibited protein
aggregates where as co-expression with aA-wt enhanced protein aggregates which seems to be due to co-aggregation of
the mutants with aA-wt. Aggresomes were validated by double immunofluorescence by co-localization of c-tubulin, a
centrosome marker protein with aA-crystallin. Furthermore, increased ubiquitination was detected in R21W, R116C and
R116H as assessed by western blot analyses. Immunostaining with an ubiquitin antibody revealed that ubiquitin inclusions
in the perinuclear regions were evident only in R116C transfected cells. Pulse chase assay, after cycloheximide treatment,
suggested that R116C degraded faster than the wild-type control.

Conclusions/Significance: Mutants of aA-crystallin form aggregates and aggresomes. Co-expression of aA-wt with the
mutants increased aggregates and co-expression of aB-wt with the mutants significantly decreased the aggregates. The
mutant, R116C protein degraded faster than wild-type control and increased ubiquitination was evident in R116C
expressing cells.
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Introduction

Cataract of the eye lens is the leading cause of blindness

worldwide [1]. Pediatric cataract of the congenital type is the most

common form of childhood blindness and it is clinically and

genetically heterogeneous. About 30-50% of all bilateral pediatric

cataracts have a genetic basis [2]. All three forms of Mendelian

inheritance have been observed, the most frequently observed type

seen in non-consanguineous population being the autosomal

dominant transmission. At least 34 loci in the human genome have

been reported to be associated with various forms of pediatric

cataracts. Autosomal dominant and recessive forms of cataracts

have been caused by mutations in 22 different genes [2]. More

than half of the mutations occur in crystallins (a-, b-, and c-

crystallins) and the remaining in connexins, intrinsic membrane

proteins and intermediate filament proteins. Most interestingly, a

total of 12 mutants belong to a-crystallin, 8 for aA-crystallin and 4

for aB-crystallin., it points to a major role a-crystallin mutants play

in the development of congenital cataracts.

The a-crystallin gene family consists of two similar genes coding

for aA-crystallin, CRYAA located on chromosome 21q22.3, and

for aB-crystallin, CRYAB located on chromosome 11q22.1 [3].

The first exon of each gene encodes 60 amino acids consisting

of a repeat of 30 amino acid motif and the second and the third

exons code for regions homologous for the sHsps [4]. Three aA-

crystallin missense mutations have been reported recently which

are: base 104 C.T (R12C), base 130 C.T (R21W) and base 230

C.T (R54C) [5]. The affected members of the three families had

autosomal dominant bilateral congenital nuclear cataract in

association with microcornea, all detected at the time of birth.

Affected members of one of this family (R21W) were also

diagnosed with microphthalmia. R12C and R21W cases showed

zonular opacification with varying involvement of the anterior and

posterior pole. It is noteworthy that these mutations occurred
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outside the a-crystallin/sHsp core domain. Moreover, the

arginines at positions 12, 21, and 54 are highly conserved in

aA-crystallin. The other aA mutants reported earlier with

autosomal dominant congenital cataracts are: R21L [6], R49C

[7], G98R [8], R116C [9] and R116H [10].

A recent report [11] on the biophysical as well as the

hydrodynamic properties of the mutants of aA-crystallin have

prompted us to further investigate the actual mechanism by which

these mutations can lead to early onset of cataract. In all the seven

mutants, arginine residues were mutated to mostly cysteine, leucine,

tryptophan or histidine. In this study [11], the quaternary structural

parameters (hydrodynamic properties) were determined by dynam-

ic light scattering measurements. As compared to aA-wt, average

molar mass, polydispersity, and hydrodynamic radius increased

several fold in R116C and R116H, moderately increased in R12C,

R21W, and R54C, and not increased in R21L and R49C. With

regard to secondary and tertiary structural changes, all the mutants

showed varying degree of secondary and tertiary structural changes,

R21W, R116C, and R116H consistently showing the largest

changes. Such changes can lead to protein unfolding/misfolding

and subsequently forming protein aggregates.

Since mutants of aA-crystallin contribute to the development of

congenital cataract through the formation of aggregated proteins

precipitated in the cells of eye lens, we evaluated the expression of

mutants of aA-crystallin in mammalian cells (HeLa cells) in terms of

identifying the cells having aggregates and aggresomes as the general

cellular response to having over expressed mutant proteins [12].

