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Abstract
The development of vascular grafts has focused on finding a biomaterial that is non-thrombogenic,
minimizes intimal hyperplasia, matches the mechanical properties of native vessels and allows for
regeneration of arterial tissue. In this study, the structural and mechanical properties and the
vascular cell compatibility of electrospun recombinant human tropoelastin (rTE) were evaluated as
a potential vascular graft support matrix. Disuccinimidyl suberate (DSS) was used to cross-link
electrospun rTE fibers to produce a polymeric recombinant tropoelastin (prTE) matrix that is
stable in aqueous environments. Tubular 1 cm diameter prTE samples were constructed for
uniaxial tensile testing and 4 mm small-diameter prTE tubular scaffolds were produced for burst
pressure and cell compatibility evaluations from 15 wt% rTE solutions. Uniaxial tensile tests
demonstrated an average ultimate tensile strength (UTS) of 0.36±0.05 MPa and elastic moduli of
0.15±0.04 MPa and 0.91±0.16 MPa, which were comparable to extracted native elastin. Burst
pressures of 485 ± 25 mmHg were obtained from 4 mm ID scaffolds with 453 ± 74 μm average
wall thickness. prTE supported endothelial cell growth with typical endothelial cell cobblestone
morphology after 48 hours in culture. Cross-linked electrospun recombinant human tropoelastin
has promising properties for utilization as a vascular graft biomaterial with customizable
dimensions, a compliant matrix, and vascular cell compatibility.
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1. Introduction
Heart disease remains the leading cause of death in the Western world with nearly 81
million people affected in the United States in 2006 [1]. Bypass surgery using autografts of
saphenous veins or mammary arteries remains the gold standard treatment for severe cases,
but can be limited by previous vessel harvest or preexisting disease. Synthetic graft
materials, such as expanded poly(tetrafluoroethylene) (ePTFE) and poly(ethylene
terephthalate) (PET or Dacron®), work well for large diameter vessels, but are not viable
options for grafts smaller than six millimeters in diameter [2].

The failure modes of small diameter vascular grafts have primarily been thrombosis,
aneurysm, and intimal hyperplasia [3]. To address these failure modes many researchers
have studied both synthetic and natural biomaterial scaffolds. Synthetic biomaterials have
controllable physical and mechanical properties that are highly reproducible and are easily
manufactured in large-scale quantities, but many lack the elasticity of native arteries and
biocompatibility for long-term vascular cell functionality. Considerable efforts have been
made to functionalize synthetic surfaces [4, 5]. Natural biomaterial scaffolds, including
well-studied grafts of decellularized blood vessels [6-8], have had limited success. The
decellularized bovine [6] and human [7] blood vessels had promising 5 year patency rates,
yet aneurysm formation due to in vivo degradation limited their widespread use [7, 8].
Decellularized arteries, from allogenic and xenogenic sources are attractive scaffolds for
tissue-engineered vascular grafts due to their mechanical and biological properties [9], yet
these natural scaffolds are limited by the lack of precise manufacturing control of the
physical and mechanical properties, as well as problems with inflammation and calcification
[18]. To reduce concerns of inflammation of the allogenic and xenogenic sourced vascular
biomaterials, the biomaterials are frequently cross-linked; yet this has led to problems of
limited cell repopulation and increased stiffness of the biomaterials [19]. While stiffness and
compliance mismatch alone may not lead to vascular graft failure [27-29], graft compliance
has correlated to the formation of intimal hyperplasia and should be considered in
biomaterial scaffold design along with the potential of cellular remodeling of the graft and
cell signaling capability [20-26]. The search for a viable off-the-shelf small diameter
vascular graft that can match an autograft’s performance in terms of mechanical properties,
cell compatibility, and vascular healing has been the focus of many research efforts, but has
remained an elusive target.

