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Abstract
Semantic-based sublanguage grammars have been shown to be an efficient method for medical
language processing. However, given the complexity of the medical domain, parsers using such
grammars inevitably encounter ambiguous sentences, which could be interpreted by different
groups of production rules and consequently result in two or more parse trees. One possible
solution, which has not been extensively explored previously, is to augment productions in
medical sublanguage grammars with probabilities to resolve the ambiguity. In this study, we
associated probabilities with production rules in a semantic-based grammar for medication
findings and evaluated its performance on reducing parsing ambiguity. Using the existing data set
from 2009 i2b2 NLP (Natural Language Processing) challenge for medication extraction, we
developed a semantic-based CFG (Context Free Grammar) for parsing medication sentences and
manually created a Treebank of 4,564 medication sentences from discharge summaries. Using the
Treebank, we derived a semantic-based PCFG (probabilistic Context Free Grammar) for parsing
medication sentences. Our evaluation using a 10-fold cross validation showed that the PCFG
parser dramatically improved parsing performance when compared to the CFG parser.
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1. INTRODUCTION
In the past decade, Electronic Health Records (EHRs) systems have been rapidly adopted in
the healthcare industry, resulting in more and more clinical data available in electronic
formats [1]. Much of the detailed patient information in EHRs is stored in narrative text
documents entered by healthcare providers, and it is not directly accessible to other
computerized applications, such as clinical decision support systems. Natural Language
Processing (NLP) technologies, which can convert clinical text into structured data, have
received great attention in the medical domain. Diverse NLP applications have been used for
various clinical tasks [2] including decision support [3, 4], encoding [5, 6], data mining [7],
and clinical research [8, 9].

Many clinical NLP systems are focused information extraction (IE) systems, which are
developed for specific applications and have demonstrated good performance on designated
tasks [10–12]. However, general and comprehensive medical language processing systems
are more difficult to build, as they require significant resources to develop and implement;
but they often provide more insights to understanding the medical language itself [2].
Different methods have been used to build general clinical NLP systems. A number of
systems, including MetaMap [13], KnowledgeMap [14], HiTEXT [15], and cTAKES [16],
identify clinical concepts (usually in noun phrases) from text first. Then they integrate other
modules to detect contextual features, such as NegEx [17] for detecting negations and
ConText [18] for broader types of modifiers. SymText (Symbolic Text processor) is a
system developed at University of Utah, which combines syntactic and probabilistic
semantic analysis based on Bayesian networks [19]. Some clinical NLP systems have
focused on semantic relation extraction. For example, SemRep [20] is a rule-based symbolic
NLP system developed to extract semantic predication from Medline citations, which has
been used for different applications including clinical guideline development [21]. Two
systems of particular interests to us are the MLP (Medical Language Processor) [22] and
MedLEE (Medical Language Extraction and Encoding System) [23], which are both based
on the sublanguage theory by Zellig Harris [24, 25]. The sublanguage theory states that the
structure and regularity of languages from specialized domains can be delineated in the form
of a sublanguage grammar, which not only specifies well-formed syntactic structures as in
English grammar, but also incorporates domain-specific semantic information and
relationships. MLP was the product of the Linguistic String Project (LSP) led by Dr. Sager
at New York University, which was the first large-scale study in clinical text processing [22,
26–28]. The system contains a complicated sublanguage grammar that considers both
syntactic and semantic patterns of clinical text. Inspired by LSP, Friedman et al. [23, 29]
developed MedLEE, a mainly semanticly-driven system for clinical text processing.
MedLEE has been shown to be as accurate as physicians at extracting clinical concepts from
chest radiology reports [14;15]. It was originally designed for radiology reports of the chest
but has been successfully extended to other domains, such as mammography reports [16]
and discharge summaries [17]. The success of MedLEE indicates the effectiveness of the
semantic-based sublanguage grammar approach for clinical text processing and inspires our
work in this study.

