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Abstract
Molecular chaperones, as the name suggests, are involved in folding, maintenance, intracellular
transport, and degradation of proteins as well as in facilitating cell signaling. Heat shock protein
90 (Hsp90) is an essential eukaryotic molecular chaperone that carries out these processes in
normal and cancer cells. Hsp90 function in vivo is coupled to its ability to hydrolyze ATP and this
can be regulated by co-chaperones and post-translational modifications. In this review, we explore
the varied roles of known post-translational modifications of cytosolic and nuclear Hsp90
(phosphorylation, acetylation, S-nitrosylation, oxidation and ubiquitination) in fine-tuning
chaperone function in eukaryotes.
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1. Introduction
Cells synthesize large amounts of protein in a very short time, in a cytosol where protein
concentration at steady state approaches 300 g/l [1]. Under these conditions, many
hydrophobic surfaces on proteins may be transiently exposed and the likelihood of
deleterious interactions is quite high [2]. To counter this threat to cell viability, molecular
chaperones have evolved to help nascent polypeptides fold correctly and multimeric protein
complexes assemble productively, while minimizing the danger of protein aggregation. Heat
shock protein 90 (Hsp90) is an evolutionarily conserved molecular chaperone that is
involved in stabilizing and activating at least two hundred signaling proteins (clients) under
normal cellular conditions [3,4,5]. An updated list of Hsp90 clients can be found at
http://www.picard.ch/downloads/downloads.html. Cancer cells have co-opted Hsp90 to
serve a crucial role in protecting an array of mutated and over-expressed oncoproteins from
misfolding and degradation [6,7]. Thus, Hsp90 inhibitors are being actively evaluated as
novel cancer therapeutics [8,9]. This review describes advances in our understanding of how
cytosolic and nuclear Hsp90 is regulated by post-translational modification in lower and
higher eukaryotes.
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2. Hsp90 structure and the chaperone cycle
Hsp90 is found in all kingdoms except Archaea [10]. In humans, as in other eukaryotes,
there are two cytosolic Hsp90 isoforms: stress-induced Hsp90α and constitutively expressed
Hsp90β [11]. Hsp90 is a member of the ATPase/kinase GHKL (Gyrase, Hsp90, Histidine
Kinase, MutL) superfamily – a group of proteins that are characterized by a unique ATP
binding cleft [4,12]. Hsp90 is comprised of three domains: i) an N-terminal domain,
containing nucleotide, co-chaperone (proteins that assist Hsp90 in modulating client
activity), and drug binding sites; ii) a middle (M) domain, which provides binding sites for
client proteins and other co-chaperones; iii) a C-terminal domain containing a dimerization
motif and binding sites for yet other co-chaperones (Figure 1) [13,14,15]. Hsp90 proteins
also have an unstructured charged-linker region of significant but variable length that
connects N and M domains and provides conformational freedom to the protein [16,17].

Various biophysical techniques, such as X-ray crystallography, small angle X-ray scattering
(SAXS) analysis, and electron microscopy have provided valuable snap shots of different
Hsp90 conformations in the presence or absence of nucleotides and different co-chaperones
[13,18,19,20,21,22]. From these data, investigators have proposed that Hsp90 cycles through
several conformations that ultimately result in correctly orienting N and M domains to form
a split ATPase. Indeed, much accumulated data support the hypothesis that Hsp90
chaperone function relies on ATP binding and hydrolysis (Figure 1), [12]. However,
although all Hsp90 proteins can hydrolyze ATP, the rates of hydrolysis are low and variable
from one species to another (0.0015 s–1 for human Hsp90α and 0.013 s–1 for yeast Hsp90)
[19,23]. Recent studies suggest that Hsp90 rapidly samples multiple conformations
comprising the chaperone cycle in the absence of nucleotides [24]. Current data suggest that
ATP binding and hydrolysis subtly shift the conformational equilibrium, presumably by
lowering the energy barrier between certain conformations, thus providing directionality to
the Hsp90 cycle [24,25]. Hsp90 inhibitors such as radicicol (RD) or geldanamycin (GA)
disrupt the chaperone cycle by replacing ATP in Hsp90's nucleotide binding pocket [26,27].

