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Abstract
Small molecules designed to specifically activate or inactivate protein functions have been useful
to study biological processes. PROTACS are small molecule chimera which comprise a ligand and
a peptide recognition motif for an E3 ligase. These novel reagents exploit the ubiquitin-mediated
proteasome degradation pathway to target the ligand-bound protein for intracellular degradation.
Here, we report that an estrogen receptor (ER)-targeting PROTACS that causes degradation of ER
is able to potently inhibit endothelial cell differentiation in a three-dimensional angiogenic
sprouting assay. These findings support the use of ER-targeting PROTACS as probes of
angiogenesis.
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PROTACS (PROteolysis TArgeting Chimeric MoleculeS) are novel chemical reagents that
artificially target proteins of interest to the ubiquitin-proteasome pathway for their
destruction.1,2 PROTACS are chemical chimera comprising of a small molecule ligand
which is covalently linked to a peptide recognition motif for a specific E3 ubiquitin ligase.
The small molecule ligand serves as a ‘bait’ to bind to its intracellular ‘receptor’, which
makes available the peptide motif to be recognized by the E3 ubiquitin ligase. When cells
are treated with PROTACS, the PROTAC-bound protein is artificially recruited for
ubiquitination via the E3 ligase recognition motif that subsequently allows the complex to be
signaled for degradation by 26S proteasome. Importantly, because PROTACS can be used
to control intracellular levels of specific proteins these novel reagents are providing us with
a direct means to probe protein function in chemical genetic studies.3,4

The von Hippel–Lindau tumor suppressor protein (pVHL) functions as an E3 ubiquitin
ligase to target hypoxia inducible factor (HIF-1α) for proteasomal degradation.5 The
degradation of HIF-1α is triggered by the hydroxylation of a conserved proline residue
(Pro564) that allows it to be recognized and multi-ubiquitinated by the pVHL E3 ligase.6,7

Under normoxic conditions, HIF-1α is constitutively ubiquitinated and degraded.8,9

Recently, we and others have shown that the pVHL recognition motif of HIF-1α containing
a hydroxyproline residue when incorporated into cell-permeable PROTACS can
successfully target a variety of intracellular proteins for degradation using their specific
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ligands as baits.10–12 Thus far, PROTACS have not yet been employed to perturb biological
processes in vivo.

Angiogenesis, which is the growth of new blood vessels from preexisting vasculature,
occurs during normal development and wound healing. This process is a pathological
manifestation in numerous diseases; angiogenesis supports expansion of solid tumors, the
development of pannus in joints of patients with rheumatoid arthritis and it contributes to
endometriosis.13 During the angiogenic process, vascular endothelial cells that line the
lumen of blood vessels differentiate from their quiescent state and invade the interstitial
stroma to form a branched vascular network.14 This morphogenic process is highly complex
and involves the coordinated activities of endothelial cell migration, invasion, branching,
assembly, and maturation into vessel lumens.15 The three-dimensional (3D) endothelial cell
sprouting assay (3D-ECSA) recapitulates many of these processes and features the
differentiation of endothelial cells into sprouting structures within a 3D matrix of fibrin or
collagen I.16 Thus, the 3D-ECSA is a very useful model to study endothelial cell behavior in
3D matrices.17 We have recently shown that the 3D-ECSA can also be exploited as a
screening tool to identify new classes of angiogenesis inhibitors.18

The endogenous small molecule hormone 17β-estradiol (E2) promotes angiogenesis through
multifactorial mechanisms.19 E2 induces vascular endothelial cell proliferation and
migration.20 E2 also promotes the upregulation of basic fibroblast growth factor21 and
vascular endothelial cell growth factor (VEGF) and its receptors. 22,23 More recently, E2
was found to induce the angiogenic switch through downregulation of the expression of
soluble decoy receptor for VEGF (sVEGF-R1) in estrogen receptor (ER)-positive but not in
ER-negative breast cancer cell lines.24 Taken together, these findings have suggested that
ER is a potential target for anti-angiogenesis and understanding its unique role in endothelial
cells with the aid of specific antagonists can help us in identifying new treatments for ER-
dependent disease mechanisms.

