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Abstract
Markov state models (MSMs) have proven themselves to be effective statistical and quantitative
models for understanding protein folding dynamics. As stochastic networks, MSMs allow for
descriptions of parallel folding pathways and facilitate quantitative comparison to experiments
conducted at the ensemble level. While this complex network structure is advantageous in many
respects, a simple topological description of these graphs is elusive. In this paper, we compare a
series of protein folding MSMs to the topology of the Cayley tree, a graph structure on which
dynamics are intuitive. We go on to introduce and test new sampling schemes that have potential
to improve automated model construction, a critical step toward making Markov state modeling
more accessible to general users.

Introduction
Simulations of biological polymers have advanced from being simple depictions of
dynamics to providing statistical and quantitative descriptions of the self-assembly
process.1–4 In protein folding in particular, efforts to create statistically grounded models
have been focused on a discrete master equation approach called the Markov state model
(MSM).5,6 MSMs take advantage of parallel sampling techniques by partitioning a protein’s
configuration space into a set of kinetically distinct states. Upon determining the timescale
on which transitions between these states is memoryless, an MSM transition matrix can
advance dynamics to the long timescales necessary to describe folding processes. Recent
millisecond timescale simulations of the protein NTL9 and the four-helix bundle of λ-
repressor show the promise of MSMs in simulating slowly folding systems.7,8

As quantitative comparison of simulation with experiment becomes not only desirable but
imperative, MSMs offer a convenient avenue for modeling protein folding on an ensemble
level. The extensive theory of Markov Chains allows kinetic and equilibrium properties for
the ensemble to be easily extracted from the eigenspectrum of a transition matrix. The
stationary distribution vector (the eigenvector with unit eigenvalue) describes state
population probabilities at equilibrium. A protein’s native state can be identified from this
equilibrium distribution without a priori knowledge of structure, simply by noting the state
with the highest stationary population. The other eigenvectors of the transition matrix
describe dynamical processes at timescales determined by their eigenvalues, allowing one to
deduce which states are kinetically relevant over short and long time periods. Other
ensemble properties like the mean first-passage time to the native state can also be quickly
calculated from well-known statistical theory.6

A description of protein folding under a conventional two-state folding model is intuitive:
molecules proceed from “unfolded” to “folded” in a concerted matter, and the “rate of
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folding” is well-defined by the transition between these two states. MSMs, however,
describe dynamics on a network of many hundreds or thousands of states that are connected
by probability-weighted edges. It is not immediately clear which states should be called
“unfolded” or “intermediate” states, or which correspond to the most biologically relevant
structures. Folding rates to the native state are well-defined from all of these states and can
be highly disparate. Analysis of network connectivity (involving degree and distance from
the native state) is necessary to both classify states and to make quantitative kinetic
predictions. As previous connectivity-based analysis has been performed on an ad hoc basis,
a general description of protein folding network topology would be of interest.9

With such a general description of connectivity, one could also tailor MD sampling
strategies for MSM topologies. Given the increasing popularity of Markov models in
biomolecular simulation, it is of general interest to make MSMs more accessible to non-
expert users. Recent projects like MSMBuilder2 and Copernicus have made strides in
automating the construction of MSMs from raw molecular dynamics data and (in the case of
Copernicus) even more general user-defined protocol.10,11 Instrumental to this automation
has been the development of “adaptive sampling,” which actively pushes simulations toward
under-sampled regions of configuration space.12–14 Specifically, adaptive sampling starts
trajectories from states that contribute the maximum uncertainty to the model’s largest non-
unit eigenvalue. This adaptation prevents the simulation from being stuck in metastable free
energy wells for untenably long periods of wall-clock time, a critical procedure for ensuring
sampling efficiency and model refinement.

As the fine details of automatic model construction become better understood, however, the
utility of using eigenvalue-based sampling early on in the process has come into question.
Particularly, the model’s state decomposition, which current adaptive sampling schemes
presume to be finalized, is itself subject to a high degree of uncertainty in early stages of
sampling.11 Refining a model based on a poor partitioning will naturally reduce the
effectiveness of eigenvalue-based sampling. At present, intermittent rounds of randomly-
distributed trajectories are prescribed to address this problem.