Studies using fluorescence resonance energy transfer (FRET) have revealed that nucleotides
and co-chaperones (Aha1, p23 and Sti1) modulate Hsp90 conformational dynamics in real
time [24,25]. Further, although the essential aspects of the Hsp90 conformational cycle are
conserved from bacteria to humans, the population dynamics (which conformational states
are most occupied at steady state) differ between bacteria, yeast, and human Hsp90 [19].
These data suggest that the Hsp90 cycle may be tunable and tailored to the unique
intracellular environment of different organisms, or to discrete physiological states within
different tissues of metazoans (such as the distinct intracellular environment that is
characteristic of cancer). This fine-tuning is likely provided by complex post-translational
modifications to Hsp90 itself and to other components of the chaperone machinery.

3. Post-translational modification of Hsp90 co-chaperones
3.1 Co-chaperones modulate Hsp90 activity

Co-chaperones can be generally defined as proteins that modulate the function of other
chaperones [28]. Depending on its conformational state, Hsp90 normally interacts with
distinct co-chaperones with diverse activities. In total, these conformation-specific multi-
protein complexes comprise the functional chaperone unit, frequently referred to as the
‘Hsp90 chaperone machine’. Co-chaperones containing tetratricopeptide repeat (TPR)
domains use this motif to interact with Hsp90 (e.g., p60Hop/Sti1, Chip, FKBP51 & 52, PP5/
Ppt1), and they have additional domains that catalyze reactions as diverse as ubiquitin
ligation, dephosphorylation, and peptidylprolyl isomerization. Non-TPR-co-chaperones
include Aha1/Hch1, p23 (prostaglandin E synthase 3, PGES3)/Sba1, Sgt1, and p50/Cdc37
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[29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45]. A number of co-chaperones
modulate Hsp90 ATPase activity, thereby altering the cycling rate of the chaperone machine
(e.g., p50/Cdc37, p60Hop/Sti1, p23, Aha1). Many Hsp90 co-chaperones are conserved in all
eukaryotes. For this reason, the single cell eukaryote baker's yeast, Saccharomyces
cerevisiae, has proven to be an excellent model organism to study the function of both
Hsp90 and its co-chaperones in maintaining cellular homeostatis [46,47,48,49,50,51].

3.2 Impact of co-chaperone phosphorylation on Hsp90 function
One of the challenging tasks in understanding the role of co-chaperones in controlling
Hsp90 activity in normal and cancer cells is to appreciate the functional consequences of co-
chaperone post-translational modifications. While this has only recently been appreciated,
recent work by Vaughan and colleagues [36] emphasizes its importance. These investigators
showed that co-chaperones Cdc37 and PP5/Ppt1 form complexes with Hsp90 in yeast and in
human tumor cells. The protein phosphatase PP5/Ppt1 dephosphorylates the Ser-13 residue
on Cdc37 in vivo, directly affecting its interaction with Hsp90 and negatively impacting the
chaperoning of numerous kinase clients by the Hsp90-Cdc37 complex. Serine
phosphorylation of Cdc37, mediated by casein kinase 2 (CK2), is necessary for it to
chaperone numerous kinase clients including CK2 itself, Cdc28Cdc2, Ste11RAF, Kin28 and
Mps1, and also for binding to Hsp90 [52,53,54]. Thus, Cdc37 phosphorylation status is
likely to affect cellular sensitivity to Hsp90 inhibition. Indeed, the cellular toxicity of GA is
markedly enhanced in cells expressing Cdc37-S13A [36]. Further, over-expression of PP5/
Ppt1 is synthetically lethal with GA in yeast. In cancer cells, PP5 over-expression correlated
with reduced Cdc37 phosphorylation, reduced Raf-1 protein (an Hsp90 client) expression,
and reduced activity of the MAP kinase pathway [36].

Another example of co-chaperone post-translational modification impacting Hsp90 function
is supplied by an elegant study recently published by Bansal and colleagues [55]. They
showed that dimerization of Sgt1, is negatively regulated by CK2-mediated phosphorylation
at Ser-361. This in turn affects kinetochore assembly, which requires a functional Sgt1/
Hsp90 complex and which is essential for proper chromosome segregation during cell
division in eukaryotes [55].