The incorporation of vascular cells with biomaterial scaffolds to produce tissue engineered
grafts have been successful in animal and, recently, human trials [10-15]. Production of the
scaffold by the vascular cells has been accomplished using both in vivo [11,16-17] and in
vitro [12,13] methods. The in vivo methods require the graft to be grown in the recipient’s
peritoneal cavity. Recent advancements of this technique include improved scaffold design
to produce multilayered scaffolds and the use of cyclic stretch to improve the assembly time
and organization of the extracellular matrix [16,17]. Yet these in vivo methods require a
second surgical site for autologous use. The in vitro methods of L’Heureux et al., where the
tissue-engineered vascular grafts were produced from autologous cells without a scaffold,
have advanced to clinical trails using an arteriovenous shunt model [12, 13]. These
autologous tissue-engineered grafts have promising results with primary patency rates of
78% at 1 month and 60% at 6 months and the limited failures due to thrombosis, dilation,
and aneurysm [12]. The in vitro cell produced scaffolds are elegant in design, but require
lengthy production times potentially limiting their clinical use.

The use of electrospinning to make biomaterials has the capability of combining natural
proteins with controllable physical and mechanical properties. Electrospinning produces
submicron sized fibers from suspensions of monomers or polymers from both natural
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proteins and synthetic polymers [30-34]. Fibers produced from monomer suspensions can
then be cross-linked to produce stable polymeric structures with customizable dimensions in
terms of fiber diameter and overall graft dimensions. Electrospun fibrous scaffolds made
from biodegradable polymers, such as poly( -caprolactone) (PCL), polylactic acid (PLA),
polyglycolic acid (PGA), and poly(lactide-co-glycolide) (PLGA) [35-38] have been
proposed for use in bone, cardiac, blood vessel, and wound dressing applications [39-45].
Several groups have successfully electrospun elastin for use in tissue-engineered grafts
[46-52] and support material for vein grafts [53]. Most, however, have used animal sourced
elastin that is [20, 54-56] extracted from already assembled and cross-linked protein forms.
While these forms of elastin may provide the biochemical signaling of elastin, they remain
an animal sourced material with the associated potential for immuno-rejection leading to
structural degradation and ultimate aneurismal graft failure.

Our aim is to electrospin small diameter vascular grafts containing recombinant human
tropoelastin, the monomer unit of elastin, that when cross-linked mimics native elastin
fibers. Elastin is the principal structural component of elastic arteries responsible for energy
storage and recovery, and contributes to their unique mechanical properties [60]. End stage
aneurysm disease and supravalvular aortic stenosis have been associated with the pathologic
loss of elastin or deficiency in elastin expression [61-68]. Elastin, as a blood-contacting
surface on stents and grafts, reduced thrombus adherence and demonstrated good long-term
patency [69, 70]. Establishing an elastic fiber structure in a vascular scaffold that is similar
to the arterial wall has been well recognized, as the depletion or loss of elastin has been
correlated to both aneurysmal progression and severe smooth muscle cell hyperplasia in
both animals and humans.[61, 64, 65, 67, 70, 82-84]. Thus, elastin is a promising, and
perhaps necessary, component in vascular graft development [71, 72]. Recent work has
examined a class of elastin-like recombinant polymers with self-assembly properties and
cross-link sites designed into the peptide sequence [57]. The elastin-like polymer has been
used to produce organized multilayer collagen reinforced vascular grafts and abdominal wall
repair tissue constructs with customizable mechanical properties, which make this
technology promising for many soft tissue applications [58, 59]. Our use of electrospinning
will enable the customization of the dimensions and mechanical properties for the vascular
graft biomaterial, and the use of tropoelastin may impart critical cell signaling to the
biomaterial.

2. Materials and Methods
2.1. Materials

Human tropoelastin was optimized and expressed from a synthetic gene codon in gram
quantities in a 10-liter E.coli fermentation system. Gel electrophoresis determined that the
purification procedure resulted in a greater than 99% pure product (Figure 1) as well as low
endotoxin levels with an average of 0.2 EU/mg (1 EU = 100 pg of endotoxin) as determined
by the Kinetic-QCL Assay (Cambrex). All chemical reagents were acquired from Sigma-
Aldrich unless otherwise noted.

The purified human tropoelastin protein includes all of the functional exons with the
exception of exons 1, 22, and 26A (Figure 2). Exon 1 contains the signal sequence, while
hydrophobic exon 22, and hydrophilic exon 26A are rarely expressed in mature elastin. The
resultant tropoelastin exon structure used is the same as a natural isoform produced by
normal human fetal heart cells.