Can a more systematic strategy be devised for early model refinement? The strategy
extended in this study is founded on an “adjacency-based” sampling scheme, focusing on
determining the connectivity of the transition matrix. A model’s adjacency matrix defines
many of its fundamental characteristics. An observed transition between two states indicates
that the barrier between them is not hopelessly high, especially if the transition is seen in
limited simulation time. In early sampling, thus, establishing a model’s adjacency matrix is
an objective goal for capturing the model’s qualitative aspects. We envision that an
adjacency-based scheme might be used initially to establish the model’s connectivity, after
which eigenvalue-based sampling could be used to refine the quantitative nature of the state-
to-state transition probabilities.

In this paper, we first offer a description of the general topology of protein folding MSMs
based on the well-known graph structure of the Cayley tree. With this knowledge, we
proceed to design and test sampling schemes under a metric of adjacency-based sampling,
and we report the most promising candidates for early sampling refinement.

Methodology
For our analysis of MSM topologies, mean first passage time distributions (from all states to
a particular state) are used to illustrate a model’s kinetic properties. To calculate mean first
passage times (MFPTs) efficiently, we employ the formalism of the fundamental matrix for
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ergodic Markov chains. Given a transition matrix for an ergodic aperiodic Markov chain, the
fundamental matrix Z is given by the formula

where I is the identity matrix, T is the chain’s transition matrix, and W is the limiting matrix
of the transition matrix.15 The mean first passage time from a state i to a state j, mij, is then
simply given by

where π represents the stationary distribution of the chain.15

To test the effectiveness of various sampling schemes for adjacency-based sampling, we’ve
elected to run Markov chain Monte Carlo (MCMC) trajectories a posteriori on toy model
transition matrices and previously-generated MSM transition matrices for Fs peptide, the
WW domain, and the villin headpiece domain. Trajectories are truncated at 10 state-to-state
transitions to simulate the short runs typical in MD simulations performed with distributed
computing. Transitions occur or fail to occur based on the Metropolis acceptance criterion,
with acceptance probabilities defined by the transition probabilities of the original model.16

Individual trajectory data is collected into transition count matrices: if two states i and j are
adjacent to one another in a trajectory vector, a count of “1” is placed in the (i, j)-th entry of
a matrix of dimension N × N, where N is the number of states in the pre-defined model.
After a set number of individual trajectories have run to completion, the aggregate count
matrix can be normalized to yield a transition matrix which can be compared to the “exact”
matrix of the model.

In evaluating success in adjacency-based sampling, the adjacency error, or the number of
missed connections in the sampling-generated matrix, serves as a reasonable metric.
Formally, the adjacency error (σadjacency) is given by

where A(T) is the adjacency matrix of the transition matrix for the pre-defined model and
A(T*) is the adjacency matrix for the sampling-generated matrix. It should be noted that, in
this scheme, it is impossible for the sampling-generated matrix to have connections that are
absent in the original matrix.

One round of sampling consists of evaluating count matrix rows based on a certain criterion
(e.g., fewest counts or greatest contribution to eigenvalue uncertainty) and starting a new
trajectory based on the results of the analysis. Eigenvalue-based sampling code was based
on that presented in the literature, wherein simulations are started from the state which
contributes most to uncertainty in the model’s slowest rate (largest non-unit
eigenvalue).12,13 Even sampling distributes trajectories uniformly among already discovered
states; count-based sampling favors previously discovered states with the fewest aggregate
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counts (i.e., the states that have been visited the fewest number of times in the simulation).
Finally, connectivity-based sampling starts trajectories from the already discovered state
which is least connected (the state with the fewest adjacency matrix entries). Values of
adjacency errors reported correspond to averages over 100 simulations run.

Toy models with inward direction were prepared by setting “inward” transition probabilities
at greater values than “outward” probabilities. For the Cayley tree, one vertex was
designated the root of the tree, and trajectories were directed toward the root. Similarly, one
vertex of the hypercube model was designated as a sink, and transitions to verticies more
proximal to that sink were favored with higher probabilities. Specifically, inward-directed
edges were weighted so that an inward transition occurred with 2/3 probability. Diffusive
models were constructed so that all transitions between adjacent nodes occurred with equal
probability.

Results and Discussion
Topological Characterization

In a recent publication, Bowman and Pande use mean first passage time distributions to
illustrate the native state’s role as a kinetic hub: mean first passage times to the native state
were observed to be shorter than those to unfolded states, suggesting that the native state
serves as a hub between unfolded states.8 The authors also note that no unfolded states are
more than two connections separated from the native state and classify states as “unfolded”
(not directly connected to the native state) and “intermediate” (directly connected to the
native state). Figure 1(c) shows a high resolution histogram of the mean first passage time
distribution to the native state for the villin macrostate MSM. While the histogram is noisy,
two prominent peaks are clearly present in the plot. Corroborated by direct inspection of
calculated MFPTs, the proximal peak indeed corresponds to the intermediate states and the
distal to the unfolded states.