CK2 also phosphorylates p23, on Ser-113 and Ser-118 in vivo [56]. This is important for its
prostaglandin synthase activity and is required for the formation, in this context, of a tertiary
complex between p23, CK2 and Hsp90 [56]. Finally CK2 and pp90rsk can also
phosphorylate murine Sti1 (mSti1) in vitro (on Ser-189), affecting mSti1 binding to Hsp90
[57]. Cdc2 is also able to phopshorylate mSti1 at Thr-198 in vitro, suggesting that mSti1
phosphorylation may play a role in cell cycle regulation [58].

The immunophilin FK506 binding protein 52 (FKBP52) binds to Hsp90 via its TPR domain
and is important for chaperoning of steroid hormone receptors. CK2 phosphorylates
FKBP52 on Thr-143 both in vitro and in vivo. Phosphorylation of this residue does not
affect FK506 binding to FKBP52, but phosphorylated FKBP52 does not interact with
Hsp90. These findings suggest that phosphorylation of FKBP52 plays a role in modulating
steroid hormone receptor-mediated signal transduction [52,59].

FKBP52 phosphorylation (general, residues not specified) also plays a role in the
transduction efficiency of adeno-associated virus type 2 (AAV) [60,61,62]. AAV is
considered to be a potential tool for gene therapy, since it is a non-pathogenic single-
stranded DNA virus that can integrate into the human genome in a site-specific manner. Its
transduction efficiency is cell type dependent and relies on the synthesis of a second strand
of viral DNA. Phosphorylated FKBP52 regulates this process by binding the D-sequence in
the inverted terminal repeat of AAV and inhibiting synthesis of the second DNA-strand,
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negatively affecting transgene expression. Further examination of co-chaperone post-
translational modifications is likely to uncover additional important regulatory mechanisms
affecting Hsp90.

4. Post-translational modification of Hsp90
4.1. Phosphorylation

Hsp90 is subject to various post-translational modifications including phosphorylation,
acetylation, S-nitrosylation, oxidation, and ubiquitination that impact chaperone function in
numerous ways (Figure 2) [63]. Hsp90 is a phosphoprotein and its steady-state
phosphorylation level is influenced by different cellular environments in a species-specific
manner. For example, heat shock decreases the turnover of Hsp90 phosphate groups in yeast
cells, while this process has the opposite effect on HeLa cell Hsp90 phosphorylation [64,65].
A number of serine, threonine, and tyrosine phosphorylation sites have been identified in
Hsp90 [64,66,67,68,69,70,71,72,73,74,75,76,77]. Early work showed that Hsp90 became
hyper-phosphorylated and associated less avidly with its client kinase p60v-src in NIH 3T3
cells treated with the serine/threonine phosphatase inhibitor okadaic acid, suggesting a link
between Hsp90 phosphorylation and its ability to chaperone client proteins [66,78].
Supporting these data, the co-chaperone PP5/Ppt1 dephosphorylates Hsp90 in vitro and
positively regulates its chaperone activity in vivo [74,75,79].

Tyrosine phosphorylation of Hsp90 has been shown to affect its interaction with distinct
client proteins. Thus, Hsp90 tyrosine phosphorylation induced by 3-hydroxy-3-
methylglutaryl-coenzyme A reductase inhibitors (statins) was reported to increase its
association with endothelial nitric oxide (eNOS) [80]. Tyrosine phsophorylation of Hsp90
was also shown to enhance its interaction with ionotropic P2X7 receptors [69].
Geldanamycin treatment decreased both Hsp90 tyrosine phosphorylation and association
with P2X7 receptors [69]. A series of recent proteomic studies have identified a large
number of phosphosites on Hsp90, but the protein kinases targeting many of these sites
remain unknown [81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101]. A
comprehensive list of these phosphorylation sites can be found in a recent review [76].

As can be appreciated by referring to the specific examples provided below, phosphorylation
of specific residues in Hsp90 can affect client protein interaction (CK2-mediated charged
linker phosphorylation) and can provide a mechanism to regulate the chaperoning of
different classes of client proteins by Hsp90 (CK2-mediated and Wee1-mediated N-domain
phosphorylation). Certainly, additional functional consequences of Hsp90 phosphorylation
will become apparent as these investigations continue.