Herein, we report the development of cell-permeable PROTACS that target estrogen
receptor-α (ERα) for ubiquitination and degradation (Scheme 1). We previously showed that
the first generation ER-targeting PROTAC, E2-octa, can promote ERα degradation in
cultured cells.10 In this investigation, we have applied the PROTAC concept to probe
angiogenesis by focusing our investigations on the study of endothelial cell differentiation.
Toward this end, we tested E2-octa25 and its inactive analog E2-octa-[Ala] (that does not
interact with pVHL)10 in the 3D-ECSA.26 We show that the HIF-1α octapeptide by itself
and E2-Octa-[Ala] do not interfere with VEGF-induced sprouting of human umbilical vein
endothelial cells (HUVECs), whereas E2-Octa is highly efficient in inhibiting angiogenic
sprouting (Fig. 1). These findings reveal that the entire chemical chimera comprising E2
ligand-HIF octapeptide needs to be intact to exert biological activity, because if either the E2
ligand is eliminated or the chemical chimera is altered by introducing a ProOH → Ala
mutation in the octapeptide the sprouting inhibitory activity is abrogated. This result is in
keeping with our previous findings where we showed that neither the octapeptide nor E2-
Octa-[Ala] support the degradation of ERα in cultured cells.10

We next wanted to identify the optimal size of the HIF-1α peptide motif that would confer
the ERα-mediated anti-angiogenic response. For this study, the length of the HIF-1α peptide
was reduced sequentially by one amino acid from both N- and C-terminal ends. These newly
derived E2-PROTACS were subsequently tested in the 3D-ECSA and sprouting in response
to VEGF was quantified. We discovered that E2-octa, E2-hepta, and E2-hexa inhibited
angiogenic sprouting to approximately the same extent (~50%), whereas E2-penta was the
most potent inhibitor, decreasing sprouting morphogenesis by about 80% compared to
vehicle-treated controls (see Fig. 2).
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Interestingly, E2-tetra was only as efficient as E2-octa in this assay, suggesting that retention
of the pentapeptide core was required for optimal inhibition of angiogenic sprouting.

Finally, to demonstrate that E2-penta indeed retains ERα targeting activity in endothelial
cells similar to that of the parental E2-octa PROTAC,10 we investigated the abundance of
ERα in E2-penta-treated HUVECs by Western blotting.27 As seen in Figure 3, incubation of
HUVECs for 24 h with E2-penta at 2 µM totally abrogates ERα expression, whereas the
lower dose of E2-penta does not interfere with intracellular levels of ERα or inhibit
angiogenic sprouting (data not shown). It is of interest that E2-penta exerts its biological
activity in HUVECs at 10- to 20-fold lower concentrations than in MCF-7 cancer cell lines
(data not shown). Collectively, these findings suggest that the endothelial cell-targeting
activity of E2-penta, which occurs at low doses has potential for application in diverse
angiogenic disorders.

Taken together, these results show for the first time that E2-PROTACS are novel chemical
genetic probes for studying angiogenic differentiation. The further refinement of E2-penta to
a metabolically stable analog, which is currently underway, should allow us to exploit this
novel approach to the study of angiogenic mechanisms in animal models of diseases.
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Figure 1.
Endothelial cell spheroids were seeded in collagen I gels in a 96 well plate and stimulated
with vascular endothelial growth factor (VEGF; 20 ng/ml) to induce angiogenic sprouting.
In replicate wells, VEGF-treated spheroids were co-incubated with 12 µM of HIF-1α
octapeptide, E2-octa-[Ala] or E2-octa. Representative photographic images of spheroids
taken after 20 h show invasive growth of vessel structures with octapeptide (A) or E2-octa-
[Ala] (B) co-treatment, but potent inhibitory effect with E2-octa (C) co-treatment.
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Figure 2.
E2-penta exerts the most potent inhibition of sprouting. VEGF-stimulated spheroids were
co-treated with 3 µM of E2-PROTAC, which contain the HIF-1α peptide of differing length.
The percentage of angiogenic sprouting was quantified by measuring total number and
length of sprouts as done previously.18
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Figure 3.
HUVECs were treated with vehicle (Con) or E2-penta at 0.5 and 2 µM for 24 h. Total cell
protein was fractionated on polyacrylamide gels and Western blotted using a polyclonal
ERα-specific antibody. The blots were also probed with anti-β-actin antibody to control for
protein loading.
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Scheme 1.
Estradiol (E2)-based PROTAC containing a pentapeptide derived from HIF-1α recruits
estrogen receptor (ER) to the pVHL complex for ubiquitination and degradation.
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