Aggresomes are thought to immobilize protein aggregates and render

them susceptible to proteolysis by a component known as protea-

somes and/or autophagy [13]–[15]. In view of the propensity of aA-

crystallin mutants to aggregate in cells, we also explored whether

there is any involvement of ubiquitin-proteasomal pathway (UPP)

contributing to the degradation of unfolded proteins of mutants of

aA-crystallin. The ubiquitin-proteasome system (UPS) plays an

essential role in degrading damaged or unfolded proteins [16].

Unfolded proteins and protein fragments generated by proteolysis are

polyubiquitinated by ubiquitin ligases, a process that targets the

substrate proteins to the proteasome for degradation [17]. The 26S

proteasome which consists of a catalytic 20S core particle and a 19S

regulatory particle selectively degrades ubiquitinated proteins [18];

our results suggest that the mutants, R21W, R116C and R116H have

elevated polyubiquitinated species.

Materials and Methods

Site directed mutagenesis
To generate mutants, QuickChange site directed mutagenesis

kit (Agilent Technologies Inc, CA) was used. Appropriate

mutagenic primers of human aA-crystallin for the mutants,

R12C, R21L, R21W, R49C, R54C, R116C and R116H were

designed and used for PCR. The PCR products were amplified by

using YFP-tagged aA-wt as a template DNA with the following

PCR conditions, the mix was initially denatured at 95uC for 1 min

followed by 95uC for 50 sec, 60uC for 50 sec and 68uC for 5

minutes for 16 cycles and followed by overall extension at 68uC for

7 minutes. The PCR product was digested with Dpn I for 1 hour at

37uC and 1 ml of PCR product was transformed with XL-10 Gold

competent cells. The transformants were selected on LB agar

medium plates containing 50 mg/ml Kanamycin. The mutant

constructs were sequenced and confirmed by DNA sequence

analysis. Untagged pCDNA3.1-aA-wt and the mutant R116C

were PCR amplified from appropriate cDNA templates and

sub-cloned into Xho I and Eco RI sites of pCDNA3.1 (-) vector

(Invitrogen, CA). The constructs were validated by restriction

digestion and DNA sequence analyses.

Cell culture and transfection
HeLa cells purchased from ATCC, Manassas, VA were grown in

35 mm dishes and 80–90% confluent cells were transfected with

Lipofectamine 2000 (Invitrogen, CA) and a total of 2 mg of plasmid

DNA encoded for aA-wt and aB-wt and or mutated constructs fused

with either CFP or YFP were used. In one set of experiments,

individual constructs for aA-wt and the mutants and for co-

expression studies, equal amount of both aA-wt and aB-wt with

mutated aA constructs were transfected. Transfected cells showing

aggregates were typically counted at x40 magnification. Fields were

randomly chosen and about 300 cells were counted per experiment

and repeated at least three times and counts were blindly performed.

Laser scanning confocal microscopic studies
An LSM 510 Laser Scanning Microscope (Carl Zeiss Inc.,

Thornwood, NY) with 63x oil-immersion objective (plan Apoc-

hromat, NA 1.4) (University of Arkansas for Medical Sciences core

facility) was utilized. To visualize CFP and YFP fluorescence, cells

expressing fluorescent proteins were excited at appropriate laser

beam and filtered with both dichromatic band pass filters, captured

at 12 bit 512 x 512, multitrack channel images with CCD cameras

with the following configurations: for CFP channel, the cells were

excited with 458 nm filter by argon-ion laser and the emission

intensity was collected using band pass (BP) 475-525 nm filters and

for YFP channel, the cells were excited with 514 nm filter by argon-

ion laser and the emission intensity was collected using BP 530–

600 nm filters. Both the CFP and YFP was excited using argon-ion

laser at 25 mW, 2.0 and 0.5% exposure respectively.

