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Abstract
Coreference resolution is the task of determining linguistic expressions that refer to the same real-
world entity in natural language. Research on coreference resolution in the general English domain
dates back to 1960s and 1970s. However, research on coreference resolution in the clinical free
text has not seen major development. The recent US government initiatives that promote the use of
electronic health records (EHRs) provide opportunities to mine patient notes as more and more
health care institutions adopt EHR. Our goal was to review recent advances in general purpose
coreference resolution to lay the foundation for methodologies in the clinical domain, facilitated
by the availability of a shared lexical resource of gold standard coreference annotations, the
Ontology Development and Information Extraction (ODIE) corpus.
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1. Introduction
Coreference resolution is the task of determining linguistic expressions that refer to the same
real-world entity in natural language. For example, in the sentences “Have reviewed the
electrocardiogram. It shows a wide QRS with a normal rhythm but no delta waves.” the
phrases “the electrocardiogram” and “It” refer to the same entity, i.e. the electrocardiogram.

It has been widely acknowledged that the unstructured clinical narratives are a rich source of
information that complements the structured data in the electronic health record (EHR).
Applying natural language processing (NLP) technologies to extract information from the
narratives can not only unlock information that is only present in the free text portion of the
EHR but also improve performance when combined with structured data. Fiszman et al. [1]
extracted clinical information from ventilation/perfusion lung scan reports, which is only
available in free text format. Xu et al. [2] devised a medication extraction system that
achieved over 90% F-measure on drug names and signatures, which are otherwise absent in
coded data. Zeng et al. [3] found that combining an NLP system and the ICD-9 codes
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improves accuracy, sensitivity and specificity in a study to extract principal diagnosis from
discharge summaries. Li et al. [4] concluded that NLP systems provide information that is
not present in the structured data. Liao et al. [5] achieved higher positive predictive value in
defining a rheumatoid arthritis cohort by utilizing the clinical narrative data. Kullo et al. [6]
leveraged the unstructured information in the EHR (smoking status and medication dosage,
frequency, and route) to conduct genome-wide association study of peripheral arterial
disease (PAD). Savova et al. [7] demonstrated the utility of NLP in classifying PAD status.

However, to take full advantage of the information in the clinical free text, coreference
resolution is an indispensable component. Coreference serves the critical role of linking
related information together. Garla et al. [8] identified that lack of coreference resolution
contributed to misclassifications in a clinical document classification system. Consider the
short snippet in Example 1 (Table 1) from a clinical note. Without a coreference algorithm
to establish that “significant pain in the shoulder” and “his discomfort” corefer, one would
not be able to conclude that the patient uses Tylenol to treat his shoulder pain.

Attributes, temporal descriptions, and contextual information necessary for understanding
whether conditions, symptoms, and treatments have occurred or are merely planned are
often spread over several sentences or even paragraphs rather than within a single sentence
and require coreference resolution for accurate interpretation.

For example, accurate assignment of attributes to named entities (Examples 2 and 5),
accurate assignment of temporal information to an event (Example 3), distinguishing
planned events from events that occurred (Example 4) can only be achieved by resolving the
coreferential phrases.

In Example 2, a system needs to separate the adenoma ({m2,m4}) and the carcinoma
({m1,m3,m5}) through coreference resolution to collect all the attributes of each of the
entities.

In Example 3, the quality that the chest discomfort occurs at rest and lasts 30 min requires
the resolution of the two highlighted phrases.

By relating “that variety” to “back extensor strengthening exercises” in Example 4, a system
can determine that the physician is planning a home program of the back extensor
strengthening exercises.

Resolving the three highlighted phrases in Example 5 is critical as they are the force that
holds the other pieces of information together. Only after linking the three phrases can one
ascertain that symptoms of nausea and vomiting have occurred earlier but wors-ened
recently.

Armed with a textual coreference resolution system, a higher-level system can resolve
coreference between the narrative notes and the structured data to yield a richer picture. For
example, such a system can link the detailed prescription and laboratory data from the EHR
with the textual mentions in a clinical note. In Example 6, the start date of the Tramadol and
previous dosing information can be retrieved from the structured data. But this is beyond the
scope of our review. We aim at methods for coreference resolution in text.

Coreference resolution has long been recognized as a difficult task. Research in the general
English domain dates back to 1960s and 1970s [9, chapter 3]. Various systems from
heuristics-based ones to statistical ones have been developed. In particular, there have been
growing efforts since the 6th and 7th Message Understanding Conferences (MUC) [10,11]
and the Automatic Content Extraction (ACE) program1 initiated shared tasks on coreference
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resolution and released their annotated corpora in the last two decades. However, the clinical
domain has not seen major development, which can be partially attributed to the lack of
sharable annotated clinical text. The recent US government initiatives that promote the use
of electronic health records provide opportunities to mine patient notes as more and more
health care institutions adopt EHR. In this paper we give a review of the approaches in the
general English and biomedical literature domains and discuss challenges in applying those
techniques in the clinical narrative.

1.1. Related work
Hirst [9] provided a survey of research on anaphora during the early years. The approaches,
mostly heuristic-based, have largely been superseded since the 1990s. Trends of transition of
research focus from heuristics to statistical and machine learning approaches can be seen in
Mitkov [12]. Ng [13] concentrated exclusively on supervised machine learning approaches
that started in the mid-1990s. Our survey is not limited to particular methodologies, and has
a focus on clinical applications.

1.2. Definitions
Formally, coreference consists of two linguistic expressions—antecedent and anaphor. The
anaphor is the expression whose interpretation (i.e., associating it with an either concrete or
abstract real-world entity) depends on that of the other expression. The antecedent is the
linguistic expression on which an anaphor depends. In the first example in Section 1, “the
electrocardiogram” is the antecedent, and “It” is the anaphor. Similarly in Example 1,
“significant pain in the shoulder” is the antecedent, and “his discomfort” is the anaphor. The
relationship between the antecedent and the anaphor is usually “identity”—they both refer to
the same entity. A broader concept of anaphora includes a pair of linguistic expressions
whose relationship does not have to be identity.

These linguistic expressions, the antecedents and the anaphors, are collectively called
markables in the MUC corpus. Two coreferring markables form a pair, while one or more
pairs that refer to the same entity form a chain. In the ACE corpus, the linguistic expressions
are called mentions, and the entities these mentions refer to are, naturally, entities.

The coreference resolution task is to discover the antecedent for each anaphor in a
document. Since the coreference relation is transitive, the set of all the transitive closures of
the markables forms a partition, in other words, a set that contains the sets of markables in
each chain. For text processing systems, such as information retrieval (IR) and information
extraction (IE), identifying the exact antecedent is less important than correctly partitioning
the markables. For instance, to extract all the relevant information about the arthrogram in
Example 7, it would be sufficient to link the second “they” to any of the other three
markables, as long as the four markables are in the same set. Moreover, it is not always clear
which is the antecedent. Therefore, most systems strive to generate a correct partition.

1.3. Coreference and the clinical narrative
The types of markables that a coreference resolution system resolve are unique to the
domains. The general English domain focuses on person, location, and organization [11].
The shared task2 in the biomedical literature domain focused on finding coreferential
mentions of genes and proteins. In the clinical narrative, however, the types are mainly
disorders, signs or symptoms, anatomical sites, medications, and procedures.

1http://www.itl.nist.gov/iad/mig/tests/ace/.
2https://sites.google.com/site/bionlpst/home/protein-gene-coreference-task.
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In addition to the difference in the markable types, Coden et al. [14] showed that the
language in the clinical notes differs from the general English. The average sentence length
in clinical notes is only approximately half of that in the general English texts. The
vocabulary size of clinical notes is also smaller than the general English texts. Meystre et al.
[15] contrasted the clinical texts with the biomedical texts, and argued that the
characteristics of clinical texts pose a special challenge to NLP. Methods for coreference
resolution need to account for these subdomain language characteristics, such as the word
and sentence distance between coreferential mentions. Furthermore, different genres of
clinical texts show different patterns. For example, anatomical site concepts are more
prevalent in procedure notes, including radiology, pathology, and operation notes, than
discharge summaries.

During the past two decades, several systems have been developed to extract named entities
(NEs) from clinical narrative, first specialized in certain report types [16-19], and later more
general purpose [20,3,21,22]. The community is now moving towards semantic analysis and
discourse processing, including relation discovery and semantic role labeling. However,
there have been only a handful of efforts researching coreference in the clinical narrative.

Hahn et al. [23] included a nominal anaphora resolution algorithm in a knowledge mining
system from findings reports. As part of the Ontology Development and Information
Extraction project (ODIE),3 a corpus of 100,000 words of clinical text was doubly annotated
and adjudicated [24] to include 7214 markables, 5992 pairs and 1304 chains. The corpus
will be made available to the research community under IRB and Data Use Agreements. As
part of their work on developing a tool for cancer characteristics information extraction,
Coden et al. [25] manually annotated 302 Mayo Clinic pathology notes. The annotation
schema included coreference annotations for anatomical sites and histologies mapped to the
International Classification of Diseases for Oncology (ICD-O) [26]. Two mentions that are
exact strings and map to the same concept were annotated as coreferential. In addition, each
anatomical site or histology mention is coreferenced with any instance of its parent
anatomical site as defined by ICD-O. Roberts et al. [27] described their work on creating a
multi-layered, semantically annotated corpus, the Clinical E-Science Framework (CLEF), in
which one of the annotated relations is coreference.