One of the important components for systems based on sublanguage grammars such as
MedLEE is the parsing step, which determines a grammatical structure of sentences (called
a parse tree) with respect to a given grammar (e.g., a Context-Free Grammar - CFG). The
biggest challenge in parsing is the problem of ambiguity: there is often more than one
possible parse tree for a sentence with a given CFG. Current systems such as MedLEE rely
on highly specific rules obtained from careful manual analysis to reduce ambiguity and
generate correct parse trees. However, an interesting alternative solution is to associate
probabilities with CFG rules – the Probabilistic Context Free Grammar (PCFG), in which
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each production rule is augmented with a probability that is usually obtained from annotated
training data. When there are multiple possible parse trees for a given sentence, the final
selection can be determined by the overall probability of a parse tree, which is the product of
probabilities of all production rules used to expand each of non-terminal nodes in the parse
tree. Many studies on PCFG, such as [30–34], have shown its capability to solve ambiguity
in parsing of general English text using syntactic grammars. However, to the best of our
knowledge, there is no published study applying PCFG to semantic sublanguage grammars
used for medical text processing. In this study, we hypothesized that PCFG could improve
parsing of clinical sentences for medical language processing systems that use semantic-
based sublanguage grammar.

To study the effect of PCFG on sublanguage grammars that cover all types of clinical
entities is a huge project that requires large amounts of efforts on grammar development and
corpus annotation. As a first step toward that goal, in this study, we investigated the use of
PCFG for parsing medication-related sentences in clinical text. Medications and their related
signature information (e.g. dose, frequency, or route of administration) are one of the most
important types of clinical information for research that uses EHR data [35]. Sometimes
medication sentences in clinical notes can be complex, as drug signatures can be repetitive
or even nested (e.g., “Coumadin 2.5mg po dly except 5mg qTu,Th” and “Coumadin 6mg po
4x week, 4mg po 3x week”). Moreover, sentences containing multiple drugs are even more
ambiguous because signature modifiers can be linked to one or more drugs in the sentence.
For example, consider the sentence, “Therefore, their recommendation was to start the
patient on Lovenox for the duration of this pregnancy, which adjusted for her weight was a
dose of 90 mg daily, followed by a transition to Coumadin postpartum, to be continued for
likely long-term, possibly lifelong duration.” In this example, it is challenging for an NLP
system to determine if the duration phrase “lifelong duration” is to modify “Coumadin”
only, or to modify both “Lovenox” and “Coumadin”. In previous studies, we have developed
a medication information extraction system called MedEx [36]. MedEx uses a semantic
grammar and a CFG parser to determine the structure of medications and their modifiers
within a sentence. The parsing component of MedEx provides a good start for investigating
PCFG in semantic parsing of clinical text. In addition, the 2009 i2b2 NLP challenge
provides a semantically annotated corpus of discharge summaries for medication names and
their modifiers, from which an annotated data set of parse trees can be developed with
relatively less effort.

In the next section we describe the data sets and methods for the PCFG implementation
within a medication extraction system. The subsequent section shows results of parsing with
and without PCFG implementation. Finally, we discuss some interesting findings in this
study, as well as future work.

2. MATERIAL AND METHODS
Figure 1 shows an overview of the design of the study. We started with a semantically
annotated data set of medication findings from the 2009 i2b2 NLP challenge [37], from
which a sublanguage grammar - a CFG that delineates semantic relations and structures of
medication findings was developed. By applying the CFG to i2b2 data set, we generated all
possible parse trees for each medication sentence and manually reviewed them to determine
the correct parse tree for each sentence, thus building an annotated corpus of parse trees (a
“Treebank”) for medication sentences. The annotated parse tree corpus was divided into a
training set and a test set. The training set was used to calculate the probability for each
production in the CFG, thus to build the PCFG. Finally, we applied both the CFG and PCFG
to the test set and evaluated the performance of parsing using the PARSEVAL Evalb
program (http://nlp.cs.nyu.edu/evalb/).
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2.1 i2b2 Corpus for Medication Findings
The 2009 i2b2 NLP challenge was an information extraction task to extract medications and
their associated modifiers from hospital discharge summaries [37]. Based on the annotation
guideline from the i2b2 challenge, a medication finding consisted of medication name and
its modifiers including dosage, frequency, duration, mode, and reason. Table 1 shows some
examples of these six medication-related semantic types. Some medication findings are
simple, for example, “NPH insulin 20 units q.d.”, which is composed of the name - “NPH
insulin”, dosage - “20 units”, and frequency - “q.d ” (it means once a day). However,
sometimes medication modifiers can be repetitive, or even nested, which causes additional
ambiguity and makes it difficult to accurately link modifiers to medications. For example,
medications can have multiple sets of modifiers, e.g., “Midrin 2 po initial then 1 po q6hrs”,
where po means “by mouth” and q6hrs means “every 6 hours”. The i2b2 challenge required
systems to output multiple entries for such cases (2 entries in this case): “Midrin 2 po q6hrs”
and “Midrin 1 po q6hrs”. In order to do that, an NLP system should interpret the frequency
term “q6hrs” as a top-level modifier, which applies to both dosage/mode modifiers “2 po”
and “1 po”, instead of linking it to the local modifiers “1 po” only. In addition, one sentence
can contain multiple drugs. More ambiguity rises when linking modifiers to multiple drugs
within one sentence. As we have demonstrated in our previous study [36], one way to
delineate the structure of modifiers to each drug in a sentence is to use a sublanguage
grammar (a CFG) that is based on semantic patterns of drug related semantic types.
However, this approach also faces the problem of ambiguity – multiple possible parse trees
could be generated for one sentence based on the CFG. Therefore we investigated how
PCFG could help with the ambiguity problem in this study.