One feature of MFPTs to unfolded states is also notable: MFPTs to an unfolded state are
sharply distributed around the mean first passage time from the native state to that unfolded
state. Table 1 contains selected data to illustrate this relationship.

Considering these two observations, we can draw some general conclusions about dynamics
on the villin macrostate network. Importantly, trajectories appear to reach the native state in
a rapid enough manner to discriminate generational origin, i.e. from either the unfolded or
intermediate states. By contrast, MFPTs to the majority of unfolded states seem to be
independent of origin, suggesting that moving from native to unfolded is the rate limiting
step in passage between most unfolded states. We can thus conclude that dynamics “inward”
toward the native state are fundamentally fast, while those “outward” toward most other
unfolded states are typically slow.

Figures 1(a)–(b) and 1(d)–(e) show high resolution histograms of MFPT distributions to the
native states of four other protein folding macrostate MSMs. First, we should note again that
very few states in any model are more than two connections removed from the native state.
Secondly, as with villin, two peaks are readily evident in each of the first three distributions,
suggesting the same generational behavior seen in villin is present in models of Fs peptide,
the WW domain, and NTL9. The lack of two distinct peaks in the λ-repressor distribution,
we assert, can be partially attributed to noise due to sampling limitations.

As justification for this claim, observe that “noisiness” in distributions is directly correlated
with model and system size (see Figure 1 caption). To illustrate the effects of sampling error
noise on MFPT distributions, Figure 2 shows an added-noise progression of the WW
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domain unfolded to native state MFPT distribution.17 Clearly, the two distinct peaks in the
MFPT distribution merge into one broader peak as more random error is added. We
postulate that, with more exhaustive sampling, two peaks would also become evident in the
λ-repressor model. The rate limiting nature of the native state in passing from unfolded to
unfolded state was observed in all four models.

One simple graphical model shares many of the properties demonstrated by our MSMs: the
n-irregular rooted tree, commonly known as the Cayley tree. If we truncate the Cayley tree
after two generations (expanding the first generation to match the number of intermediate
states in a typical MSM) and direct the dynamics in toward the tree’s root, we indeed
observe similar kinetic behavior to that of protein folding MSMs. It should be noted that in
protein folding MSMs, individual intermediate states are connected to relatively few (i.e., 2
or 3) unfolded states, justifying the first generation expansion of the Cayley tree.

Figure 3 provides an illustration of a small irregular Cayley tree and shows the mean first
passage time distribution to the representative tree’s root. MFPTs to the tree’s root are
generational in nature, and pathways between tips of leaves are rate-limited by passage
outward from the native state. We thus suggest that the irregular, inward-directed Cayley
tree serve as an (albeit simplified) framework for thinking about protein folding MSM
graphical topologies.

Adjacency-Based Sampling
One area in which this general topological characterization promises to be useful is that of
sampling scheme design. Assuming protein folding MSMs have the general kinetic
characteristics of inward-directed Cayley trees, we know that connectivity can best be
explored by starting simulations from states far from an MSM’s “root.” While eigenvalue-
based sampling may indirectly target these states, more direct methods to optimize
topological exploration can certainly be conceived. In particular, we introduce two new
sampling schemes called “count-based sampling” and “connectivity-based sampling.” In
count-based sampling, new simulations are started from states with the fewest counts;
connectivity-based sampling favors those states with the fewest connections to other states
(i.e., the fewest entries in the adjacency matrix). As distant states in a Cayley tree are the
least visited and least connected, we hypothesize that these methods will be effective in
rapidly exploring adjacency in our models.

To test this hypothesis, we have run a series of a posteriori MCMC trajectories on pre-
defined MSM transition matrices and have computed average adjacency errors for the
generated count matrix. Adjacency-error rankings (with ranking ‘1’ corresponding to the
smallest error, based on the final column of data points in each error plot) for all methods
over all models are summarized in Table 2.

Figures 4 and 5 contain plots of adjacency error versus number of trajectories for three toy
models used in this study: the random stochastic matrix, the n-dimensional hypercube, and
the irregular Cayley tree. In the case of the latter two models, both diffusive and inward-
directed dynamics were tested under the various sampling schemes.