Cycloheximide chase assay
Degradation of aA wild-type and the mutant aA-R116C

proteins was assessed using cycloheximide-chase assay. HeLa cells

were grown in 35 mm dishes and transfected with untagged aA-wt

and the mutant R116C. After 24 h transfection, cells were treated

with 20 mg/mL of cycloheximide (Sigma) for the indicated time

period and lysed with lysis buffer containing 50 mM Tris-HCl

(pH 7.4), 150 mM NaCl, 0.02% sodium azide, 0.1% SDS, 1%

NP-40, 0.5% sodium deoxycholate and 0.1 mM EDTA supple-

mented with cock-tail protease inhibitors (Roche Diagnostics) and

3M Urea. For immunoblot analysis, 5 mg of total protein was

loaded into 12% SDS-PAGE and the western blot was probed

with a rabbit polyclonal anti-aA-crystallin antibody (Enzo Life

Sciences Inc, SPA-221) at a dilution of 1 in 6000.

SDS-PAGE and Western blot analysis
After 48 hours transfection, cells were lysed with lysis buffer

containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.02%

sodium azide, 0.1% SDS, 1% NP-40, 0.5% sodium deoxycholate

and 0.1 mM EDTA supplemented with cock-tail protease

inhibitors and 3M Urea. Further, the cell lysate was sonicated

and the protein concentration was measured by BCA assay

method. For each sample, 5 mg of total protein was loaded into

12% SDS-PAGE and electroblotted to PVDF membrane. The

blots were blocked with 5% non-fat dry milk prepared in TBST

(Tris-buffered saline supplemented with 0.1% Tween 20) and

subsequently incubated with primary antibody for aA-crystallin

(monoclonal, Abcam, ab78439, 1:2000), aB-crystallin (rabbit

polyclonal, Abcam, ab13497, 1:2000) for one hour at room

temperature. Blots were washed with TBST for three times and

incubated with appropriate HRP-conjugated secondary antibodies
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(1 in 10000, Santa Cruz Biotechnology Inc, CA) for one hour at

room temperature. Enhanced Chemiluminescence substrate was

used and the signal was detected by exposing the blots on films.

For loading control, blots were stripped with Restore Western Blot

stripping buffer (Thermo Scientific Inc, IL) and re-probed with a

rabbit polyclonal antibody against b-actin (Abcam, ab8227,

1:10000) for 1 hour at room temperature.

Immunofluorescence microscopy for aggresome detection
Cells were grown on 35-mm cover glass bottom dishes. After

48 hours transfection, cells were washed with PBS, fixed with 4%

paraformaldehyde for 20 minutes at room temperature (RT) and

permeabilized with 0.5% Triton X-100 for 10 minutes at RT. Cells

were blocked with 5% normal goat serum (NGS) for one hour at

RT. The cells were simultaneously incubated with aA-crystallin

mouse monoclonal antibody (1 in 200 in 5% NGS, Abcam,

ab78439) and a rabbit polyclonal antibody for c-tubulin (Abcam,

ab16504; 1 in 200 dilution in 5% NGS) for overnight at 4uC. The

cells were stained with Alexa Flour 594 (mouse) and Alexa Fluor 488

(rabbit) (Molecular Probes) for one hour at room temperature.

Nuclei were counter stained with Hoechst 33342. The images were

acquired with an LSM 510 Meta Carl Zeiss Confocal microscope at

x63 objective and analyzed using AIM Imaging Software.

Data Analysis and Statistics
In all the experiments, values were expressed as mean 6 SD.

Two-tailed Student’s t-test was used for statistical analysis. The

p value , 0.05 was considered as significant.

Figure 1. YFP-aA-wt and the mutant constructs, R12C, R21L, R21W, R49C, R54C, R116C and R116H were individually expressed in
HeLa cells. A: LSM Images were captured after 48 hours transfection. HeLa cells were individually transfected with 2 mg of YFP-tagged aA-wt and
mutants of aA-crystallin. A homogenous expression of aA-crystallin was evident in aA-wt transfected cells. Cytoplasmic aggregates were evident in
aA- crystallin mutants transfected cells. The YFP signal was excited at 514 nm and the images were collected by BP 530-600 nm filter. The images
represent one of the four similar images obtained in three independent experiments. B: Graph represents per cent of cells with aggregates. The results
obtained after 48 hours transfection for the individually expressed aA-wt or its mutants in HeLa cells. Cells containing aggregates were counted in 10
random fields each field with 30 cells. The mutant, R116C showed a high per cent (,47) of cells having aggregates and the mutant R21L showed least
per cent (,10) of cells containing aggregates. The results were presented as means 6 SD obtained in three independent experiments. All the
mutants were statistically significant, p , 0.01.
doi:10.1371/journal.pone.0028085.g001
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Results