Our goal was to review recent advances in general purpose coreference resolution to lay the
foundation for methodologies in the clinical domain, facilitated by the availability of a
shared lexical resource of gold standard coreference annotations, the ODIE corpus.

2. Material and methods
We selected publications from the Association for Computational Linguistics (ACL)
Anthology4 by querying for “anaphora” and “coreference,” but excluded papers that did not
focus on the English language. The search returned about 200 results. We also selected
publications using the same keywords in PubMed, but excluded papers that focused on
neuroscientific or psycholinguistic discoveries. This query yielded fewer than 10 papers.
Finally, publications frequently referenced in the papers from the above two sets were also
included.

3https://bmir-gforge.stanford.edu/gf/project/odie.
4http://aclweb.org/anthology-new/.
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3. Heuristics-based approaches
Early attempts at the coreference resolution task mainly involved heuristic approaches,
motivated by linguistic theories. The general theme was to incorporate a knowledge source
to prune unlikely antecedent candidates until a small set is obtained, and then select the best
candidate based on the current focus [28] of attention or the preferred center. These
approaches tended to employ a multitude of features, including syntactic (the gender of the
two mentions must agree), semantic (a mention with the same semantic role as the anaphor
is given preference), and pragmatic (the topic under discussion usually remains unchanged
unless there are indications otherwise5) constraints and preferences. Many of them also
resolved different types of anaphoric phrases at once, even some not exactly coreferential.6
Rich and LuperFoy [29] reported on a pronominal anaphora resolution system consisting of
a set of modules, each of which handles one aspect of anaphora theory. Hobbs [30]
employed a deepest-first tree search procedure on the syntactic parse tree of a sentence to
find the first candidate that satisfies a set of hand-crafted constraints. The search started
from the immediate dominating noun phrase (NP) of the pronoun. The candidate NP
antecedent was selected based on two criteria. Criterion one selected as antecedent the NP
on a branch to the left of the pronoun-dominating NP path. Criterion two stated that there
should be another NP between the candidate from criterion one and the dominating NP.
Both criteria one and two had to be satisfied. If no matching candidate was found, the
algorithm traversed up the tree, and broadened the search. The accuracy on a small test set
was between 88.3% and 91.7%. Lappin and Leass [31] used a heuristic approach to resolve
pronouns and lexical anaphors (reflexives and reciprocals). The Resolution of Anaphora
Procedure (RAP) algorithm, as it is referred to, operates on salience measures derived from
syntactic structure and an attentional state model. They achieved 86% accuracy. Whereas
RAP requires a full syntactic parser, Kennedy and Boguraev [32] presented an extension to
it that substitutes the parse tree with part of speech, phrasal, and other morphosyntactic
features. The accuracy of their system was 75.4%. Castaño et al. [33] described a system to
resolve pronominal phrases and bio-type noun phrases in the biomedical literature. In their
system, a potential antecedent is assigned a salience measure based on a series of criteria,
indicating the “compatibility” of the anaphor and the antecedent. The one(s) with the highest
salience measure is selected as antecedent(s). The precision and recall are 77% and 72%
respectively.

4. Supervised approaches
In the mid-1990s, methods for performing supervised coreference resolution sprang up. The
widespread availability of the MUC and ACE corpora further shaped the research
community to move towards statistical approaches. Complete heuristics-based systems
gradually saw a decline of interest in the community, although isolated rules are still
employed to encode hard linguistic constraints. Two types of machine learning methods
emerged—a two-step binary classification followed by clustering and a ranking approach.
The key distinction between them is that the binary classification approach makes
coreference decisions on the antecedent candidates independently of each other, while the
ranking approach takes into account other antecedent candidates.

5For example, in “When Sue went to Nadia’s home for dinner, she ate sukiyaki au gratin.” we know “she” refers to Sue, not Nadia,
because Sue is the topic in the preceding clause, and remains unchanged as there is no other construction that introduces a new topic
[9].
6For example, the contrastive use of one-anaphora in “a big green pyramid and a small one”[9].
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4.1. Binary classification
The binary classification approach involves two steps. First, for a given anaphor, the
classifier determines for each candidate antecedent whether the anaphor corefers with the
antecedent. A clustering algorithm then takes these pairwise coreference decisions and
generates a partition of the set of all markables in the document, such that all the markables
in each partition refer to the same entity. This process is named the “mention-pair” model,
since it hinges on a pair of markables (mentions).

A different but similar approach is the “entity-mention” model. It also casts the task as a
binary classification problem, except that the classifier predicts whether a markable is
coreferent with a partially-formed entity (chain), instead of a single markable as in the
“mention-pair” model. The second clustering step proceeds in an analogous manner.

4.1.1. Mention-pair model—McCarthy and Lehnert [34] were among the first to adopt a
machine learning approach to resolving coreference. They evaluated a decision-tree-based
system on the MUC-5 English Joint Venture corpus. The system was trained on all possible
pairs in the training set, with eight features.7 The result outperformed an earlier heuristics-
based system. Numerous systems were subsequently developed, and generally followed this
paradigm.

One of the limitations acknowledged by the authors regarding their study is that the
imbalance of the positive and negative training instances causes a bias towards classifying
more negative pairs. Because all possible pairings of markables are extracted, the negative
instances far outnumbered the positive ones. An influential method to creating training
instances to mitigate this problem was proposed in Soon et al. [35]. Positive instances were
created from a markable and its immediate preceding markable that are coreferent. For every
positive instance that involves markables mi and mj, negative instances were created for each
pair of markables mk and mj, where i < k < j. A variant of this method that differs slightly in
the creation of positive instances was proposed in Ng and Cardie [36], whereby the
immediate preceding non-pronominal markable is paired with a non-pronominal markable to
create a positive instance. Another variant in the creation of negative instances was
described in Ng and Cardie [37]. For every anaphoric markable mj whose farthest antecedent
markable to the left is mi, a negative instance was created for each markable mk such that i <
k < j and mk and mj are not coreferent.

Other methods in reducing the training instances focused on removing obvious negative
instances to improve the training set balance or removing elusive positive instances to help
the algorithm to learn from “confident” pairs. Yang et al. [38] removed markables that
violate gender, number or person agreement with the anaphor. Harabagiu et al. [39] crafted
rules manually to remove hard positive instances (such as those that require external
knowledge) while preserving the coverage of chains (based on the transitivity nature of the
coreference relation) as much as possible. Ng and Cardie [37] used a learner to exclude hard
positive instances. Uryupina [40] employed different methods in eliminating irrelevant or
hard positive instances for pronoun, proper name, definite NP, and other types of anaphoric
markables.

The number of features obtained from the training instances varies considerably, from a
small set of eight [34] to nearly 40 [36]. Uryupina [40] even reported 187 features. The
features can either operate on one of the two markables or both of them. Most of these

7These features include whether each markable contains a name, refers to a joint venture child, whether one markable contains a
reference to the other, whether both markables refer to a joint venture child, whether the two markables share a common noun phrase,
and whether they are in the same sentence.
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features fall into one of the categories of lexical, syntactic, or semantic. Common features
are summarized in Table 2.

Lexical features mainly include string matching operations, such as exact match, substring
match, and overlapping words. Syntactic features consist of grammatical roles, phrasal
types, linguistic constraints like agreement and binding theory. Most of these syntactic
features are derived from the parse trees in a heuristic manner. A notable exception is that
Yang et al. [46] utilized the parse trees directly as a structured feature. Semantic features
usually involve consulting an external ontology, for example WordNet [47]. Ng [48]
experimented with sophisticated semantic features but found limited performance gains, due
to the difficulty in accurately computing these features. Bengtson and Roth [49] evaluated
the contributions of the features commonly used.

Decision tree [34-36], maximum entropy/logistic regression [50-52,43], support vector
machine [53], generative statistical model [54], averaged perceptron [49] and conditional
random fields [55] have all been reported in the literature. Justification for decision trees is
usually its ease of interpretation for humans [56], while the reason for the choice of
maximum entropy is that they are able to handle potentially non-independent features [50].

4.1.2. Entity-mention model—A common critique of the mention-pair model is that it
cannot capture information beyond the mention pair. Consider a pair of a non-pronominal
antecedent and a pronominal anaphor. The information that can be obtained from the two
markables to determine their coreferential status is very limited, except for the gender and
number agreements. Discarding these hard-to-resolve instances as discussed earlier may
help the algorithms to learn from other strong evidence. However, this type of pair is a very
frequent linguistic phenomenon.

In light of this shortcoming of the mention-pair model, Yang et al. [57] presented an
approach to determining whether a noun phrase is coreferential with an existing (partial)
coreferential cluster. They obtained better results on the GENIA data set [58] than the
mention-pair model using a decision tree system.