4.1.1. Double-stranded DNA protein kinase—Elegant work by Lees-Miller and
Anderson has shown that double-stranded (ds) DNA-activated protein kinase (DNA-PK)
isolated from HeLa cells is able to phosphorylate in vitro two threonine residues (Thr-5 and
Thr-7) found only in the N domain of human Hsp90α. Equivalent residues in mouse Hsp86
and rabbit Hsp90α are also phosphorylated by DNA-PK [102]. The physiologic significance
of Hsp90α phosphorylation by DNA-PK remains to be resolved, although cellular DNA
damage has been reported to alter Hsp90 phosphorylation [81,96].

4.1.2. B-Raf and Akt kinases—Functional proteomics studies have identified B-Raf and
Akt, both Hsp90 clients, as able to phosphorylate Hsp90. Old and colleagues identified
Hsp90α Ser-263 as one of the targets of B-Raf in melanoma cells [72]. It would be valuable
to know the impact of this phosphorylation on Hsp90 chaperone function and drug binding.
A similar study recently reported that the serine-threonine protein kinase Akt phosphorylates
several chaperone proteins, including Hsp90α, Hsp90β, Glucose-regulated protein (Grp) 78,
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Grp94, Hsp70, and protein disulfide isomerase (PDI), in rat mesangial cells [103].
Mesangial cells contribute to glomerular injury through their ability to undergo proliferation
and hypertrophy. Akt plays a major role in these processes and it remains to be seen whether
Akt-mediated chaperone phosphorylation contributes to glomerular injury [103].

4.1.3. c-Src Kinase—While some studies suggest a negative impact of de-regulated
Hsp90 phosphorylation on chaperone function, recent work has shown that phosphorylation
of discrete residues on Hsp90 may stimulate chaperone activity. Duval and co-workers have
shown that c-Src kinase, another Hsp90 client, phosphorylates Hsp90β Tyr-301 in response
to vascular endothelial growth factor receptor-2 (VEGFR-2) activation [70]. This leads to
increased association between Hsp90β and eNOS, and results in increased eNOS activity,
and nitric oxide (a vasodilator) production and release from endothelial cells. Hsp90β
Tyr-301 is conserved in other Hsp90 proteins (it corresponds to Tyr-309 in Hsp90α). It will
be interesting to determine whether this residue in Hsp90α is also a target for c-Src, and if so
what are the functional consequences of its phosphorylation.

4.1.4. Protein Kinase A (PKA)—A systematic phospho-proteomics approach has
identified Hsp90β Ser-452 to be phosphorylated by PKA in vitro [104]. Interesting work by
Lei and colleagues has shown that diabetes mellitus or hyperglycemia can activate PKA
phosphorylation of Hsp90α at Thr-90 in rat aortic endothelial cells [105]. This was
associated with Hsp90α translocation to the cell surface [105]. Diabetes mellitus and
hyperglycemia both reduce the bioavailability of nitric oxide by inhibiting eNOS activity.
These investigators have proposed that PKA-mediated phosphorylation of Hsp90α reduces
the amount of the chaperone that is available to associate with and activate eNOS, thus
contributing to reduced eNOS activity and a decline in nitric oxide production in the aortic
endothelium of diabetic rats [105]. The role of PKA in Hsp90α secretion was further
explored by Wang and colleagues. They have confirmed that cellular secretion of Hsp90α is
stimulated by PKA-mediated phosphorylation of Thr-90 [74]. Phosphorylation-dependent
regulation of Hsp90 secretion in keratinocytes and cancer cells may also play an important
role in wound healing and tumor metastasis, respectively [82,106,107].

4.1.5. CK2 protein kinase—CK2 is a ubiquitous serine-threonine, acidophilic kinase
whose activity depends on Hsp90 chaperone function [52,108,109]. Lees-Miller and
Anderson have shown that CK2 phosphorylates two serine residues, Ser-231 and Ser-263, in
the charged-linker of Hsp90α [110]. Equivalent residues in Hsp90β (Ser-226 and Ser-255)
are also phosphorylated in untransformed cells but not in leukemic cells [111]. The
leukemogenic kinases, Bcr-Abl, FLT3/D835Y, and Tel-PDGFRβ, all suppress constitutive
phosphorylation of Hsp90β at these sites, and this leads to inhibition of apoptosome
function. This is achieved by stabilization of a strong interaction between Hsp90β and
apoptotic peptidase activating factor 1 (Apaf-1), which prevents cytochrome c-induced
Apaf-1 oligomerization and caspase-9 recruitment. Stabilization of the Hsp90β -apoptosome
interaction by suppression of Ser-226 and Ser-255 phosphorylation may contribute to
chemoresistance in leukemias [111].