The original i2b2 data set contained 268 annotated discharge summaries from Partners
Healthcare System. It had 12,773 medication entries, from 9,689 sentences (based on our
sentence boundary program). Each medication entry was also labeled as “Narrative” (from
narrative sentences), or “List” (from semi-structured list-type format) by i2b2. As our
interest and the primary difficulty here was to parse narrative sentences, we removed
sentences with List-like format. This resulted in 4,564 medication sentences, which served
as the corpus for this study. As mentioned above, different levels of ambiguity exist for
different sentences. We further divided those medication sentences into three categories:

1-Sentences containing Single drug and Single set of modifiers (SS), in which there are only
one medication name and one set of modifiers, e.g. “5. NPH insulin 20 units q.d.”.

2-Sentences containing Single drug, but Multiple sets of modifiers (SM), in which there are
only one medication name, but multiple sets of modifiers, e.g. “7. Insulin 70/30 65 units
q.a.m., 35 units q.p.m”.

3-Sentences with Multiple Drugs (MD), in which there are multiple drugs and each drug
may have one or multiple set of modifiers, e.g., “sublingual nitroglycerins p.r.n. chest pain,
and Glucotrol 5 mg p.o. q.d.”

Based on the annotation by i2b2, we assigned one of the three labels to each sentence,
resulting in 3,378, 106, and 1,080 sentences in SS, SM, and MD categories respectively.

2.2 A Semantic CFG for Parsing Medication Sentences
In our previous work, we have developed a semantic grammar that delineates semantic
relations and structure of medication findings and used it in the MedEx system [36].
However, the semantic types defined in the i2b2 data set are not exactly the same as those
defined in the MedEx system [37]. For example, we did not consider “reason” in our
previous study. Therefore, we developed a new semantic grammar (a CFG) based on i2b2
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semantic types only, by analyzing semantic patterns derived from i2b2 annotation and
leveraging the grammar used in the MedEx system. When we developed the grammar, we
tried to make it general enough so that it could cover all the sentences in the corpus. Figure 2
shows some important production rules in the CFG. According to the grammar in Figure 2, a
sentence (S) can contain a list (DG_LIST) of drug findings (DG). A drug finding (DG) can
be either a drug with single set of modifiers (DG_S_MOD_SET) or a drug with multiple sets
of modifiers (DG_M_MOD_SET). For a drug with single set of modifiers
(DG_S_MOD_SET), it can contain a drug name (MED) only, or a drug name accompanied
by left modifiers (DG_L_MOD), right modifiers (DG_R_MOD), or both. The rules for
drugs with multiple sets of modifiers (DG_M_MOD_SET), such as “Insulin 70/30 65 units
q.a.m., 35 units q.p.m”, are similar, but it has to contain a non-termal MOD_SET_LIST,
which is composed by at least two repetitive MOD_SETs (a set of modifiers). In the above
example, “65 units q.a.m” is one MOD_SET, and “65 units q.a.m” is another MOD_SET;
together, they form a MOD_SET_LIST.