Training instances in an entity-mention model encompasses an anaphor and a cluster of
preceding NPs. Instances are created similarly to the mention-pair model, i.e., for each
positive instance, negative instances are created with the anaphora and its non-coreferential
clusters.

In addition to features used in the mention-pair models describing the relationships between
the anaphor and its antecedent, features encoding relationships between an anaphor and a
partial cluster are added. Table 3 lists features proposed in Culotta et al. [52]. These cluster-
level features utilize first-order logic to expand upon the pairwise features. For example, the
number agreement feature (whether the two markables are both singular, or plural, or one is
singular and the other plural) between the antecedent and anaphor in the mention-pair model
can be transformed to the number agreement among the anaphor and all [57] or any [59,41]
of the NPs in the cluster.

Similar sets of classification methods are employed with these features, including decision
tree [57] and maximum entropy [41]. One unique method is proposed in Yang et al. [59]—
inductive logic programming. Training instances are represented as predicates. For example,
a predicate link(ei_j,mj) encodes that mention mj is coreferential with partial entity i before
the jth mention. A feature that indicates the number agreement can be represented as
entNum-Agree(ei_j,mj,ν), where ν is an indicator variable. The system takes these predicates
and induces a set of rules to classify new instances.
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4.1.3. Partitioning—The binary classification results from the mention-pair model or the
entity-mention model are only the first step in resolving coreference. The markables need to
be clustered into chains based on the predictions from the classifier.

For example, for the markables in Example 8, a system may generate the following results
for the pairs: 〈m1,m2〉 non-coreferential, 〈m1,m3〉 non-coreferential, 〈m2,m3〉 non-
coreferential, 〈m2,m4〉 non-coreferential, 〈m2,m5〉 coreferential, etc. The partitioning
algorithm is responsible to cluster the five markables into three sets: {m1}, {m2,m4}, and
{m3,m5}, from the imperfect classification results.

Let 〈mi,mj〉+ denote that the classification output for markables mi and mj is coreferential,
and 〈mi,mj〉− otherwise. Suppose the results for four markables m1 … m4 are 〈m1,m2〉+,
〈m1,m3〉−, 〈m1,m4〉+, 〈m2,m3〉+, 〈m2,m4〉−, and 〈m3,m4〉+. There is not a natural grouping of
the four markables that is consistent with the pairwise result.

Similarly in the entity-mention case, let 〈{mi … mj}, mk〉± denote the classification result for
a partial cluster {mi … mj} and a markable mk. Given results of 〈{m1},m2〉−, 〈{m2},m3〉+,
and 〈{m1,m3},m4〉+, there is not a partition of the four markables that satisfies the three
individual results.

Two greedy algorithms (closest-first and best-first) are commonly used. The closest-first
algorithm links (in the mention-pair model) the closest antecedent that the classifier predicts
positive to the anaphor [35]. If all instances for which a markable is tested as antecedents are
negative, this markable is considered non-anaphoric. In a classifier that generates a
probability for its predictions, the best-first algorithm selects the candidate antecedent with
the highest probability (usually over a threshold δ of 0.5) as the final choice [36]. If all
instances for a markable are below the threshold, the markable is considered non-anaphoric.
Ng and Cardie [36] showed that the best-first algorithm gives better results than the closest-
first algorithm. In the entity-mention model, the algorithms select the closest or the best
partial cluster to link an anaphor [57].

The simple greedy clustering algorithms only make use of a subset of the classification
results to link markables to its antecedent or partial cluster. This approach leads to a bias
towards the positive classification results. Using the earlier example of mention-pair model
in this section (〈m1,m2〉+, 〈m1,m3〉−, 〈m1,m4〉+, 〈m2,m3〉, 〈m2,m4〉−, and 〈m3,m4〉+), the
cluster algorithm link m2–m1 and m3–m2. Based on the transitivity property of coreference
relations, it follows that m1 and m3 are coreferential, which contradicts with the
classification result for this pair. This would happen no matter how unlikely it is for this pair
to be coreferential according to the classification result.

Globally optimized clustering algorithms have been proposed to address this problem. Denis
and Baldridge [45] used integer linear programming to find a linking scheme that maximally
agrees with the classification results, both positive and negative. This is achieved by
minimizing an objective function

(1)

subject to

(2)
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where M is the set of all markables, and p is the probability given by the coreference
classifier that mi and mj corefer.

Luo et al. [41] cast the clustering step as a search problem in a search space represented by a
Bell tree—the ith level of the tree corresponds to all the possible partitions of the first i
markables in the document. Thus, the leaf nodes represent all possible complete partitions of
the markables. The algorithm searches for a path from the root to a leaf node that optimizes
a maximum entropy model from the mention-pair model or the entity-mention model. Since

the number of leaf nodes (given by the Bell number  for n markables) grows
rapidly as n increases, poorly-scored children and nodes that violate certain constraints are
pruned.

Nicolae and Nicolae [60] represented the clustering problem in an undirected graph. The
nodes in the graph represent the markables, and the weights on the edges are derived from
the classification probabilities. They designed a graph partitioning algorithm to find the best
clustering of the markables from the graph.

4.2. Ranking and beyond
A drawback of both the mention-pair model and the entity-mention model is that they
consider the candidates (markables in the mention-pair model, partial chains in the entity-
mention model) independently. They cannot measure how likely a markable is the
antecedent for a given anaphor, relative to the other candidate markables. Ranking models
are designed to address this issue.

A precursor to ranking models is described in Yang et al. [38], where an instance is created
from an anaphor and two candidates, one of which is the true antecedent, and the other is
not. In this twin-candidate model, markables are compared in a pairwise fashion. The best
overall markable is the one that wins the most round robin competitions.

Contrary to the twin-candidate model, Denis and Baldrdige [43] considered all candidates at
once in a log-linear model:

where π is the anaphor, αi is an antecedent candidate, fj(π,αi) is a feature computed from π
and αi, wj is the weight, and Z is a normalization factor. The candidate with the highest
probability is taken as the final antecedent. A preferable property of this method is that it
essentially obviates the need for a clustering algorithm, as it innately captures the
competition among the candidates.

Analogous to entity-mention model’s improvement upon the mention-pair model by
incorporating information from other mentions in a cluster, Rahmand and Ng [61]
introduced a cluster ranking to improve the performance of the mention ranking model by
taking advantage of information in a cluster.

There are a few other methods that do not fall in any of the above categories. Finelye and
Joachims [62] learned a similarity metric between pairs of markables, and applied
correlation clustering [63] to maximize the sum of the similarity scores for markables in the
same cluster (chain). McCallum and Wellner [55] also eliminated the classification step by
treating the task as a graph partitioning problem (using correlation clustering), where the
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vertices are the markables, and the undirected edges’ weights are the clique potentials on the
two vertices. Daumé III and Marcu [64] modeled the named entity recognition and
coreference resolution simultaneously in an online learning model using the Learning as
Search Optimization framework [65]. Culotta et al. [52] further expanded the entity-mention
model by determining coreferential status between two clusters, exploiting complex first-
order logic features. Ng [42] trained a support vector machine ranker of partitions generated
by 54 different systems.

As a summary, Table 4 gives an overview of the various methods reviewed in this section,
and their performance. However, it should be noted that system evaluations are performed
on different corpora, and results are reported in different metrics. Therefore, the actual
figures are not directly comparable. Section 6 provides a more in-depth analysis of the issues
associated with evaluation.

4.3. Anaphoricity
There is another thread of research that focuses on distinguishing between anaphoric and
non-anaphoric phrases, commonly referred to as “anaphoricity”. Rather than relying on the
clustering algorithm to use the classification results implicitly to identify non-anaphoric
markables, an anaphoricity classifier serves as a filter to the classifier—only markables that
are determined to be anaphoric by the anaphoricity classifier are included to create test
instances and passed to the classification algorithm.

Although not essential for the binary-classification-based methods, the anaphoricity
classifier is critical in a ranking model, because the ranker categorically links an anaphor to
one of its candidate antecedents. Therefore, ranking models are commonly combined with
an anaphoricity classifier [43,61].

Previously, efforts are limited to ruling out expletive “it”8 with both heuristic rules [31] and
machine learning [67]. This additional layer of processing is later extended to include other
non-anaphoric NPs. Bean and Riloff [68] built a system with four types of heuristic rules.
Ng and Cardie [56] trained a decision tree classifier to determine NP anaphoricity, and
limited the coreference classifier to only consider NPs that are classified as anaphoric by the
anaphoricity classifier. The result demonstrated a significant improvement in precision.
However, this improvement was offset by the drop in recall, which led to poorer F-score.
Additional heuristics-based constraints reduced the drop in recall, and reverted the trend in
decreasing Fscore. Ng [69] explored other possible configurations of the interactions
between the anaphoricity and coreference classifiers, namely, incorporating the anaphoricity
result as a feature in the coreference classifier, and optimizing the overall performance
instead of two separate classifiers. Their experiment showed significant gains in F-score
when using the anaphoricity classifier as a filter and optimizing globally.

A more global optimization of the anaphoricity classifier is presented in Denis and
Baldridge [45]. The method is an extension to the integer linear programming algorithm
used by the same authors to cluster markables into chains. The objective function (Eq. 1) is
augmented with requirements to resolve and only resolve anaphors, and constraints (Eq. 2)
are expanded to enforce consistency among the results.