It would be of interest to know the impact of these serine phosphorylations on Hsp90
secretion, since these serine residues are contained within the charged-linker region, a motif
that has been previously implicated in modulating Hsp90 secretion [16]. Ck2
phosphorylation of the charged linker is also important for function of the aryl hydrocarbon
receptor (AhR) [78]. This is a ligand-activated transcription factor that regulates genes
involved in xenobiotic metabolism. The cytosolic AhR exist as a complex with Hsp90 and
hepatitis B virus X-associated protein 2 (XAP2) [78]. Phosphorylation of Hsp90α Ser-231
and Hsp90β Ser-226 and Ser-255 caused dissociation of the AhR-Hsp90 complex and
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destabilization of AhR protein. Mutation of these residues to non-phosphorylatable alanine
increased the transcriptional activity of AhR and stabilized its interaction with Hsp90 [78].

We have recently shown that CK2 also phosphorylates a conserved threonine residue
(Thr-22) in the N-domain of yeast Hsp90 both in vitro and in vivo. Thr-22 is the only
threonine residue in the N-domain targeted by CK2. This residue, together with adjacent
amino acids, participates in an important hydrophobic interaction with the catalytic loop in
the middle domain of Hsp90. We recently showed that ATP binding and not N-domain
dimerization of Hsp90 is a prerequisite for CK2-mediated phosphorylation of Thr-22
[75,76]. Mutation of this residue to a non-phosphorylatable alanine (T22A) did not affect
Hsp90 ATPase activity, while the phospho-mimetic mutant (T22E) had only 40% of wild
type ATPase activity. These mutants in yeast, and the equivalent mutations in human
Hsp90α (T36A and T36E), affected Hsp90-dependent chaperoning of kinase (v-Src, Mpk1/
Slt2, Raf-1, ErbB2 and CDK4) and non-kinase (heat shock factor 1, cystic fibrosis
transmembrane conductance regulator protein, glucocorticoid receptor) clients [75,76]. In
addition, Thr-22 phosphorylation status also contributes to Hsp90 inhibitor sensitivity [76].
Finally, we observed that mutation of this residue in both yeast and human Hsp90
significantly reduced interaction with the co-chaperone Aha1, and the chaperoning defects
of Thr-22 Hsp90 mutants were corrected by over-expressing Aha1 [75]. Clearly, CK2
phosphorylation of serine and threonine residues in Hsp90 represents an important but
complex regulatory component of chaperone function in eukaryotic cells.

4.1.6. Swe1Wee1 kinase—Swe1 (Saccharomyces Wee1)/Wee1 tyrosine kinase is an Hsp90
client that regulates the G2/M cell cycle transition by phosphorylating Cdc28Cdc2

[112,113,114]. Swe1 also directly phosphorylates a conserved tyrosine residue (Tyr-24 in
Hsp82 and Tyr-38 in Hsp90α) in the N-domain of yeast and human Hsp90 both in vitro and
in vivo [77]. In yeast cells, Swe1-mediated phosphorylation of Hsp90 occurs in S phase of
the cell cycle and causes Hsp90 to translocate from nucleus to cytoplasm, where it is
polyubiquitinated and degraded by proteasomes. This is the “switching off” mechanism for
this population of Hsp90, since no tyrosine phosphatase capable of dephosphorylating
Tyr-24/Tyr-38 could be identified. Tyrosine 24 is among a group of residues that have been
shown to form an interacting cluster in ATP-bound Hsp90 [115]. The hydrophobic
interactions established by this cluster are essential for N-domain dimerization and are
necessary for active site formation and for ATPase activity [115,116]. Swe1Wee1 targets
Tyr-24/Tyr-38 when Hsp90 is in an “open” (N-domain undimerized) conformation, since
Tyr-24/Tyr-38 is not accessible when Hsp90 assumes the “closed” (N-domain dimerized)
conformation [77]. Mutation of this residue to a non-phosphorylatable amino acid reduces
Hsp90 binding to Aha1 and Sba1/p23 co-chaperones. Phospho-mimetic mutation positively
affects the ability of Hsp90 to chaperone a selected group of client proteins, including the
kinases ErbB2, Raf-1, and Cdk4, but negatively affects GA binding to Hsp90. Deletion of
Swe1 in yeast, and Wee1 silencing or pharmacologic inhibition in prostate and cervical
carcinoma cells, sensitizes these cells to Hsp90 inhibitors. This suggests a novel therapeutic
strategy to increase the cellular potency of Hsp90 inhibitors [77].