2.3 Development of a Treebank for Medication Sentences
Based on the CFG described above, a medication sentence often can have more than one
possible parse tree (ambiguous). Figure 3 shows two possible parse trees for the sentence
“Midrin 2 po initial then 1 po q6hrs” using the CFG in Figure 2. The main difference
between two parse trees is the position of the “FREQ” modifier: parse tree 1 outputs it as a
part of MOD_SET so that it will go with “1 po” only; parse tree 2 outputs it as a top level
modifier so that it will modify both “2 po” and “1 po” in the final interpretation. Therefore,
in this case, parse tree 2 is the correct one. In this study, we used a Chart parser from NLTK
(http://www.nltk.org/) to generate a list of all possible trees for each sentence in the corpus.
An annotator who is familiar with medication findings and trained in computational
linguistics (SD), manually reviewed outputted parse trees and selected the best parse tree for
each sentence. For instances in which he was unsure, the parse trees were also reviewed by
other authors (HX, JD) with NLP and clinical experience. By this process, we built a
Treebank, which served as the gold standard for the following training and evaluation steps.
If the parser failed to generate the best parse of the sentence, the annotator built the best
parse tree manually, based on i2b2’s annotation and a simple guideline with examples.

Generation of the Semantic PCFG for Parsing Medication Sentences—The
annotated parse tree corpus (the Treebank) was divided into a training and a test set, using a
10-fold cross validation (CV). Nine folds of data were used as the training set to derive the
probability for each production in the CFG, thus generating the PCFG. The left-out fold was
used as the test set to evaluate the performance of PCFG. From the Treebank, we computed
the probability for each expansion of a non-terminal (α → β) in the CFG by counting the
number of times that expansion occurs and normalizing by total count of all expansions of
that non-terminal (α), as following:

Figure 4 shows the partial PCFG, where each production rule is associated with a probability
calculated from the Treebank.

Using the PCFG, we can compute a probability of a parse tree T of an input sentence S as:
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where P(r) is the probability of any production rule involved in the parse tree. The best parse
tree is thus the one that has the highest probability:

2.4 Experiments and Evaluation
After generating the PCFG using the training set in the Treebank, we evaluated and reported
the performance of PCFG, as well as CFG, using the test set in the Treebank. Every sentence
in the test set was parsed by both a CFG parser and a PCFG parser (namely
nltk.parse.chart() and nltk.parse.viterbi(), respectively, in the NLTK package
[http://www.nltk.org/]). Both parsers implement the bottom-up Chart Parsing algorithm. The
CFG parser outputs parse trees on First-Come-First-Served basis based on the CFG, and we
used the first parse tree generated by the Chart Parser as the output. The PCFG parser uses
the Viterbi algorithm to determine the path, and it generates parse trees with probabilities.
The parse tree with the highest probability was selected as the output, as described above.
Parse trees generated from CFG and PCFG parsers for each sentence were compared with
the gold standard trees in the Treebank, and the evaluation was done using a package called
the PARSEVAL Evalb program (http://nlp.cs.nyu.edu/evalb/), which is a commonly used
software for evaluating parsers. The following five PARSEVAL measures were used in this
study:

Figure 5 shows the calculation of BR, BP, and BF using the example in Figure 3, where we
assume parse tree 2 is the gold standard in the Treebank for that sentence, and we want to
measure the BR, BP, and BF for parse tree 1. Only non-terminals were counted as
constituents for calculation. A bracketing constituent is defined by its label and its spans
(start and stop positions). For example, “(S, 0, 5)”, the first constituent in the gold standard
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parse tree in Figure 5, is a bracketing constituent having the label S and spans from postion
0 to 5. All three elements in the triple of a constituent must be in the true parse for the
constituent to be marked correct. In Figure 5, the fifth constituent in parse tree 1
“(MOD_SET_LIST,1,5)” was wrong, because it did not appear in the gold standard parse
tree. Based on such definitions, the results of parse tree 1 were:

A crossing bracket is defined as a bracketed sequence output by the parser that overlaps with
one from the treebank but neither is properly contained in the other. In the example in Figure
5, the number of crossing brackets was 2, due to the wrong position of FREQ.

For each sentence, we compared the parse tree generated by a parser with the gold standard
parse tree in the treebnk to calculate BR, BP, and BF. Then the averged BR, BP, and BR
were reported across all the sentences in the test data set. CM and NC were measured based
on all sentences. Whereas CM is used to measure how many sentences parsed completely
correctly, NC measures how many constituents parsed correctly in their tree positions.