8Expletives are words that fulfill syntactic requirements but do not carry meanings. For example, “It is important that the patient
receive a follow up exam.”

Zheng et al. Page 10

J Biomed Inform. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.4. Specialized models
It is worth noting that many coreference resolution applications focus on a single type of
NP, or handle different types of NPs separately, based on the observation that different types
of NPs exhibit different patterns in terms of coreference participation [70,71]. Strube et al.
[72] provided empirical evidence by examining the performance of the same set of features
on different types of NPs, and obtained disparate results on pronouns, proper names, and
definite NPs (in the order from highest to lowest). Ge et al. [54], and Yang et al. [46] built
systems that only resolve pronouns. Morton [51] trained a maximum entropy model to
resolve pronouns, and applied simple string matching to resolve proper nouns. Denis and
Baldridge [43] learned separate models for third person pronouns, speech pronouns (first
and second person), proper names, definite NPs, and other anaphoras that do not fall into
one of the previous categories. Zelenko et al. [73] also trained five classifiers to handle
names, nominal NPs, first person pronouns, second person pronouns, “it”, singular third
person pronouns, and plural third person pronouns. Bergsma et al. [74] learned non-
referential “it” by examining how likely “it” can be substituted with other words.

5. Unsupervised approaches
Unsupervised approaches to coreference resolution are a more recent development, and
systems are still rare, although there are reports as early as 1999 [75]. However, the results
are less satisfactory.

The first substantial effort to tackle the coreference resolution task in an unsupervised
manner is described in Haghighi and Klein [76]. They adopted a fully generative,
nonparametric Bayesian model, based on hierarchical Dirichlet processes. For each
document, the goal was to find the assignment of the entity indices Z for all the mentions X
that maximizes the posterior probability P(Z|X). Documents are represented as mixture
models, with infinite number of components, which correspond to the number of entities. An
entity is drawn from a nonparametric Dirichlet process, and then the head of the mention is
generated from a symmetric Dirichlet distribution. Furthermore, a pronoun head model and
a salience model are designed to improve performance on pronouns by modeling additional
grammatical and semantic features (gender, number, and semantic type) and recency. They
achieved F-scores ranging from 62.3% to 70.3%.

Ng [77] presented a generative unsupervised model that views coreference as an
Expectation-Maximization (EM) clustering process. The model operates at the document
level to induce a partition (a valid clustering) of the mentions. A document D is represented
by its (ordered) mention pairs, which are assumed to be generated conditionally
independently of each other given the coreferential status Cij between the pair of mentions
mij:

The pair mij is further decomposed to three groups of mutually independent features, ,

, and :

Zheng et al. Page 11

J Biomed Inform. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



EM is used to iteratively estimate the model parameters Θ, which consist of P(m1|c),
P(m2+c), and P(m3|c):

E-step
Compute the posterior probabilities P(C|D,Θ) based on the current Θ.

M-step
Using P(C|D,Θ) obtained in the E-step, find Θ’ that maximizes the expected log likelihood
∑CP(C|D, Θ) log P(D,C|Θ’)

The performance in F-score ranged from 51.6% to 62.8% using the MUC-6 metric, and
52.8% to 56.7% using the CEAF score. The details of the scoring schemes are discussed in
Section 6.

Poon and Domingos [78] modeled coreference in Markov logic network (MLN) [79], which
is a first-order knowledge base with a weight attached to each clause. At its basis, the MLN
is similar to Haghighi and Klein [76] in that it utilizes a head mixture model. It includes a
mixture component prior, represented by the clause

InClust(+m,+c),

and the head distribution is represented by

InClust(m,+c) Λ Head(m,+t).

The predicate

InClust(+m, + c)

is true iff mention m is in cluster c;

Head(m, t)

is true iff token t is the head of mention m. The ‘+’ sign signifies that the MLN contains an
instance of the rule, with a separate weight, for each value combination of the variables with
a plus sign. Additional predicates are introduced to address pronouns, apposition and
predicate nominals. Preconditioned scaled conjugate gradient (PSCG) [80] is extended for
unsupervised learning, where the gradient is approximated by MCMC sampling. The F-
scores are between 67.3% and 79.2%.

Haghighi and Klein [81] broke away from the trend in recent work of complex discourse
modeling. They instead built the system upon modularized syntactic and semantic constraint
filters, akin to early heuristic systems but using sophisticated compatibility filters learned
from large unlabeled corpora or motivated by linguistic theories. For example, contrary to
commonly used heuristics that determine appositives by matching a “NP, NP” pattern, their
filter requires information from a parse tree. The best F-scores ranged from 81.9% using
MUC-6, 80.8% using B3, to 73.3% using CEAF.

Pronoun resolution in an unsupervised setting has received its own attention as is in the
supervised realm. Cherry and Bergsma [82] first generated a list of candidate antecedents
from the parse tree and the (third person) pronoun’s context, and then fed this list to an EM
algorithm to induce a distribution over the list that maximizes the observed data. Charniak
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and Elsner [83] improved upon their method by jointly determining anaphoricity and
antecedent for pronouns of all three persons.

6. Evaluation metrics
Because the coreference relation is reflexive, symmetric, and transitive9, simply comparing
pairwise predictions cannot appropriately reveal the underlying structure. Consider, for
instance, a document with three markables m1, m2, and m3, which are grouped into two pairs
〈m1,m2〉 and 〈m2,m3〉. It would be fastidious to penalize a system that predicted 〈m1,m2〉 and
〈m1,m3〉. A more gentle and intuitive scoring metric would take into account the fact that the
gold standard and the system output partition the set of markables in the same way by
computing the transitive closures. The first widely adopted evaluation scheme [84] that
addresses this issue, developed for the coreference task in MUC-6, was based on the idea of
comparing equivalence classes, rather than the links themselves. They follow the standard
IR metrics of precision, recall and F-score. Recall errors are calculated by the least number
of links that need to be added to the system output in order to align with the gold standard.
Precision errors are obtained by reversing the roles of system output and gold standard.

Bagga and Baldwin [85] identified two shortcomings of the MUC-6 score. One is that it
does not give credit for recognizing singletons, chains with only one markable. The other is
that it intrinsically favors larger chains, as it does not differentiate errors that result from
incorrect larger chains from those that only place a smaller number of markables into an
incorrect chain. Their revision, the B3 metric, computes recall and precision by looking at
the presence or absence of entities relative to each of the other entities in the equivalence
classes. The algorithm proceeds by first computing precision and recall for each markable,
and takes the weighted sum.

However, B3 score has its own drawback. As pointed out by Luo [86], it can give counter-
intuitive scores for certain system output. Luo [86] attributed the problem to the process of
intersecting the gold standard and system output, during which an entity can be used more
than once. Therefore, they proposed a new metric, Constrained Entity-Alignment F-Measure
(CEAF). At the heart of the metric is the one-to-one alignment of the gold standard chains
and system output chains, which solves the problem of reusing entities in B3.

Metrics are also borrowed from other domains, although they are rarely reported in the
literature for coreference systems. For example, Popescu-Belis et al. [87] adopted κ [88] that
is commonly used for measuring inter-coder agreement in annotation tasks. Krippendorff’s α
[89] is another coefficient developed in the content analysis domain to measure the
agreement between observers, coders, judges, raters, or measuring instruments. It is also
used in measuring inter-coder agreement [90] for anaphoric annotations, and could be used
as a coreference evaluation metric.

Although many systems report multiple scores, the state of the art of coreference resolution
systems is still difficult to answer. Some systems report performance on MUC corpus, while
others report that on ACE corpus, and not all metrics are reported. Assumptions about gold
standard phrasal boundaries further complicate the problem. To properly isolate the
coreference task from the underlying named entity recognition task, gold standard NEs are
necessary, while in practice, these NEs usually have to be automatically generated.

9Strictly speaking, coreference relation is not reflexive (the interpretation of a markable does not depend on itself) or symmetric (the
antecedent’s interpretation does not depend on the anaphor’s), and is only “weakly” transitive (if m2 depends on m1 to be interpreted
and m3 depends on m2, m3 does not necessarily depend on m1 for its interpretation). However, for most applications, grouping
markables that refer to the same entity is more important than identifying the detailed one-to-one relationship between an antecedent
and an anaphor.
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Considering these complications, we note that the scores of best performing systems in the
general English domain range from 0.7 to 0.8.

7. Discussion
Coreference resolution is a crucial component in an information retrieval system. To link
related information in a coherent manner, an information retrieval or extraction system
requires coreference resolution. Since MUC and ACE initiated shared tasks, and made their
corpora available, supervised machine learning techniques are the predominant efforts in the
general NLP community. Two classes of approaches gradually emerged—binary
classification (followed by clustering) and ranking. Recently, unsupervised models have also
been proposed. Although most unsupervised systems still fall short to the best supervised
systems, the performance reported in Poon and Domingos [78] is only a few percentage
points lower, and on some data sets even outperforms them. As the community starts to
explore more complex systems recently, efforts are also made to refine detailed aspects of a
comprehensive system, such as more sophisticated methods to utilize semantic information
[91,92].