4.2. Acetylation
Acetylation is a post-translational modification that adds acetyl groups to proteins, usually
on lysine residues. Histones are a major acetylation target and, historically, acetylating
enzymes were termed histone acetylases (HAT) and deacetylating enzymes were termed
histone deacetylases (HDACS). However, these enzymes are now known to be capable of
modifying numerous non-histone proteins including Hsp90. Yu and colleagues were first to
report Hsp90 acetylation in response to HDAC inhibitors (HDACi). These investigators
showed that the HDACi depsipeptide (Romidepsin) increased steady state acetylation of
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Hsp90 while simultaneously destabilizing Hsp90 interaction with several client proteins,
including ErbB2, Raf-1, and mutant p53 [117]. Hsp90 acetylation was also correlated with
decreased binding to ATP. Others have shown that additional HDACi also cause Hsp90
hyper-acetylation [118,119].

4.2.1. Acetylases and deacetylases targeting Hsp90—p300 and HDAC6 promote
acetylation and deacetylation of Hsp90, respectively [120,121,122,123]. Acetylated Hsp90
levels are increased in HDAC6-deficient mouse embryonic fibroblasts and glucocorticoid
receptor function in these cells is compromised [124]. Androgen receptor, an Hsp90 client,
is also down-regulated upon HDAC6 inhibition [125]. Reduction in HDAC6 expression also
promotes destabilization of another Hsp90 client protein, the hypoxia-inducible transcription
factor HIF-lα [126]. HDAC6 and HDAC10 have been shown to regulate Hsp90 mediated
VEGF receptor regulation [127]. Finally, recent work by de Zoeten et al. has shown that
pharmacologic inhibition or genetic deletion of HDAC6 increased acetylation of Foxp3 and
Hsp90 both in vitro and in vivo. This in turn increased the immune suppressive activity of
Foxp3+ T-regulatory (Treg) cells [128]. Foxp3+Tregs are essential to immune homeostasis,
and if diminished in number or function can cause autoimmunity and allograft rejection.
Therefore, specific targeting of HDAC6, or its downstream target, HSP90, can promote
Treg-dependent suppression of autoimmunity and transplant rejection [128].

Although the impact of HDAC6 on Hsp90 acetylation has been extensively studied, other
HDACs also are able to deacetylate the chaperone. HDAC1 has been reported to deacetylate
Hsp90 in the nucleus of human breast cancer cells [129], and both HDAC1 and HDAC10
inhibit the productive Hsp90 chaperoning of VEGF receptor proteins [127]. Thus, different
HDACs may alter Hsp90 acetylation status in distinct cellular locations and thus likely for
distinct purposes. It is not yet clear which HDACs affect the acetylation status of individual
lysine residues discussed below, nor is it known whether any redundancy exists for
deacetylation of particular sites.

4.2.2. Acetylation of specific lysine residues on Hsp90—Treating SkBr3 breast
cancer cells with the pan HDACi trichostatin A (TSA) caused hyperacetylation of Hsp90α at
lysine 294 [130]. Interestingly, K294 acetylation can be detected even in the absence of
HDACi, suggesting that a pool of Hsp90 may be constitutively acetylated on this lysine
residue [130]. K294Q or K294A Hsp90α mutants (acetylated lysine mimics) displayed
reduced interaction with numerous client proteins (ErbB2, p60v-Src, mutant p53, androgen
receptor, Raf-1, HIF1α) and failed to associate with the co-chaperones Aha1, CHIP and
FKBP52. The non-acetylated mimic mutant K294R showed an equivalent or stronger
interaction with these co-chaperone and client proteins compared to wild type Hsp90 [130].