Extracted porcine elastin was isolated as previously described [69]. Briefly, porcine carotid
arteries were obtained from domestic swine of 250 lb and 6–9 months of age (Animal
Technologies, Tyler, TX) to size match the diameters. The arteries were shipped overnight
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in phosphate-buffered saline (PBS) on ice. The gross fat was dissected away and, using
aseptic techniques, the arteries were placed in 80% ethanol for a minimum of 72 h at 4°C
and subsequently treated with 0.25M NaOH for 70 min with sonication at 60°C, followed by
two 30-min, 4°C washes in 0.05M HEPES (pH 7.4). The extracted elastin tubular conduits
were then autoclaved at 121°C for 15 min and stored at 4°C in 0.05M HEPES buffer.

2.2 Electrospinning of rTE
Tropoelastin solutions of 15 wt% rTE in 1,1,1,3,3,3-hexafluro-2-propanol (HFP) were
prepared and loaded into 2 or 5 mL glass syringes depending on the volume needed for each
application. 18-gage stainless steel blunt tip needles were connected to the syringes and
electrically coupled to a high voltage power supply (Glassman High Voltage, Inc., High
Bridge NJ). A gap distance of 12.5 cm was set from the end of the needle to the center of the
collection device. A syringe pump (Harvard Apparatus) was used to advance the protein
solution at 2 mL/hr to refresh the solution at the tip of the syringe needle. Fibers were spun
onto mandrels of either 1 cm diameter copper tubes for mechanical testing or 4 mm diameter
stainless steel rods for small diameter graft production. Mandrels were connected to ground
to complete the circuit. The collection system was set to rotate at 4400 rpm and translate
longitudinally 6-8 cm with a rate of 8 cm/sec driven by a custom-built device with separate
drives for longitudinal and rotational control. The solution was charged to an 18.5 kV
excitation potential. All electrospinning was conducted within a chemical fume hood.

2.3. Cross-linking of Electrospun rTE
Disuccinimidyl suberate, DSS, (Pierce Biotechnology-Thermo Fisher Scientific Inc.), an
organic amide bond cross-linker, was used to link electrospun rTE monomers to produce
polymeric tropoelastin, prTE. Cross-linking was performed in a two-stage process. The
electrospun rTE samples were incubated for 4 hours in DSS suspended in 50 mL anhydrous
ethyl acetate, at a ratio of 0.072 mg of DSS per mg of rTE protein at room temperature in
glass tubes. A second incubation occurred for 12-18 hours at a concentration of 0.108 mg of
DSS per mg of rTE protein at room temperature. prTE samples were then rinsed in
anhydrous ethyl acetate for 5 minutes with a second 5 minute rinse in 70% ethanol and a
final 10 minute rinse in DI water. Final products were stored in 70% ethanol.

2.4. Electrospun rTE Fiber Characterization
The tubular scaffolds electrospun from 15 wt% prTE were analyzed with electron
microscopy to determine fiber diameters and evaluate the degree of fiber orientation and
consistency through the thickness of the graft. Electrospun prTE samples were mounted onto
scanning electron microscopy (SEM) stubs and sputter-coated with 250 Å of gold/
palladium. Micrographs were taken at magnifications from 3000 to 5000X and viewed at 5
kV on an FEI Sirion XL30 SEM. Image analysis of fibers was done with a custom
MATLAB® program (MathWorks®) using a Laplacian edge detection algorithm followed
by a Radon transform to determine the probability distribution of fiber orientation angles
relative to horizontal.