Individual expression of YFP-tagged aA-crystallin wild-
type and mutants in HeLa cells

To investigate whether the mutants of aA-crystallin forms

aggregates in cells, YFP-tagged wild-type and the mutants of aA-

crystallins were transfected individually in HeLa cells. Cells

transfected with CFP or YFP alone showed a homogenous

expression of the fluorescent protein in both nucleus and

cytoplasm (data not shown). Cells transfected with aA-wt showed

a homogenous distribution of its expression in the cytoplasm alone

and there was a little or no aggregation was observed in these cells

(Fig. 1A). Cells transfected with the mutants, R12C, R21L, R21W,

R49C, R54C, R116C, R116H showed significant number of

cells having protein aggregates, 37.263.8, 10.562.6, 30.264.7,

24.561.1, 18.563.1, 4765.8, 28.163.4 (Fig. 1B) respectively.

Here, the intracellular aggregation is referred to as the clumped

particles predominantly localized in the cytoplasm. Cells contain-

ing more than three such particles were considered as positive for

cells having aggregates and scored in this assay. Moreover, the

morphology of cells was altered in cells expressing R21W and

R116C mutants (Fig. 1A).

Co-expression of CFP-aA-wt and YFP-tagged mutants of
aA-crystallins

To investigate whether co-expression of aA-wt can inhibit

aggregates caused by mutants of aA-crystallin in cells, we

transfected YFP-tagged aA-mutants with CFP-tagged aA-wt.

Co-expression of CFP-aA-wt with YFP-aA-wt constructs in HeLa

cells did not show any aggregates and a homogenous expression of

Figure 2. YFP-aA-wt and its mutants were co-expressed with CFP-tagged aA-wt. A: Laser scanning confocal microscope images. HeLa cells
were transfected with 1 mg each of CFP-tagged aA-wt and YFP-tagged mutant constructs. After 48 h transfection, cells were analyzed with confocal
microscope. Cells showed more aggregates when co-expressed with aA-wt. The CFP signal was excited at 458 nm and the images were collected by
BP 475–525 nm filter, YFP was excited at 514 nm and the images were collected by BP 530–600 nm filter. The images represent one of the four
similar images obtained in three independent experiments. B&C: Graph represents per cent of cells with aggregates. Cells were transfected with YFP-
tagged aA-wt or mutants and CFP-tagged aA-wt. Cells having aggregates were counted in 10 random fields each field with 30 cells after 48 h
transfection. The results were presented as means 6 SD obtained in three independent experiments. For aA-wt + aA-R12C: p , 0.03; for aA-wt + aA-
R21L : , 0.05; for aA-wt + aA-R21W : , 0.04, for aA-wt + aA-R49C, is not significant; for aA-wt + aA-R54C : , 0.0001; for aA-wt + aA-R116C : , 0.01
and for aA-wt + aA-R116H, is not significant.
doi:10.1371/journal.pone.0028085.g002
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protein was evident in the cytoplasm (Fig. 2A). However, in aA-wt

co-expression with the mutants, R12C and R54C showed a few

nuclear foci. Cells co-expressed with all the other mutants except

R21L and R116H significantly increased the number of cells

having aggregates. The proportion the cells with aggregates were

53, 15, 51, 35, 40, 68 and 30% in mutants, R12C, R21L, R21W,

R49C, R54C, R116C and R116H respectively (Fig. 2B&C). Cells

co-expressed with R12C, R49C and R116C distorted the cellular

morphology (Fig. 2A). It is possible that the increase in the percent

of cells having aggregates in the mutants expressing cells was due

to co-aggregation with native aA-wt.