Research on coreference resolution has largely been focused on pronominals and NPs, the
general community has lately started to undertake an even more ambitious coreference task,
namely resolving coreference not limited to NPs, as demonstrated in the 2011 Conference
on Natural Language Learning (CoNLL) shared task.10 The main addition in this task is that
verbs are also candidates for coreference. In Example 9, resolving the coreference relation
between the verb phrase “fell down” and the noun phrase “the incident” would help link the
minor hemorrhage to its cause.

However, NLP in the clinical domain has not seen developments in this important area. This
can be partly attributed to the lack of sharable annotated clinical corpora. In the general
domain, the two corpora have driven much of the progress. Almost all systems discussed in
Section 4 are built with either the MUC or the ACE corpus. All systems in Section 5 (except
for those pronoun resolution systems) are evaluated on one or both of the two corpora. In
contrast, clinical narratives annotated for coreference were not available to the general
research community until very recently with the release of ODIE corpus [24]. This corpus is
part of the 2011 i2b2/VA shared task, whose first track11 focuses exclusively on coreference
in the clinical domain. By Fall of 2011, the available annotated clinical data combining
ODIE and i2b2 will approximate 500,000 words, a size suitable for machine learning.

Similar problems plague the biomedical domain, a related but different source of text.
Segura-Bedmar et al. [93] noted that due to the lack of annotated resources, early
approaches were mostly based on heuristics [33,94]. Nevertheless, a few more recent
coreference resolution systems [57,95-98] were built on machine learning techniques,
leveraging the GENIA corpus [58] and the vast amount of data, albeit unannotated, in
MEDLINE.

As noted in one of the systems [98] that the biomedical texts differ from newswire, we can
hypothesize that the clinical text manifests its own patterns as well, as clinical text are
generally cursory, not edited, and abound with idiosyncratic shorthands. This further
exemplifies the importance of a corpus in the clinical domain. The i2b2 NLP shared task12

10http://conll.bbn.com/.
11https://www.i2b2.org/NLP/Coreference/.
12https://www.i2b2.org/NLP/.
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in the clinical domain has released a set of de-identified clinical notes, albeit with
annotations geared towards medical knowledge mining, instead of NLP tasks.

Notwithstanding the idiosyncrasies of the clinical narrative discussed here and in Section
1.3, the methods reviewed in this paper can be applied to clinical texts. Although some
features such as animacy are not likely to contribute much to the performance, most of the
features listed in Table 2 can be easily adapted to the clinical texts. For instance, the
WordNet sense can be substituted with UMLS semantic types.

However, the coreference resolution task in clinical texts is intertwined with other attributes
of NEs. For example, sentences like Example 10 are common in a clinical report. The two
mentions of “pain” may appear to be coreferential. However, it is questionable to assert that
the second mention, a worsening pain, is the same as the original mention. Instead, the text
may be describing multiple episodes of pain that have occurred over some period of time.

Negation is another example of an named entity’s attributes that may complicate coreference
resolution. The two mentions of “PNA” in Example 11 pose a more challenging question—
does the initially negated PNA refer to the PNA that was later discovered?

8. Conclusions
Our goal was to review recent advances in general purpose coreference resolution to lay the
foundation for methodologies in the clinical domain, facilitated by the availability of a
shared lexical resource of gold standard coreference annotations, the Ontology Development
and Information Extraction (ODIE) corpus. We reviewed coreference resolution approaches
in the general English domain and contrasted them with those in the clinical domain and the
related biomedical domain. The methods already developed in the general domain need to
be explored for portability to the clinical domain. One key step towards that is the
availability of shared annotated resources, which are becoming available and undoubtedly
will advance methodologies for information extraction from the clinical narrative.

Acknowledgments
The work was funded by Grant R01 CA127979 (The ODIE tool-kit—software for Ontology Development and
Information Extraction).

References
[1]. Fiszman, M.; Haug Peter, J.; Frederick, PR. Automatic extraction of PIOPED interpretations from

ventilation/perfusion lung scan reports; Proc AMIA Symp; 1998; p. 860-4.
[2]. Xu H, Stenner SP, Doan S, Johnson KB, Waitman LR, Denny JC. Medex: a medication

information extraction system for clinical narratives. J Am Med Inform Assoc. 2010; 17(1):19–
24. doi:10.1197/jamia.M3378. [PubMed: 20064797]

[3]. Zeng QT, Goryachev S, Weiss S, Sordo M, Murphy SN, Lazarus R. Extracting principal
diagnosis, co-morbidity, and smoking status for asthma research: evaluation of a natural language
processing system. BMC Med Inform Decis Mak. 2010; 6:30. doi:10.1186/1472-6947-6-30.
[PubMed: 16872495]

[4]. Li, L.; Chase, HS.; Patel, CO.; Friedman, C.; Weng, C. Comparing ICD9-encoded diagnoses and
NLP-processed discharge summaries for clinical trials pre-screening: a case study; Proceedings
of the AMIA annual symposium; 2008; p. 404-8.

[5]. Liao KP, Cai T, Gainer V, Goryachev S, Zeng-Treitler Q, Raychaudhuri S, et al. Electronic
medical records for discovery research in rheumatoid arthritis. Arthritis Care Res. 2010; 62(8):
1120–7. doi:10.1002/acr.20184.

Zheng et al. Page 15

J Biomed Inform. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[6]. Kullo IJ, Fan J, Pathak J, Savova GK, Ali Z, Chute CG. Leveraging informatics for genetic
studies: use of the electronic medical record to enable a genome-wide association study of
peripheral arterial disease. J Am Med Inform Assoc. 2010; 17(5):568–74. doi:10.1136/jamia.
2010.004366. [PubMed: 20819866]

[7]. Savova, GK.; Fan, J.; Ye, Z.; Murphy, SP.; Zheng, J.; Chute, CG., et al. Discovering peripheral
arterial disease cases from radiology notes using natural language processing; AMIA Annu Symp
Proc; 2010; p. 722-6.

[8]. Garla V, Lo Re III V, Dorey-Stein Z, Kidwai F, Scotch M, Womack J, et al. The Yale cTAKES
extensions for document classification: architecture and application. J Am Med Inform Assoc. in
press. doi:10.1136/amiajnl-2011-000093.

[9]. Hirst, G. Lecture notes in computer science. Vol. 119. Springer-Verlag; Berlin Heidelberg: 1981.
Anaphora in natural language understanding: a survey.

[10]. Coreference task definition; Proceedings of the 6th message understanding conference; 1995; p.
333-44.

[11]. Hirschman, L.; Chinchor, N. Coreference task definition; Proceedings of the 7th message
understanding conference; 1997;

[12]. Mitkov, R. Based on the COLING’98/ACL’98 tutorial on anaphora resolution. Anaphora
resolution: the state of the art; 1999.

[13]. Ng, V. Supervised noun phrase coreference research: the first fifteen years; Proceedings of the
48th annual meeting of the association for computational linguistics; 2010; p. 1396-411.

[14]. Coden AR, Pakhomov SV, Ando RK, Duffy PH, Chute CG. Domain-specific language models
and lexicons for tagging. J Biomed Inform. 2005; 38(6):422–30. doi:10.1016/j.jbi.2005.02.009.
[PubMed: 16337567]

[15]. Meystre SM, Savova GK, Kipper-Schuler Karin C, Hurdle JF. Extracting information from
textual documents in the electronic health record: a review of recent research. IMIA Yearbook
2008: Access Health Inform. 2008; 1:128–44.

[16]. Friedman C, Alderson PO, Austin JHM, Cimino JJ, Johnson SB. A general natural language text
processor for clinical radiology. J Am Med Inform Assoc. 1994; 1(2):161–74. doi:10.1136/jamia.
1994.95236146. [PubMed: 7719797]

[17]. Haug, P.; Koehler, S.; Lau, LM.; Wang, P.; Rocha, R.; Huff, S. A natural language understanding
system combining syntactic and semantic techniques; Proc Annu Symp Comput Appl Med Care;
1994; p. 247-51.

[18]. Fiszman M, Chapman WW, Aronsky D, Evans RS, Haug PJ. Automatic detection of acute
bacterial pneumonia from chest X-ray reports. J Am Med Inform Assoc. 2000; 7(6):593–604.
doi:10.1136/jamia.2000.0070593. [PubMed: 11062233]

[19]. Hahn U, Romacker M, Schulz S. medSynDiKATe—a natural language system for the extraction
of medical information from findings reports. Int J Med Inform. 2002; 67(1-3):63–74. doi:
10.1016/S1386-5056(02)00053-9. [PubMed: 12460632]

[20]. Friedman, C. A broad-coverage natural language processing system; Proceedings of AMIA
symposium; 2000; p. 270-4.

[21]. Goryachev, S.; Sordo, M.; Zeng, QT. A suite of natural language processing tools developed for
the i2b2 project; AMIA Annu Symp Proc; 2006; p. 931

[22]. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical text
analysis and knowledge extraction system (cTAKES): architecture, component evaluation and
applications. J Am Med Inform Assoc. 2010; 17(5):507–13. doi:10.1136/jamia.2009.001560.
[PubMed: 20819853]

[23]. Hahn, U.; Romacker, M.; Schulz, S. medSynDiKATe—design considerations for an ontology-
based medical text understanding system; Proc AMIA Symp; 2000; p. 330-4.