Though the relative performance of each method varied from toy model to toy model, two
constancies in the data are glaring: 1) that count-based sampling performs best in
discovering graph adjacency and 2) eigenvalue-based sampling often performs worst at the
same task. Connectivity-based sampling is successful on the hypercube, where connectivity
is regular and extensive, but is relatively poor at capturing adjacency elsewhere compared to
the count-based method. The magnitudes of entries in the count matrix, therefore, seem to
play an important role in defining states around which topology is poorly explored. These
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preliminary results suggest count-based sampling would provide effective adjacency
determination early in model construction.

The next test of sampling effectiveness involves sampling on pre-existing MSM transition
matrices. Figures 6 shows adjacency error versus number of trajectories for the four
sampling schemes on the Fs peptide transition matrix. In agreement with the toy model
analyses, count-based sampling performed the best among all schemes, while eigenvalue-
based sampling behaved the worst. In this case, even sampling proved a better technique
than connectivity-based sampling, underlining the apparent importance of count magnitudes
for adjacency-based sampling. Figure 7 contains plots of adjacency error versus number of
trajectories for the WW domain and the villin headpiece domain. Both eigenvalue-based
sampling and connectivity-based sampling performed radically worse than the other two
schemes; only even and count-based sampling are shown in the figure to preserve scale.
Clearly, count-based sampling performs better than even sampling for both systems. For all
the above systems, we thus conclude that count-based sampling is the best strategy for
capturing adjacency among those tested.

While adjacency provides some description of MSM dynamics, quantitative transition
probabilities are obviously important in building meaningful models. To evaluate effects of
sampling on absolute transition matrix error, we introduce a hybrid sampling scheme which
combines explorative and eigenvalue-based sampling methods. Explorative sampling serves
to solidify state defi-nitions at early stages in model building; once states are well-defined
(i.e., discovered), eigenvalue-based sampling should refine values for transition probabilities
as intended. One might employ an adjacency error cut-off to determine the point at which
switching from one sampling method to the other would be appropriate.

Figure 8 shows the absolute error in the Fs peptide transition matrix generated by four
different hybrid sampling schemes. To facilitate comparison among methods, each variable
type of sampling (e.g., even, count-based, or connectivity-based) is carried out for 1000
trajectories and followed by the requisite number of eigenvalue-based trajectories to reach
an absolute error cut-off of 2.00. For the case of pure eigenvalue-based sampling,
trajectories generated only from that sampling method were used to build the transition
matrix.

As is clear from the figure, count-based sampling in conjunction with eigenvalue-based
sampling converged most quickly to the error tolerance for the exact transition matrix.
Purely eigenvalue-based sampling, by contrast, converged more slowly than any of the
hybrid sampling schemes, and took more than an order of magnitude more trajectories to
converge than did the best method tested. We attribute this difference, again, to an adjacency
error effect: while count-based sampling had discovered > 95% of states in 1000
trajectories, eigenvalue-based sampling lagged far behind at approximately 80%. These
results suggest that in a finite sampling period, some type of hybrid sampling will perform
better than eigenvalue-based sampling, and among the hybrid sampling techniques tested,
count-based sampling is the most effective.

Conclusion
We thus observe that protein folding MSMs have certain general topological characteristics,
and we see that these characteristics can be used to design directed sampling schemes for
MSM construction. The next step in evaluating the hybrid sampling schemes discussed
above would entail actually testing them on systems at the molecular dynamics (MD) level.
We suggest that such hybrid sampling schemes could easily be tested directly or in an
environment in which MSMs drive sampling (e.g., Copernicus), wherein plug-in modules
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for different sampling techniques could be swapped in and out without effort.11 Given the
high degree of sampling already performed on molecules like villin and various helical
peptides, such systems could serve as ideal candidates against which various sampling
schemes could be benchmarked.

Direct application of these hybrid sampling methods to MD simulations would be
straightforward in concept, comprising the iteration of three steps: 1) running a series of
short MD trajectories, 2) building an MSM based on the aggregate data, and 3) seeding new
MD trajectories based on the sampling criterion (e.g., from the states with the fewest
counts). Effective use of hybrid sampling techniques in MD studies could allow for the
generation of accurate MSMs from a minimal set of short trajectories, enhancing both model
accuracy and sampling efficiency.