Treating human embryonic kidney 293 cells (HEK293) with the pan-HDACi Panobinostat
(LBH589) led to identification of 7 additional acetylated lysine residues in Hsp90 [131].
Mutation of these lysine residues to glutamine affected the binding of Hsp90α to several co-
chaperones, including CHIP, Hsp70 and p23, inhibited ATP binding, and inhibited Hsp90
chaperoning of Raf-1 [131]. Taken together, these data suggest that acetylation of Hsp90 is a
dynamic, tightly regulated process that impacts multiple aspects of Hsp90 function. In
general, acetylation of Hsp90 results in a lost or weakened interaction with its client
proteins, leading to their instability and degradation.

What are the functional consequences of Hsp90 acetylation in yeast? When expressed on a
single copy plasmid under a glycerol-3-phosphate dehydrogenase (GPD1) promoter, human
Hsp90α did not optimally support yeast growth and K294R was inviable. Hsp90α-K294Q,
however, was functional in yeast [130]. Hsp90α-K294R remained inviable when expressed
on a single copy plasmid under a HSC82 promoter, although the difference in chaperone
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activity of Hsp90α wild type and K294Q mutant was less marked. In contrast, yeast
expressing R or Q mutations to the equivalent residue of yeast Hsp90 (K274) are both viable
(manuscript in preparation). These results suggest that acetylation of this conserved lysine
residue likely arose in metazoans as a unique post-translational modification not utilized by
yeast Hsp90.

4.3. S-nitrosylation
S-nitrosylation, the covalent attachment of a nitrogen monoxide group to the thiol side chain
of cysteine, is a reversible post-translational modification of Hsp90, mediated by nitric oxide
(NO). Martinez-Ruiz and colleagues first reported that NO causes S-nitrosylation of human
HSP90α in endothelial cells, and they showed that this modification, which inhibited
chaperone activity, occurred in the C-domain of Hsp90α at Cys-597 [132]. Because
endothelial nitric oxide synthase (eNOS) requires association with Hsp90 for its activity,
these authors proposed that NO-dependent inactivation of Hsp90 in endothelial cells
functions as a regulatory feedback mechanism to control production of NO. Cys-597 and
surrounding amino acids have been suggested by Colombo and colleagues to represent a
conformational switch region in the Hsp90 C-domain that propagates long-range
communication of structural information to Hsp90'S N-domain [116]. Recently, Retzlaff and
colleagues reported that S-nitrosylation of Cys-597 inhibits Hsp90 ATPase activity [133],
confirming that environmentally induced structural cues can be propagated between
spatially distant domains of Hsp90. It is intriguing to speculate that some of the antitumor
activity of NO may reflect NO-mediated Hsp90 inhibition in cancer cells.

4.4. Oxidation and Ubiquitination
Oxidative stress has been shown to post-translationally modify Hsp90. For example, treating
human breast cancer MDA-MB-231 cells with tubocapsenolide A (TA), a novel
withanolide, leads to a transient increase in reactive oxygen species and a decrease in
intracellular glutathione content [134]. Consequently, this causes a direct thiol oxidation of
Hsp90. TA treatment is correlated with proteasome-dependent degradation of the Hsp90
clients Cdk4, cyclin D1, Raf-1, Akt, and mutant p53, suggesting that TA-induced thiol
oxidation of Hsp90 inhibits its chaperone function [134]. Oxidative stress can also cause
lipid peroxidation which leads to accumulation of thiol-reactive α,β-unsaturated aldehydes,
including 4-hydroxy-2-nonenal (4-HNE) and 4-oxo-2-nonenal (4-ONE). 4-HNE targets
Cys-572 of Hsp90 and inhibits its ability to chaperone clients [135].