[24]. Savova GK, Chapman WW, Zheng J, Crowley RS. Anaphoric relations in the clinical narrative:
corpus creation. J Am Med Inform Assoc. 2011; 18(4):459–65. doi:10.1136/
amiajnl-2011-000108. [PubMed: 21459927]

[25]. Coden A, Savova GK, Sominsky I, Tanenblatt M, Masanz JJ, Schuler K, et al. Automatically
extracting cancer disease characteristics from pathology reports into a cancer disease knowledge

Zheng et al. Page 16

J Biomed Inform. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



model. J Biomed Inform. 2009; 42(5):937–49. doi:10.1016/j.jbi.2008.12.005. [PubMed:
19135551]

[26]. Fritz, A.; Percy, C.; Jack, A.; Shanmugarathan, K.; Sobin, L.; Parkin, DM., et al., editors.
International classification of diseases for oncology. World Health Organization; 2000.

[27]. Roberts A, Gaizauskas R, Hepple M, Demetriou G, Guo Y, Roberts I, et al. Building a
semantically annotated corpus of clinical text. J Biomed Inform. 2009; 42(5):950–66. doi:
10.1016/j.jbi.2008.12.013. [PubMed: 19535011]

[28]. Sidner CL. Focusing for interpretation of pronouns. Am J Comput Linguist. 1981; 7(4):217–31.
[29]. Rich, E.; LuperFoy, S. An architecture for anaphora resolution; Proceedings of the second

conference on applied natural language processing; Austin (Texas, USA): Association for
Computational Linguistics. 1988; p. 18-24.doi:10.3115/ 974235.974239

[30]. Hobbs JR. Resolving pronoun references. Lingua. 1978; 44(4):311–38. doi:
10.1016/0024-3841(78)90006-2.

[31]. Lappin S, Leass HJ. An algorithm for pronominal anaphora resolution. Comput Linguist. 1994;
20(4):535–62.

[32]. Kennedy, C.; Boguraev, B. Anaphora for everyone: pronominal anaphora resolution without a
parser; Proceedings of the 16th international conference on computational linguistics; 1996;

[33]. Castaño, J.; Zhang, J.; Pustejovsky, J. Anaphora resolution in biomedical literature; Proceedings
of the international symposium on reference resolution for NLP; Alicante, Spain. 2002;

[34]. McCarthy, JF.; Lehnert, WG. Using decision trees for coreference resolution; Proceedings of the
fourteenth international joint conference on artificial intelligence (IJCAI’95); Montreal, Quebec.
1995; p. 1050-5.

[35]. Soon WM, Ng HT, Lim DCY. A machine learning approach to coreference resolution of noun
phrases. Comput Linguist. 2001; 27(4):521–44.

[36]. Ng, V.; Cardie, C. Improving machine learning approaches to coreference resolution;
Proceedings of the 40th annual meeting of the association for computational linguistics;
Philadelphia (PA). 2002; p. 104-11.doi:10.3115/1073083.1073102

[37]. Ng, V.; Cardie, C. Combining sample selection and error-driven pruning for machine learning of
coreference rules; Proceedings of the 2002 conference on empirical methods in natural language
processing; 2002; p. 55-62.

[38]. Yang, X.; Zhou, G.; Su, J.; Tan, CL. Coreference resolution using competition learning approach;
Proceedings of the 41st annual meeting of the association for computational linguistics;
Association for Computational Linguistics. 2003; p. 176-83.doi:10.3115/1075096.1075119

[39]. Harabagiu, SM.; Bunescu, R.; Maiorano, SJ. Text and knowledge mining for coreference
resolution; Second meeting of the North American chapter of the association for computational
linguistics; 2001; doi:10.3115/1073336.1073344

[40]. Uryupina, O. Linguistically motivated sample selection for coreference resolution; Proceedings
of DAARC; Furnas, Portugal. 2004;

[41]. Luo, X.; Ittycheriah, A.; Jing, H.; Kambhatla, N.; Roukos, S. A mention-synchronous coreference
resolution algorithm based on the bell tree; Proceedings of the 42nd meeting of the association
for computational linguistics (ACL’04); Barcelona, Spain. 2004; p. 135-42.doi:
10.3115/1218955.1218973

[42]. Ng, V. Machine learning for coreference resolution: from local classification to global ranking;
Proceedings of the 43rd annual meeting of the association for computational linguistics; 2005; p.
157-64.

[43]. Denis, P.; Baldridge, J. Specialized models and ranking for coreference resolution; Proceedings
of the 2008 conference on empirical methods in natural language processing; Honolulu (HI):
Association for Computational Linguistics. 2008; p. 660-9.

[44]. Wagner RA, Fischer MJ. The string-to-string correction problem. J ACM. 1974; 21(1):168–73.
doi:10.1145/321796.321811.

[45]. Denis, P.; Baldridge, J. Joint determination of anaphoricity and coreference resolution using
integer programming; Human language technologies 2007: the conference of the North American
chapter of the association for computational linguistics; proceedings of the main conference;
Rochester (New York): Association for Computational Linguistics. 2007; p. 236-43.

Zheng et al. Page 17

J Biomed Inform. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[46]. Yang, X.; Su, J.; Tan, CL. Kernel-based pronoun resolution with structured syntactic knowledge;
Proceedings of the 21st international conference on computational linguistics and 44th annual
meeting of the association for computational linguistics; Sydney, Australia. 2006; p. 41-8.doi:
10.3115/1220175.1220181

[47]. Miller GA. WordNet: a lexical database for English. Commun ACM. 1995; 38(11):39–41. doi:
10.1145/219717.219748.

[48]. Ng, V. Shallow semantics for coreference resolution; Proceedings of the 20th international joint
conference on artifical intelligence; Hyderabad, India. 2007; p. 1689-94.

[49]. Bengtson, E.; Roth, D. Understanding the value of features for coreference resolution; EMNLP
2008: proceedings of the conference on empirical methods in natural language processing;
Honolulu, HI. 2008; p. 294-303.

[50]. Kehler, A. Probabilistic coreference in information extraction; Proceedings of the second
conference on empirical methods in natural language processing (EMNLP-97); 1997; p. 163-73.

[51]. Morton, TS. Coreference for NLP applications; Proceedings of the 38th annual meeting of the
association for computational linguistics; 2000; p. 173-80.doi:10.3115/1075218.1075241

[52]. Culotta, A.; Wick, M.; McCallum, A. First-order probabilistic models for coreference resolution;
Human language technology conference of the North American chapter of the association of
computational linguistics (HLT/NAACL); Rochester (NY): Association for Computational
Linguistics. 2007; p. 81-8.

[53]. Uryupina, O. Corry: a system for coreference resolution; Proceedings of the 5th international
workshop on semantic evaluation; 2010; p. 100-3.

[54]. Ge, N.; Hale, J.; Charniak, E. A statistical approach to anaphora resolution; Proceedings of the
sixth workshop on very large corpora; 1998; p. 161-71.

[55]. McCallum, A.; Wellner, B. In: Saul, LK.; Weiss, Y.; Bottou, L., editors. Conditional models of
identity uncertainty with application to noun coreference; Advances in neural information
processing systems; Cambridge (MA): MIT Press. 2004; p. 905-91.

[56]. Ng, V.; Cardie, C. Identifying anaphoric and non-anaphoric noun phrases to improve coreference
resolution; Proceedings of the 19th international conference on computational linguistics; Taipei.
2002c; doi:10.3115/1072228.1072367

[57]. Yang, X.; Su, J.; Zhou, G.; Tan, CL. An NP-cluster based approach to coreference resolution;
COLING ’04: Proceedings of the 20th international conference on computational linguistics;
Geneva (Switzerland). 2004; p. 226-32.doi:10.3115/1220355.1220388

[58]. Kim JD, Ohta T, Tateisi Y, Tsujii J. GENIA corpus—a semantically annotated corpus for bio-
textmining. Bioinformatics. 2003; 19(Suppl 1):i180–2. doi:10.1093/bioinformatics/btg1023.
[PubMed: 12855455]

[59]. Yang, X.; Su, J.; Lang, J.; Tan, CL.; Liu, T.; Li, S. An entity-mention model for coreference
resolution with inductive logic programming; Proceedings of ACL-08: HLT; Columbus (OH):
Association for Computational Linguistics. 2008; p. 843-51.

[60]. Nicolae, C.; Nicolae, G. BestCut: a graph algorithm for coreference resolution; Proceedings of
the 2006 conference on empirical methods in natural language processing; Sydney (Australia):
Association for Computational Linguistics. 2006; p. 275-83.

[61]. Rahman, A.; Ng, V. Supervised models for coreference resolution; Proceedings of the 2009
conference on empirical methods in natural language processing; Singapore. 2009; p. 968-77.

[62]. Finley, T.; Joachims, T. Supervised clustering with support vector machines; International
conference on machine learning (ICML); 2005; p. 217-24.