3. RESULTS
As 10-fold CV was used, results in Tables 2–5 were averages from 10 runs. The overall
results for all types of medication sentences showed that PCFG achievements were much
better than CFG results in all evaluation metrics (Table 2). PCFG improvements were
approximately 20%, 15%, 7%, 14% and 10% in CM, NC, BR, BP and BF measurements
respectively. The performance of CFG and PCFG on three different types of medication
sentences: SS, SM, and MD are shown in Tables 3, 4, and 5 respectively. In all experiments,
the PCFG parser performed better than CFG parser. However, the improvements were
different for three different types of medication sentences. SS sentences (Table 2) had
highest baseline performance of CFG parser (e.g., 83.26% in CM and 91.26% in BF), and
applying PCFG had a reasonable improvement (e.g., 8.84% in CM and 5.37% in BF). SM
sentences (Table 4) were difficult for CFG parser (e.g., 35.88% of CM), but PCFG almost
doubled the performance with a CM of 76.96%. Table 5 shows the results for MD sentences,
for which CFG parser had a reasonable performance (e.g., 82.05% in BF); but the
improvement of PCFG was limited (e.g., 3.37% improvement in BF).

4. DISCUSSION
As an initial step of applying PCFG to semantic parsing of clinical text, this study showed
that a PCFG parser dramatically improved the performance on parsing medication
sentences. The PCFG-based parser achieved increases of 20% in CM, 15% in NC, and 20%
in BF, when it was compared with the CFG parser. Such results indicate that PCFG can
reduce ambiguity when parsing clinical sentences using a semantic grammar.

As described above, we divided medication sentences into three different categories: SS
(Single drug with Single set of modifiers), SM (Single drug with Multiple sets of modifiers),
and MD (Multiple drugs), based on different levels of ambiguity. Our expectation was that
we would see more improvements from PCFG for SM and MD, as those sentences are more
ambiguous than SS sentences. We focused our analysis on Complete Matching (CM) and
No Crossing (NC) here, as they assess how the parser achieves the whole parse tree
constituents in the order that they should maintain. As expected, PCFG parser almost
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doubled CM and NC metrics for SM sentences when they were compared with CFG results
(Table 4). However, the improvements by PCFG for MD sentences were not high, similar to
the improvments on SS sentences. We then looked into the errors in MD sentences by PCFG
parser and found that using semantic patterns alone might not be sufficient for delineating
the structures of sentences mentioning multiple drugs. For example, it is difficult to
determine if the FREQ term (“q.day”) should link to “Aspirin” or “atenolol” in the sentence
“Patient’s discharge medications include Aspirin 325 mg p.o. q.day and atenolol 50 mg p.o.
daily.”, if only semantic information is used. In such cases, syntactic information such as the
coordinating conjunctions (the word “and”) could be helpful to solve the ambiguity here, as
they can be used to determine the boundary of medication findings. Combining such
syntactic information with semantic patterns into a sublanguage grammar may improve the
performance of parsing medication sentences.

It is likely impossible to develop a grammar without ambiguity. In knowledge engineering-
based approaches, researchers manually review sentences in a corpus to develop
sublanguage grammars and specific rules to reduce ambiguity. However, it is a time
consuming task and sometimes such specific grammars will result in unparsed sentences. In
our approach, we quickly developed a semantic grammar for medications using pattern
extraction methods based on the semantically annotated i2b2 corpus. The grammar reached
100% coverage on medication sentences, as our experiments showed that no sentence had
zero Bracketing recall. However, it could contain higher ambiguity than a manually
developed grammar. For example, a SS sentence could have multiple parse trees based on
our CFG. In the example of “Sevelmar 1600 t.i.d.”, it could be interpreted as a drug with one
set of modifiers containing DOSE and FREQ, or as a drug with multiple sets of modifiers
(one set with “DOSE” and another set with “FREQ”). However, the PCFG approach can
resolve such simple ambiguity easily, as shown in Table 3 that contains results of SS
sentences. Efficiently developing good grammars is out of the scope of this study, but
clearly very important and highly relevant to parsing methods.