Lysines are also post-translational modified by ubiquitination. The photodynamic signal
transduction inhibitor hypericin was shown to increase ubiquitination of Hsp90 [136]. As a
consequence, Hsp90 chaperone function was inhibited and the client proteins Raf-1, mutant
p53, Cdk4, and Plk were dissociated from Hsp90 complexes and degraded via a proteasome-
independent pathway [136]. The cancer chemotherapeutic drug Taxotere (docetaxel) inhibits
VEGF-induced human umbilical vein endothelial cell (HUVEC) migration in vitro at
concentrations substantially lower than required to cause cell cycle arrest or apoptosis.
Taxotere also promotes the ubiquitination and subsequent proteasomal degradation of Hsp90
in HUVECs. Taxotere prevents VEGF-induced phosphorylation of focal adhesion kinase,
Akt, and eNOS, all of which are Hsp90 clients [137]. This drug also blocks the VEGF-
induced increase in eNOS activity, which depends on Hsp90 interaction. Thus, Hsp90
inhibition may contribute to the antiangiogenic activity of Taxotere [137]. Finally, as
mentioned earlier in this review, Swe1 phosphorylation of Hsp90 in yeast signals Hsp90
polyubiquitination and subsequent degradation by cytoplasmic proteasomes. These data
highlight the possibility of cross-talk between two distinct post-translational modifications
of Hsp90 and their impact on Hsp90 function [77].
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5. Concluding Remarks
Post-translational modifications of Hsp90 make complex contributions to the regulation of
chaperone function since they influence multiple regulatory factors, including ATP binding/
hydrolysis and co-chaperone binding. Nevertheless, several general conclusions can be
made. (1) The extent of Hsp90 post-translational modifications is greater in metazoans
compared to single cell eukaryotes, suggesting that they provide an additional layer of
regulation to Hsp90 as its client repertoire increased during evolution. (2) Sites that undergo
post-translational modification are scattered throughout all domains of Hsp90, including the
charged linker. (3) Numerous Hsp90 phosphorylations are catalyzed by kinase clients of the
chaperone, suggesting that client-mediated phosphorylation may regulate Hsp90 chaperone
activity. This hypothesis is supported by the recent observation that substrate binding to
Hsp90 can drive conformational changes in the chaperone [138]. Current data certainly
suggest that some post-translational modifications mediated by Hsp90 clients themselves
(e.g., phosphorylation and S-nitrosylation) may provide a feedback mechanism to regulate
client (and Hsp90) activity.

Many questions concerning post-translational modification of Hsp90 remain unanswered.
(1) The kinases, phosphatases, HATs, and HDACs responsible for regulating post-
translational modification of many sites on Hsp90 remain to be identified. (2) Development
of phosphorylation or acetylation site-specific antibodies to Hsp90 lags far behind the
identification of modified sites but will be absolutely necessary to study the impact of
individual Hsp90 post-translational modifications on subcellular localization and tissue
specificity. (3) Understanding the impact of post-translational modification of Hsp90 (or co-
chaperones) on sensitivity to Hsp90 inhibitors is likely to provide novel strategies to
improve drug sensitivity, and also to suggest possible mechanisms of acquired drug
resistance. (4) Finally, further explication of the cross-talk between various Hsp90 post-
translational modifications will greatly add to our knowledge of the multilayered control
mechanisms higher eukaryotes have adopted to fine-tune Hsp90 function in a client-, cell-,
and tissue-specific manner.
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Research Highlights

• Heat shock protein 90 (Hsp90) is evolutionarily conserved

• Hsp90 activates and maintains numerous signaling networks in normal & cancer
cells

• Hsp90 chaperone function is regulated by post-translational modifications of
Hsp90 and various co-chaperones

• Hsp90 post-translational modifications include phosphorylation, acetylation, S-
nitrosylation, oxidation, and ubiquitination
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Figure 1.
Post-translational modification of Hsp90 fine-tunes its chaperone function.
ATP binding to the N-terminal domain of Hsp90 (gray) promotes transient dimerization of
the N-domains (closed conformation). Subsequent structural rearrangements establish
the ’closed and twisted’ conformation capable of ATP hydrolysis. The co-chaperone Aha1
enhances Hsp90 ATPase activity by facilitating the conformational changes necessary to
achieve ATPase competence, while Sti1 and Hsp90 inhibitors such as geldanamycin (GA) or
radicicol (RD) exert the opposite effect by inhibiting the initial structural changes necessary
for N-domain dimerization. p23 slows ATP hydrolysis at a late stage of the chaperone cycle.
Domain labeling is as follows: N, N-domain (gray); CL, charged linker (yellow); M, M-
domain (amber); C, C-domain (green).
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Figure 2.
Post-translational modification sites on Hsp90.
Domain location of phosphorylated serine (S), theronine (T) and tyrosine (Y) sites for which
kinases are known, acetylated lysine (K) residues (pale blue), S-nitrosylated cysteine (C)
(green) and cysteine oxidation sites (brown) on human Hsp90α and Hsp90β are shown. For
additional phosphorylation sites, the reader is referred to [64,76].
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