[63]. Bansal N, Blum A, Chawla S. Correlation clustering. Mach Learn. 2004; 56(1–3):89–113. doi:
10.1023/B:MACH.0000033116.57574.95.

[64]. Daumé, H., III; Marcu, D. A large-scale exploration of effective global features for a joint entity
detection and tracking model; Proceedings of human language technology conference and
conference on empirical methods in natural language processing; Vancouver (British Columbia,
Canada): Association for Computational Linguistics. 2005; p. 97-104.

[65]. Daumé, H., III; Marcu, D. Learning as search optimization: approximate large margin methods
for structured prediction; International conference on machine learning (ICML); Bonn, Germany.
2005; p. 169-76.doi:10.1145/ 1102351.1102373

Zheng et al. Page 18

J Biomed Inform. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[66]. Cohen, WW. Fast effective rule induction; Proceedings of the 12th international conference on
machine learning; 1995; p. 115-23.

[67]. Evans R. Applying machine learning toward an automatic classification of It. J Lit Linguist
Comput. 2001; 16(1):45–57. doi:10.1093/llc/16.1.45.

[68]. Bean, DL.; Riloff, E. Corpus-based identification of non-anaphoric noun phrases; Proceedings of
the 37th annual meeting of the association for computational linguistics; College Park (Maryland,
USA): Association for Computational Linguistics. 1999; p. 373-80.doi:
10.3115/1034678.1034737

[69]. Ng, V. Learning noun phrase anaphoricity to improve conference resolution: issues in
representation and optimization; Proceedings of the 42nd meeting of the association for
computational linguistics (ACL’04); Barcelona, Spain. 2004; p. 151-8.doi:
10.3115/1218955.1218975

[70]. Ariel M. Referring and accessibility. J Linguist. 1988; 24(1):65–87. doi:10.1017/
S0022226700011567.

[71]. Gundel JK, Hedberg N, Zacharski R. Cognitive status and the form of referring expressions in
discourse. Language. 1993; 69(2):274–307.

[72]. Strube, M.; Rapp, S.; Müller, C. The influence of minimum edit distance on reference resolution;
Proceedings of the 2002 conference on empirical methods in natural language processing.
Association for Computational Linguistics; 2002; p. 312-9.doi:10.3115/1118693.1118733

[73]. Zelenko, D.; Aone, C.; Tibbetts, J. Coreference resolution for information extraction; ACL 2004:
workshop on reference resolution and its applications; 2004; p. 24-31.

[74]. Bergsma, S.; Lin, D.; Goebel, R. Distributional identification of non-referential pronouns;
Proceedings of ACL-08: HLT; Columbus (Ohio): Association for Computational Linguistics.
2008; p. 10-8.

[75]. Cardie, C.; Wagstaff, K. Noun phrase coreference as clustering; Proceedings of the join SIGDAT
conference on empirical methods in natural language processing and very large Corpora; 1999; p.
82-99.

[76]. Haghighi, A.; Klein, D. Unsupervised coreference resolution in a nonparametric bayesian model;
Proceedings of the 45th annual meeting of the association of computational linguistics; Prague,
Czech Republic: Association for Computational Linguistics. 2007; p. 848-55.

[77]. Ng, V. Unsupervised models for coreference resolution; Proceedings of the 2008 conference on
empirical methods in natural language processing; Honolulu, Hawaii. 2008; p. 640-9.

[78]. Poon, H.; Domingos, P. Joint unsupervised coreference resolution with Markov Logic;
Proceedings of the 2008 conference on empirical methods in natural language processing;
Honolulu (HI): Association for Computational Linguistics. 2008; p. 650-9.

[79]. Richardson M, Domingos P. Markov logic networks. Mach learn. 2006; 62(1–2):107–36. doi:
10.1007/s10994-006-5833-1.

[80]. Lowd, D.; Domingos, P. Efficient weight learning for markov logic networks; Proceedings of the
11th European conference on principles and practices of knowledge discovery in databases
(PKDD); 2007; p. 200-11.

[81]. Haghighi, A.; Klein, D. Simple coreference resolution with rich syntactic and semantic features;
Proceedings of the 2009 conference on empirical methods in natural language processing.
Singapore: Association for Computational Linguistics; 2009; p. 1152-61.

[82]. Cherry, C.; Bergsma, S. An expectation maximization approach to pronoun resolution;
Proceedings of the ninth conference on computational natural language learning (CoNLL-2005);
Ann Arbor (Michigan): Association for Computational Linguistics. 2005; p. 88-95.

[83]. Charniak, E.; Elsner, M. EM works for pronoun anaphora resolution; Proceedings of the 12th
Conference of the European chapter of the ACL (EACL 2009); Athens, Greece: Association for
Computational Linguistics. 2009; p. 148-56.

[84]. Vilain, M.; Burger, J.; Aberdeen, J.; Connolly, D.; Hirschman, L. A model-theoretic coreference
scoring scheme; MUC6’95: Proceedings of the 6th conference on message understanding;
Morristown (NJ, USA): Association for Computational Linguistics. 1995; p. 45-52.doi:
10.3115/1072399.1072405

Zheng et al. Page 19

J Biomed Inform. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[85]. Bagga, A.; Baldwin, B. Algorithms for scoring coreference chains; The first international
conference on language resources and evaluation workshop on linguistics coreference; 1998;

[86]. Luo, X. On coreference resolution performance metrics; Proceedings of the conference on human
language technology and empirical methods in natural language processing; Vancouver (BC):
Association for Computational Linguistics. 2005; p. 25-32.doi:10.3115/1220575.1220579

[87]. Popescu-Belis, A.; Rigouste, L.; Salmon-Alt, S.; Romary, L. Online evaluation of coreference
resolution; Proceedings of 4th international conference on language resources and evaluation
(LREC 2004); Lisbon, Portugal. 2004; p. 1507-10.

[88]. Carletta J. Assessing agreement on classification tasks: The kappa statistic. Comput Linguist.
1996; 22(2):249–54.

[89]. Krippendorff K. Estimating the reliability, systematic error and random error of interval data.
Educ Psychol Measur. 1970; 30(1):61–70. doi:10.1177/001316447003000105.

[90]. Poesio, M.; Artstein, R. The reliability of anaphoric annotation, reconsidered: taking ambiguity
into account; Proceedings of the Workshop on Frontiers in Corpus Annotations II: Pie in the Sky;
Ann Arbor (MI): Association for Computational Linguistics. 2005; p. 76-83.

[91]. Yang, X.; Su, J. Coreference resolution using semantic relatedness information from
automatically discovered patterns; Proceedings of the 45th annual meeting of the association of
computational linguistics; 2007; p. 528-35.

[92]. Huang, Z.; Zeng, G.; Xu, W.; Celikyilmaz, A. Accurate semantic class classifier for coreference
resolution; Proceedings of the 2009 conference on empirical methods in natural language
processing; 2009; p. 1232-40.

[93]. Segura-Bedmar I, Crespo M, Pablo-Sánchez C, Martínez P. Resolving anaphoras for the
extraction of drug-drug interactions in pharmacological documents. BMC Bioinform. 2010;
11(Suppl 2):S1. doi:10.1186/1471-2105-11-S2-S1.

[94]. Kim, JJ.; Park, JC.; Bio, AR. anaphora resolution for relating protein names to proteome database
entries. In: Harabagiu, S.; Farwell, D., editors. ACL 2004: Workshop on Reference Resolution
and its Applications; Barcelona (Spain): Association for Computational Linguistics. 2004; p.
79-86.

[95]. Liang, T.; Lin, YH. Anaphora resolution for biomedical literature by exploiting multiple
resources. In: Dale, R.; Wong, KF.; Su, J.; Kwong, OY., editors. Natural language processing—
IJCNLP 2005. Lecture Notes in Artificial Intelligence; Springer-Verlag. 2005; p. 742-53.

[96]. Gasperin, C. Semi-supervised anaphora resolution in biomedical texts; Proceedings of the HLT-
NAACL BioNLP workshop on linking natural language and biology; New York (New York):
Association for Computational Linguistics. 2006; p. 96-103.

[97]. Su, J.; Yang, X.; Hong, H.; Tateisi, Y.; Tsujii, J. In: Ashburner, M.; Leser, U.; Rebholz-
Schuhmann, D., editors. Coreference resolution in biomedical texts: a machine learning
approach; Ontologies and text mining for life sciences: current status and future perspectives. No.
08131 in Dagstuhl seminar proceedings; Dagstuhl (Germany): Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, Germany. 2008;

[98]. Gasperin, C.; Briscoe, T. Statistical anaphora resolution in biomedical texts; Proceedings of the
22nd international conference on computational linguistics (Coling 2008); Manchester (UK):
Coling 2008 Organizing Committee. 2008; p. 257-64.

Zheng et al. Page 20

J Biomed Inform. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 21

Ta
bl

e 
1

Ex
am

pl
es

.

1
…

 h
e 

co
nt

in
ue

s t
o 

ha
ve

 si
gn

ifi
ca

nt
 p

ai
n 

in
 th

e 
sh

ou
ld

er
. …

 H
e 

us
es

 T
yl

en
ol

 …
 to

 d
ea

l w
ith

 h
is

 d
is

co
m

fo
rt

.