Co-expression of CFP- tagged aB-wt and YFP-tagged
mutants of aA-crystallin

To investigate, whether aB-wt co-expression can inhibit protein

aggregates caused by mutants of aA-crystallin, cells were

transfected with CFP-aB-wt and YFP-tagged aA-crystallin mu-

tants.. The results indicate that a significant decrease (52–72%, as

compared to the data in Fig. 2) of the number of cells having

aggregates was observed in cells transfected with all the mutants

but it is not statistically significant with the mutants, R21L and

R54C. Specifically, the mutants, R12C, R21W, R116C and

R116H showed the largest effect (61–72%) (Fig. 3A, B, C). Thus,

Figure 3. YFP-tagged aA-wt and each of the mutated aA-crystallin co-expressed with CFP-aB-wt. A: LSM images of HeLa cells after 48 h
transfection. HeLa cells were transfected with 1 mg each of CFP-tagged aB-wt and YFP-tagged aA-wt and the mutants. After 48 h transfection, images
were captured with an LSM confocal microscope. The CFP signal was excited at 458 nm and the images were collected by BP 475–525 nm filter, YFP
was excited at 514 nm and the images were collected by BP 530–600 nm filter. Co-expression of aB-wt significantly inhibited aggregates in cells
transfected with the aA- mutants. Images represent one of the four similar images obtained in three independent experiments. B&C: Graph represents
per cent of cells containing aggregates. The results obtained after 48 h transfection. Cells containing aggregates were counted in 10 random fields
each field with 30 cells. In all mutants, co-expression of aB-wt except with R21L and R54C significantly decreased the number of cells having
aggregates. The results were presented as means 6 SD obtained in three independent experiments. The p value for aB-wt + aA-R12C is , 0.02; for
aB-wt + aA-R21L is not significant; for aB-wt + aA-R21W is , 0.05; for aB-wt + aA-R49C is , 0.02; for aB-wt + aA-R54C is not significant, for aB-wt +
aA-R116C is , 0.01 and for aB-wt + aA-R116H is , 0.001.
doi:10.1371/journal.pone.0028085.g003
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co-expression of aB-wt with the mutants decreases protein

aggregates. These results strongly suggest that aB-wt is a potential

chaperone to protect the cells from aggregates caused by the aA-

mutants.

Validation of the expression of CFP or YFP-tagged aA-wt
and/or aB-wt with mutants of aA-crystallin in HeLa cells

To validate that there was no discrepancy in the transfection

efficiency of the either individually transfected or co-transfected

with aA-wt and or aB-wt, total cell lystate were subjected to

immunoblot and probed with aA and or aB-crystallin antibodies.

A similar level of expression was detected in individually expressed

aA-wt or mutant constructs (Fig. 4A). The level of expression was

nearly equal in mutants co-expressed with aA-wt (Fig. 4B) and aB-

wt constructs (Fig. 4C).

Mutant aA-crystallins in HeLa cells form aggresomes
To demonstrate whether the large perinuclear structures are

aggresomes as seen in the cells transfected with the mutants,

R21W, R116C and R116H (three major aggregate forming

mutants) and to validate these inclusions as aggresomes,

transfected cells were subjected to double immunostaining with a

mouse monoclonal aA-crystallin (red) and rabbit polyclonal c-

tubulin, (a centrosome marker protein) (green) antibodies. For this

study, untagged pCDNA3.1 constructs of both wild-type and the

mutants R116C (severely affected cells) and R21L (mildly affected

cells) were used in order to eliminate the false positive signal by

overlapping of YFP signal with the Alexa Fluor 488, both of these

signals being acquired at argon-ion laser line in confocal

microscopy. The results showed that only in R116C, the co-

localization of aA-crystallin with c-tubulin occurred as yellow

punctate signals in the perinuclear region validated these

structures are aggresomes (Fig. 5) whereas, there were no

aggresomes in R21L expressing cells (Fig. 5).

Degradation of aggregate-prone aA-crystallin mutants
Since our finding that mutants of aA-crystallin form intracel-