Despite its promising results, this study has limitations. Although we used semantically
annotated i2b2 data set, which makes the parse tree annotation relative easy, the Treebank
was created primarily by one reviewer, which could lead to some biases. This study
investigated PCFG on parsing medication sentences only. Clinical text that contains various
types of medical entities such as diseases, tests, and procedures, could be more challenging.
Additionally, the evaluation was focused on the parse tree only. How such improvements in
parsing can help with real world applications such as information extraction requires further
investigation. Finally, and perhaps most importantly, this study relied on an already-
annotated corpus from i2b2. Creation of such semantically-tagged corpora is costly but
needed to train probabilistic systems such as these. Extension of the PCFG to other clinical
semantic grammars would require similar efforts.

5. CONCLUSION
In this study, we applied the PCFG approach to semantic parsing of clinical text, by
associating probabilities with productions in a semantic-based grammar for medication
sentences. Our initial evaluation using a Treebank of 4,564 medication sentences collected
from the 2009 i2b2 NLP challenge showed that the PCFG approach could effectively reduce
the ambiguity when parsing medication sentences. Such methods are promising for clinical
text processing.
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Highlights

1. First attempt to apply PCFG to semantic parsing of clinical text

2. An annotated Treebank of 4,564 medication sentences based on a sublanguage
grammar

3. PCFG effectively reduced the ambiguity when parsing medication sentences
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Figure 1.
An overview of the design of the study, which consists of four steps: 1) to develop a CFG
based on semantic patterns extracted from i2b2 semantically annotated data set; 2) to
manually create an annotated Treebank from the original i2b2 data set; 3) to develop a
PCFG by calculating the probability of each production in CFG using the training set of
parse tree corpus; 4) to evaluate the performance of CFG and PCFG using the test set of
parse tree corpus.
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Figure 2.
The proposed CFG for medication sentences in i2b2; “->” is a rule/”lead to” operator to
indicate that the left-hand-side symbol (non-terminal) may be substituted by right-hand-side
symbols (nonterminals or semantic tags); “|” presents the alternative rules of a single left-
hand-side. Meanings of nonterminals/tags are as below: S – sentence; DG_LIST – list of
drugs; DG – a drug finding; DG_S_MOD_SET – a drug finding with single set of modifiers;
DG_M_MOD_SET – a drug finding with multiple sets of modifiers; DG_L_MOD – drug
left modifiers; DG_R_MOD – drug right modifiers; MOD_SET – a set of drug modifiers;
MOD_SET_LIST – a list of sets of drug modifiers; MED – medication name; DOSE – drug
administration dosage; MODE – drug administration mode; FREQ – drug administration
frequency; REASON – reason of drug administration; DRT – duration of drug
administration.
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Figure 3.
Two possible parse trees of the sentence “Midrin 2 po initial then 1 po q6hrs” based on the
CFG in Figure 1. In this case, parse tree 2 is the correct one.
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Figure 4.
Examples of productions with probabilities in the PCFG
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Figure 5.
An example of calculation of BR and BP using bracketing consituents. The gold standard
(Parse Tree 2) has 10 bracketing constituents, while Parse Tree 1 has only 8 of them,
missing the ninth and tenth constituents. Three of the retrieved 8 constituents are wrong,
namely the fifth, seventh, and eighth. Therefore BR= 5/10 and BP = 5/8.
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Table 1

Semantic classes in 2009 i2b2 dataset: names, examples, and descriptions.

Class Examples Description

Medication “Lasix”, “Caltrate plus D”, “fluocinonide 0.5% cream”, “TYLENOL
(ACETAMINOPHEN)”

Prescription substances, biological substances, over-
the-counter drugs, excluding diet, allergy, lab/test,
alcohol.

Dosage “1 TAB”, “One tablet”, “0.4 mg” “0.5 m.g.”, “100 MG”, “100 mg × 2
tablets”

The amount of a single medication used in each
administration.

Mode “Orally”, “Intravenous”, “Topical”, “Sublingual” Describes the method for administering the
medication.

Frequency “Prn”, “As needed”, “Three times a day as needed”, “As needed three
times a day”, “x3 before meal”, “x3 a day after meal as needed”

Terms, phrases, or abbreviations that describe how
often each dose of the medication should be taken.

Duration “x10 days”, “10-day course”, “For ten days”, “For a month”, “During
spring break”, “Until the symptom disappears”, “As long as needed”

Expressions that indicate for how long the medication
is to be administered.

Reason “Dizziness”, “Dizzy”, “Fever”, “Diabetes”, “frequent PVCs”, “rare
angina”

The medical reason for which the medication is stated
to be given.
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