2
Sm

al
l f

oc
us

 o
f i

nv
as

iv
e 

gr
ad

e 
2 

(o
f 4

) a
de

no
ca

rc
in

om
a m

1 a
ris

in
g 

in
 a

ss
oc

ia
tio

n 
w

ith
 a

 se
rr

at
ed

 a
de

no
m

a m
2 w

ith
 …

. T
he

 fo
cu

s o
f a

de
no

ca
rc

in
om

a m
3 s

ho
w

s i
nv

as
io

n 
in

to
 su

pe
rf

ic
ia

l
su

bm
uc

os
a 

an
d 

is
 lo

ca
te

d 
ap

pr
ox

im
at

el
y 

.…
 L

at
er

al
 m

ar
gi

ns
 a

re
 in

vo
lv

ed
 b

y 
ad

en
om

a m
4 b

ut
 a

re
 n

eg
at

iv
e 

fo
r c

ar
ci

no
m

a m
5.

3
…

 h
ad

 p
er

io
ds

 o
f c

he
st

 d
is

co
m

fo
rt

 w
hi

le
 a

t r
es

t …
 c

om
pl

ai
ns

 o
f s

om
e 

m
ild

 c
he

st
 ti

gh
tn

es
s t

ha
t m

ay
 la

st
 3

0-
m

in
ut

es
.

4
w

e 
br

ie
fly

 d
is

cu
ss

ed
 b

ac
k 

ex
te

ns
or

 st
re

ng
th

en
in

g 
ex

er
ci

se
s f

or
 o

st
eo

po
ro

si
s, 

an
d 

I t
hi

nk
 sh

e 
w

ou
ld

 b
e 

an
 e

xc
el

le
nt

 c
an

di
da

te
 fo

r a
 h

om
e 

pr
og

ra
m

 o
f t

ha
t v

ar
ie

ty
.

5
Th

e 
pa

tie
nt

 p
re

se
nt

s w
ith

 g
as

tr
oi

nt
es

tin
al

 sy
m

pt
om

s i
nc

lu
di

ng
 n

au
se

a,
 v

om
iti

ng
. T

he
 p

at
ie

nt
 h

as
 h

ad
 sy

m
pt

om
s f

or
 1

0 
da

ys
. I

n 
fa

ct
, i

s h
av

in
g 

th
at

 p
ro

bl
em

 si
nc

e 
ea

rly
 p

re
gn

an
cy

 b
ut

 w
or

st
si

nc
e 

10
 d

ay
s.

6
H

er
 p

ai
n 

co
nt

ro
l a

pp
ea

rs
 to

 b
e 

ad
eq

ua
te

 w
ith

 th
e 

Tr
am

ad
ol

 in
cr

ea
se

d 
to

 q
.i.

d.
 d

os
in

g.

7
Sh

e 
ha

d 
an

 a
rt

hr
og

ra
m

 in
 2

03
0.

 W
e 

ha
ve

 th
os

e 
fil

m
s. 

Th
ey

 sh
ow

 th
e 

ca
ps

ul
e 

is
 ti

gh
t, 

an
d 

th
ey

 sh
ow

 th
e 

ca
rti

la
ge

 o
f t

he
 g

le
no

id
 is

 p
re

se
nt

.

8
I w

ou
ld

 su
pp

or
t c

on
tin

ui
ng

 sp
ee

ch
 th

er
ap

y m
1 f

or
 h

is
 sp

ee
ch

 d
ef

ic
it 

m
2 .

 …
 H

e 
ha

d 
a 

…
 st

ro
ke

m
3 a

nd
 re

su
lta

nt
 a

ph
as

ia
m

4 a
fte

r t
he

 e
ve

nt
m

5 .

9
Pa

tie
nt

 fe
ll 

do
w

n 
a 

fli
gh

t o
f s

ta
irs

. T
he

 in
ci

de
nt

 c
au

se
d 

m
in

or
 h

em
or

rh
ag

e.

10
…

 p
re

se
nt

s w
ith

 p
ro

gr
es

si
ve

 ri
gh

t s
id

ed
 c

he
st

 p
ai

n…
 T

he
 p

ai
n 

is
 w

or
se

ne
d 

w
ith

 d
ee

p 
in

sp
ira

tio
n 

or
 m

ov
em

en
t.

11
…

 th
e 

C
X

R
 w

as
 w

ith
ou

t a
ny

 e
vi

de
nc

e 
of

 P
N

A,
…

 su
bs

eq
ue

nt
ly

 re
ce

iv
ed

 a
 C

TA
 to

 e
va

lu
at

e 
fo

r P
E 

w
hi

ch
 re

ve
al

ed
 m

ul
tif

oc
al

 b
ila

te
ra

l P
N

A…

J Biomed Inform. Author manuscript; available in PMC 2012 December 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 22

Table 2

Common machine learning features in binary classification. m1 denotes antecedent, m2 denotes anaphor, and
m denotes either. Note that there is much variation in the implementation of these features, and a system listed
next to a feature does not necessarily use its exact form. For instance, whereas many systems used gender and
number agreements as two different features, Ng and Cardie [36] used a composite of them. Moreover,
definitions of certain features are not clear, and in fact can be different in different systems. Finally, this list is
not comprehensive, as some systems use domain-specific features, and yet others do not report details [45].
For example, McCarthy and Lehnert [34] used a feature that encodes whether one markable refers to a joint
venture child.

Features Example or explanation Systems

m1 and m2 string match m1 = m2 = “cancer” [36,41,40,42,43]

m1(m2) is substring of
  m2(m1)

“tumor” and “the tumor” [36,41–43]

actual strings “tumor” [41]

edit distance between
  m1 and m2

Wagner and Fischer [44] [41]

m1(m2) spans m2(m1) m1 is embedded in m2 [36,42]

m is prenominal modifier “tumor” in “tumor size” [36,42]

m is a pronominal “the one” [35,36,40,42,43]

m is a proper name “Smith” [35,36,42,43]

m is a subject “He” in “He is 30 yo.” [36,42]

m is definite “the tumor” [35,36,42,40,43]

m is indefinite “tumor” [43]

m is demonstrative “this tumor” [35,42]

m is possessive “his knee” [41]

m is reflexive “himself” [41]

NP head “knee” in “his knee” [43]

number of m single or plural [35,36,41,40,42,43]

gender of m masculine, feminine [35,36,41–43]

person of m 1st, 2nd, or 3rd [40,43]

animacy match [36,42]

m in quoted string he said, “the pain” worsens [36,42]

distance between m1 and
  m2

number of words [34,35,41,42,40,43]

semantic class agreement both are disorder markables [35,36,42]

m2 is appositive of m1 “Mr. Smith, the patient” [35,41,40,42]

m1(m2) is an alias of
  m2(m1)

“paracetamol” and “acetaminophen” [34,35,42]

m1(m2) is an acronym of
  m2(m1)

“ms” and “multiple sclerosis” [41,43]

WordNet sense meaning from WordNet [36,40,42,43]

synonym, antonym [40]

POS tag adjective [41,43]
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Table 3

First-order logic predicates proposed in Culotta et al. [52] to expand on pairwise features shown in Table 2. X
and Y can be any pairwise feature.

Predicate True iff …

All-X X for all possible pairs in the cluster is true

Most-true-X X for a majority of pairs in the cluster is true

Most-false-X X for a majority of pairs in the cluster is false

All-true All pairs are predicted to be coreferent

Most-true Most pairs are predicted to be coreferent

Most-false Most pairs are predicted to be non-coreferent

Max-true The maximum pairwise score is above threshold

Min-true The minimum pairwise score is above threshold

X∧Y Features X and Y are both true
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Table 4

Summary of supervised coreference resolution systems.

Mention-pair
systems

Classification Partitioning Performance

[34] Decision tree - 85.8–86.5

[35] Decision tree Closest-first 60.4–62.6

[36] Decision tree Best-first 63.4–70.4

[37] RIPPER [66] Best-first 63.4–69.5

[40] RIPPER Closest-first 48.0–55.3

[48] Decision tree Closest-first 62.3–64.2

[53] SVM Integer linear
programming

57.2–84.6

[49] Averaged perceptron Best-first 78.3–81.8

Entity-mention
  systems

Classification Partitioning Performance

[57] Decision tree Closest- and best-
first

81.2–81.7

[59] Inductive logic
programming

Best-first 60.1–63.5

[41] Maximum entropy Bell tree search 72.1–85.7

[60] Maximum entropy Graph cutting 41.2–89.6

Ranking
  systems

Algorithm Performance

[38] Decision tree 60.2–71.3

[43] Maximum entropy 67–71.6

[52] Maximum entropy 69.2–79.3

[61] SVM 59.5–76.0

Other systems Algorithm Performance

[62] Supervised clustering
with SVM

[55] Graph partitioning 60.83–73.42

[64] LaSO [65] 76.7–89.2

[42] SVM ranker 54.7–69.3

J Biomed Inform. Author manuscript; available in PMC 2012 December 1.