lular aggregates in cells and this aggregate formation may affect

protein turn over which may contribute to the pathogenesis of the

cataract, we next asked whether mutation in aA-crystallin may

affect protein’s turn over by faster degradation, cells were treated

with cycloheximide (for inhibition of protein synthesis) and at

different time points. After 24 h transfection, the cells lysed and a

total protein of 5 mg from each of the sample was subjected to

immunoblot probed with aA-crystallin antibody (rabbit polyclon-

al, Enzo Life Sci, SPA-221). For this study, we used untagged

constructs of aA, i.e. pCDNA3.1/aA-wt and pCDNA3.1/aA-

R116C. As shown in Fig. 6A and Fig. 6B, pulse chase experiments

Figure 4. Western blot analysis of aA-crystallin-wt and its mutants, R12C, R21L, R21W, R49C, R54C, R116C and R116H expressed in
HeLa cells. A. Western blot analysis of HeLa cells individually expressed with aA-Crystallin: Cells were individually transfected with YFP-tagged aA-wt
and mutants. After 48 h transfection, cells were lysed and 5 mg of total protein was subjected to western blot. The blot was probed with human anti-
aA antibody. The same blot was stripped and re-probed for b- actin to serves as a loading control. Nearly a similar level of expression of aA was
evident in each of the transfected cells. The * indicates the non-speficific band. B: Western blot analysis of HeLa cells co-expressed with CFP-tagged aA-
wt and YFP-tagged aA-wt or its mutants. Cells were co-transfected with YFP-tagged aA-wt and mutants with CFP-tagged aA-wt. After 48 h
transfection, cells were lysed and 5 mg of total protein was subjected to western blot. The blot was probed with an antibody against human aA and
the same blot was stripped and re-probed for actin. A similar level of expression of aA was detected in each group. C: Western blot analysis of HeLa
cells co-expressed with CFP-tagged aB-wt and YFP-tagged aA-wt or its mutants. After 48 h transfection, 5 mg of total protein was subjected to western
blot. The blot was probed with an antibody against human aA and the same blot was stripped and re-probed for anti-aB. The same blot was again
stripped with anti-b-actin for loading control. The level of both aA and aB were nearly equal in each of the transfected cells.
doi:10.1371/journal.pone.0028085.g004
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followed by cycloheximide treatment showed that wild-type

protein is stable at least for 24 h. But the level of the mutant

protein R116C decreased to 75.663.2%, 5365.5%, and

51.362.5% compared to control after 6, 12 and 24 h of treatment

respectively (Fig. 6C and 6D) As expected the mutant protein has

lower half-life and degraded faster than the wild-type protein.

Accumulation of polyubiquitinated conjugates in
aA-crystallin mutants

A number of reports implicated UPS dysfunction in a range of

aggregation prone mutant proteins in neurodegenerative diseases.

To explore any effects of aggregation-prone aA-crystallin mutants

might have on UPS proteolytic function, we measured the level of

polyubiquitinated proteins in whole cell lysate subjected to western

blot probed with anti-ubiquitin antibody (FK2, Mouse Monoclo-

nal, Enzo Life Sciences, PW8810). Distinct polyubiquitin conju-

gated proteins accumulated in cells transfected with mutants,

R21L, R21W, R116C and R116H (Fig. 7, lanes 3, 4, 7 and 8). In a

separate experiment, to further show ubiquitin inclusions in

transfected cells, cells were subjected to immunostaining with a

mouse monoclonal ubiquitin antibody (FK2; Enzo Life Sci.Inc.,

PW 8810). The ubiquitin inclusions in the perinuclear regions

Figure 5. Detection of Aggresomes: Untagged pCDNA3.1 constructs of aA-wt and the mutants, R21L and R116C were used in this
study and compared. After 48 h transfection, cells were fixed, permeabilized with 0.5% Triton X-100 and double immunostained with a mouse
monoclonal aA-crystallin (red) antibody and a rabbit polyclonal antibody for c-tubulin (green). A strong degree of overlapping signal (yellow) was
evident only in R116C transfected cells (arrow). Co-localization of c-tubulin, a centrosome maker protein with aA-crystallin in the perinuclear region
validated these inclusions were aggresomes. There was no co-localization in cells transfected with either aA-wt or the mutant, R21L. Goat anti-mouse
Alexa Fluor 594 (red) antibody was used to stain and visualize the localization of aA-wt and the mutants, R21L and R116C. A rabbit secondary
antibody, Alexa Fluor 488 (green) was used to stain and visualize the c-tubulin. The nuclear stain Hoechst was used to counter stain the nuclei. The
images were representative of one of four such images obtained in three independent experiments.
doi:10.1371/journal.pone.0028085.g005
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were evident only in the mutant R116C transfected cells (Fig. 8).

Altogether, these results suggest that mutants of aA-crystallin

proteins were conjugated with ubiqutin for degradation.