While these hybrid sampling methods will be easily extensible to MD simulations, one will
need to use MSM error metrics alternative to those used with MCMC in this paper. MSMs
constructed from MD data are generated in a partially-stochastic fashion, making error
evaluation based on numerical properties of the transition matrix impractical. MSM
observables (like native state identity and stability, eigenspectral properties, and projections
onto experimental observables) and uncertainties therein will instead need to form the basis
for comparison between models and validation of hybrid sampling methods. We do
envision, however, that convergence of model size could serve as an adjacency-like metric:
when new states cease to appear after iteration of the above procedure, the sampling scheme
could be changed to the eigenvalue method. Final eigenvalue-based sampling could then be
carried out to a satisfactory threshold defined by model observable uncertainties.

As a second caveat, we should note that at high temperature (i.e., well above biological
temperatures), protein folding networks become more connected and thus lose some degree
of the tree-like structure identified in this study. Accordingly, one should take care in using
the sampling algorithms developed here in high temperature simulations. However, as
count-based sampling performed well even on a randomly-connected graph (see Figure 5),
we expect our hybrid algorithms to remain effective in systems held at higher temperatures.

We acknowledge that the exploration in the sense of a posteriori sampling in this paper is
somewhat contrived. After all, only states that exist on the underlying MSM network can
ever be discovered. Provided enough time, even eigenvalue-based sampling would capture
all the adjacency of a transition matrix after the model has been completely constructed.

However, given that count-based sampling discovers states in a much more computationally
ef-ficient fashion than eigenvalue-based sampling, we posit that improved performance due
to count-based sampling will translate to the arena of atomistic simulations. After all, we
assume that a pre-defined network underlies all dynamics in atomistic simulation: the
network of the system’s free energy landscape. It is the nature of this network that we seek
to explore in performing molecular dynamics simulations.
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Figure 1.
Mean first passage time distributions from the unfolded to native states of various protein
folding MSMs: (a) Fs peptide, at 19 states with lag time 2 ns (b) WW Domain, at 200 states
with lag time 35 ns, (c) Villin headpiece domain, with 500 states at lag time 10 ns (d) NTL9,
with 2000 states at lag time 20 ns and (e) λ-repressor four-helix bundle with 5000 states at
lag time 20 ns.
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Figure 2.
Noise progression in MFPT distribution from unfolded states to native state in the WW
domain. The noise floor on the WW domain transition matrix was systematically raised
through addition of noise from the first panel to the last, and related MFPTs were calculated
for the new transition matrix. From left to right, histograms represent distributions for
transition matrices with Gaussian noise (〈x〉 ≈ 0.1, σx ≈ 0.05) added to 0% of states, 0.1% of
states, 1% of states, and 10% of states.
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Figure 3.
At left: general graph structure of an irregular Cayley tree truncated after two generations.
At right: MFPT distribution from “leaf” states to “root” state under inward-directed
dynamics. In this case, inward dynamics are defined such that the probability of an inward
transition is 2/3.
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Figure 4.
Adjacency error as a function of trajectory number for an inward directed irregular Cayley
tree (top, 19 states) and an inward-directed 5-dimensional hypercube (bottom). In both
cases, count based sampling seems to perform the best among all methods tested.
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Figure 5.
Adjacency error as a function of trajectory number for a diffusive Cayley tree (top, 19
states), a diffusive 5-dimensional hypercube (middle), and a randomly-connected matrix of
density 1/2 (bottom, 19 states.)
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Figure 6.
Adjacency error as a function of trajectory number for the Fs peptide transition matrix.
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Figure 7.
Adjacency error as a function of trajectory number for the WW domain (top) and villin
headpiece domain (bottom) transition matrices. Connectivity-based sampling and
eigenvalue-based sampling, which would appear well above the two methods shown in
adjacency error, are omitted to preserve scale.
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Figure 8.
Convergence time for Monte Carlo Fs peptide transition matrix generated with various
hybrid sampling schemes. Time is measured in the number of eigenvalue-based trajectories
needed to converge to an absolute error of 2.00 after 1000 initial trajectories are run from a
chosen sampling method. Absolute error is defined as the sum of absolute deviations in
transition matrix elements. Convergence times for each method were, averaged over 10
simulations, 1) 3913 for pure eigenvalue-based sampling, 2) 2669 for connectivity-based
hybrid sampling, 3) 1107 for even sampling hybrid sampling, and 4) 286 for count-based
hybrid sampling.
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Table 1

MFPT Distributions Among Unfolded States, Villin Headpiece MSM

Particular Unfolded State, U* Center of MFPT Distribution, Unfolded States to U* MFPT, Native State to U*

5 15,908 15,905

126 9,212 9,207

350 3885 3881
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