Discussion

In the present study, we have demonstrated that overexpression

of the cataract causing mutants of aA-crystallin in HeLa cells led

to the formation of multiple intracellular protein aggregates. There

was no evidence for the endogenous expression of both aA- and

aB-crystallins in these cells as shown in our earlier study [19] and

thus serves as a perfect model to study the role of cataract causing

mutants of aA-crystallin in mammalian cells including the eye lens

cells. Compared to aA-wt, expression of all the mutants in these

cells showed significant increase in protein aggregation after 48

hours of transfection, R21L showing the least increase although

higher than the control aA-wt. It is likely that the protein

aggregation in the cytoplasm was due to protein conformational

changes the mutants undergo [11]. When these mutants were

expressed individually, they formed aggregates probably due to

stress in the absence of any protective mechanism such as the

presence of aB-crystallin, a powerful sHsp. sHsps, in general, can

inhibit protein aggregation and can reverse or refold aggregated

proteins in conjunction with Hsp 70, a major molecular

chaperone. As shown in an earlier study of the C-terminal

truncated aA-crystallins [19], association with native aA-crystallin

significantly increased the number of cells containing aggregates in

all mutants. These results suggest that aA-crystallin is not a

potential chaperone to protect the cells from protein aggregation.

It is interesting to note that most of the mutants of aA-crystallin

involve arginine residues and lead in a dominant fashion. Co-

expression with aB-crystallin, on the other hand, significantly

diminished the aggregation, R12C, R21L, R116C and R116H

showing the most effect and R49C and R54C showing the least

effect. aB-crystallin is known to be a better molecular chaperone

than aA-crystallin and as it has been shown earlier with C-

terminal truncated aA-crystallins [20], it readily recognizes

partially unfolded structures and prevent them from aggregation.

Also, this study provides the first evidence for cataract causing

mutants of aA-crystallin forming aggresomes in cells. Accumula-

tion of misfolded proteins results from saturation of protein

degradation system observed in conformational diseases like

Huntington disease [21] and cystic fibrosis [22] leading to the

formation of inclusion bodies also known as aggresomes. The

inclusion bodies concentrated in the perinuclear region of aA-

crystallin mutants expressed in HeLa cells suggests that they have

the characteristic features of aggresomes. They are cytoplasmic

globular structures formed due to protein misfolding in the cytosol

Figure 6. Degradation of aggregate-prone aA-crystallin mutant, R116C. A and C: Western blot analysis of cycloheximide treated cells: HeLa
cells were transfected with 2 mg of untagged pCDNA3.1 constructs of aA-wt and the mutant, R116C. After 24 h transfection, cells were treated with
20 mg/ml of cycloheximide and lysed with lysis buffer at indicated time points. For each of the sample, 5 mg of total protein was loaded and western
blot probed with an anti-aA-crystallin (rabbit polyclonal, Enzo Life Sciences Inc., Catalog # SPA-221). The mutant R116C protein level has decreased
after 6 hours treatment with cycloheximide compared to wild-type protein which demonstrated R116C protein instability. The b-Actin blot serves as a
loading control. B and D: Quantification of wild-type and the mutant, R116C protein at different time points. The density of the band was quantified
using NIH Image J software and plotted. Values represent as means 6 SD as obtained in three independent experiments. The mutant, R116C Vs wild-
type control is significant at p , 0.001.
doi:10.1371/journal.pone.0028085.g006

aA-Crystallin/sHSP Mutants Form Aggregates

PLoS ONE | www.plosone.org 8 November 2011 | Volume 6 | Issue 11 | e28085



and these structures are delivered to the microtubule organizing

center (MTOC) by retrograde transport along microtubules [12].

These aggresomes are not merely a storage site for misfolded

proteins; they can facilitate the degradation of protein aggregates [12]

and are the pathological hallmark of conformational diseases that

results from protein misfolding. In the present study, double

immunofluorescence results (Fig. 5) validate the co-localization of

aA-crystallin with a centrosome marker protein, c-tubulin, in

aggresomes. The c-tubulin has been previously shown to co-localize

with aggresomes in MTOC [23–25]. They are normally formed

when ubiquitin-proteasome degradation pathway is impaired and

disease-associated proteins inefficiently fold [26], [27]. Our findings

on aggresomes detection in cells transfected with aA-crystallin

mutants are very similar to the previous studies on a myopathy

causing mutant of human aB-crystallin, R120G, which forms

aggresomes in CCL39 cells [28]. Aggresomes are special protective

structures that fundamentally differ from other multiple aggregates,

that some of which cause cellular toxicity. They are formed around

MTOC, a sub-cellular region which is robustly enriched with

chaperones and components of UPS [12]. It has been reported that

multiple aggregates or pre-aggresome particles may be an interme-

diate step in aggresome formation which can proceed further upon

proteasome inhibition [15]. The present study documented both

multiple aggregates and typical perinuclear localized aggresomes.

Typical aggresomes were detected only in R116C mutant but not in

R21L, which suggest that the multiple aggregates in cells expressing

this mutant did not develop as aggresomes.

It has been suggested that unfolded proteins develop into

insoluble form that cannot be degraded, their sequestration in one

large mass may facilitate their removal by autophagy [23].

Degradation of C-terminal truncated aA-162 through ubiquitin-

proteasome pathway has been reported previously using recombi-

nant proteins [29]. Proteins with short half-lives are mostly

degraded by the proteasome [30]. Our results on the mutant-

R116C protein degradation upon cycloheximide treatment are

consistent with a previous report [31] on a truncated aB-crystallin,

450delA protein which has lower half-life [31]. The Ubiquitin-

Proteasome System (UPS) degrades short-lived nuclear, misfolded

cytosolic proteins extruded from the endoplasmic reticulum [16].

Substrates of UPS need to unfold to pass through the narrow barrel-

Figure 7. Overexpression of aA-Crystallin mutants showed increased ubiquitination. A: Western blot analysis: After 48 h transfection, cells
were lysed and 5 mg of total protein was subjected to immunoblot probed with an anti-ubiquitin (FK2) monoclonal antibody. The pattern of
polyubiquitinated species were dramatically increased in the mutants, R21W, R116C and R116H compared to other mutants and wild-type. * indicates
a non-specific band. The same blot was stripped and re-probed for aA-crystallin and b-actin for loading controls. The blot shown here is a
representative blot of three independent experiments. B: Quantitative data for the western blot: Using NIH Image J software, densitometric
measurements were normalized against b-actin. The mutants, R21L, R21W, R116C and R116H showed increased ubiquitination as obtained in three
independent experiments and plotted. The results were expressed as mean 6 SD. The p value for aA-wt Vs aA-R12C is not significant, for aA-wt Vs
aA-R21L is , 0.05; for aA-wt Vs aA-R21W is , 0.01; for aA-wt Vs aA-R49C is not significant; for aA-wt Vs aA-R54C is not significant; for aA-wt Vs aA-
R116C is , 0.003 and for aA-wt Vs aA-R116H is , 0.001.
doi:10.1371/journal.pone.0028085.g007
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shaped proteasome which makes aggregate-prone proteins poor

substrates for UPS [32], [33]. The pattern of ubiquitination as we

documented in overexpression of three mutants of aA-crystallin,

R21W, R116C and R116H suggest involvement of Ubiquitin

Proteasome Pathway (UPP) in the turnover of ubiquitinated adducts

even though other cellular machineries could also be engaged in this

event. Although there was a basic degradation pattern evident in

aA-wt but the intensity of the degraded bands at 25 and 37 kDa was

stronger in the mutants compared to aA-wt. From this perspective,

involvement of aA-crystallin in ubiquitination pathway may provide

new insights into the etiology of congenital cataracts.

In summary, we have demonstrated overexpression of aA-

crystallin mutants forming small dispersed cytoplasmic aggregates

and aggresomes in HeLa cells. Co-expression of aB-wt signifi-

cantly inhibits aggregates caused by the aA mutants. The mutant

R116C has short half-life and degraded through ubiquitin-

proteasome pathway that may contribute to the development of

congenital cataract in human beings.
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Figure 8. Overexpression of aA-crystallin mutants shows
accumulation of ubiquitin inclusions in HeLa cells. YFP-tagged
aA-wt and mutant, R116C were transfected in HeLa cells. After 48 h
transfection, cells were fixed and immunostained with a mouse
monoclonal ubiquitin (FK2) antibody and further stained with a
fluorescent conjugated secondary antibody, Alexa Flour 594 (red). The
arrows indicate ubiquitinated cytoplasmic inclusions only in the
mutant, R116C expressing cells. Hoechst 33342 was used to counter
stain the nuclei. The images were representative of three similar images
obtained in three independent experiments.
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