2.5. Mechanical Properties of prTE
The mechanical properties of electrospun prTE samples were compared to extracted porcine
elastin and native porcine carotid arteries. All uniaxial tensile tests were conducted on
dogbone shaped specimens with a gage length of 10 mm and 4 mm grip ends. The tubular 1
cm diameter prTE samples were opened longitudinally, laid flat, and cut with a dye cutter.
Four circumferential and four longitudinal sections were cut from each of the three
electrospun samples. Eight longitudinal and eight circumferential samples were tested for
native carotid arteries and extracted elastin conduits. All specimens were rehydrated in PBS
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for at least 15 minutes prior to testing. The thickness, width, and gage length were recorded.
The samples were mounted on custom tensile grips on a Chatillon Vitrodyne V1000 system
with a 500 gram load cell or on a MTS 858 Mini Bionix II mechanical tester with a 5 lb load
cell using spring action grips. All dogbone prTE samples were tested in tension at room
temperature with a crosshead speed of 2 mm/sec until failure. Force and displacement
measurements were acquired at 0.1 sec intervals. Engineering stress (force/cross-sectional
area, F/Acs) and strain (change in length/original length, L/Lo) were calculated and plotted.
Linear regression of the slope in the stress-strain plots was used to calculate the elastic
modulus (stress/strain, / ). Elastic modulus 1 was measured between 10 and 30% strain,
while elastic modulus 2 was measured between the maximum strain minus 20% and the
maximum strain with linear curve fits to these regions of the stress strain curve. Peak stress
(MPa) and strain (%) were taken as ultimate tensile strength (UTS) and percent elongation
(ultimate strain). Compliance measurements were calculated using the stress and strain data
between 50 and 100 kPA. Calculated values were based on the ANSI/ISO 7148 standard for
“Cardiovascular implants – tubular vascular prostheses” [73]. Radius values at these stress
values were calculated using a thin-walled cylinder approximation relating pressure to stress
scaled by wall thickness and initial radius (Equation 1). Compliance was measured as the
change in radius relative to the initial radius over the change in pressure or stress at 100 kPA
and 50 kPa for each material (Equation 2).

Equation 1

Equation 2

Where = circumferential Cauchy stress, P = pressure, t = wall thickness, r = radius, R2 =
radius at P2, and R1 = radius at P1.

2.6. Burst Pressure of prTE Scaffolds
Three 4 mm inner diameter, 5 cm long electrospun prTE scaffolds were fabricated for burst
pressure analysis. Scaffolds of rTE were electrospun, cross-linked and stored in 70% ethanol
prior to analysis. Wall thickness was measured using handheld digital micrometers and
recorded. Scaffolds were cannulated onto barbed nylon connectors and secured using cotton
umbilical tape. Samples were rehydrated in PBS for at least 30 minutes prior to testing. The
ends of the scaffolds were fixed in position under zero longitudinal strain/load and saline
was subsequently infused at a rate of 100 mL/min until failure occurred. The pressure
(mmHg) was continuously monitored by an inline pressure transducer (Cole Parmer) and
recorded with a custom built LabVIEW (National Instruments) data acquisition program.

2.7. Endothelial Cell Growth on prTE Scaffolds
Porcine bone marrow derived endothelial outgrowth cells (BMEOCs) were isolated and used
to assess the growth of vascular cells on the lumenal surface of electrospun prTE vascular
grafts. Porcine bone marrow mononuclear cells were collected and separated as previously
reported [74]. Isolated cells were differentiated into BMEOCs in endothelial cell growth
media (EGM2) at 37 C and 5% CO2 in a tissue culture incubator. BMEOCs were passaged
and maintained in endothelial cell growth media (EGM2) using standard techniques.
BMEOCs were stained with endothelial cell specific von Wildebrand factor (vWF, DAKO).
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Tubular prTE grafts were rehydrated in growth media for 1 hour. Vessels were inoculated
with BMEOCs (5 × 103 cells/cm2) and held at 90 mmHg for 1 hour. Grafts were then
maintained in a cell culture incubator for 48 hours in standard conditions. Grafts were fixed
with 2.5% paraformaldehyde at 48 hours and evaluated for cell engraftment with DAPI
nuclear stain and rhodamine phalloidin f-actin stain. Confocal images were taken with a 63X
oil objective on a Zeiss Multiphoton Confocal microscope using 543 and 780 nm excitation
wavelengths.

2.8. Statistical analyses
All data are expressed as the mean ± standard deviation. Student’s t-test, linear regression,
and one-way ANOVA with Tukey post hoc tests were used for hypothesis testing, with p <
0.05 as the measure for statistical significance. The number of independent tests is listed for
each experiment.

3. Results and Discussion
Electrospinning has proven to be a valuable tool to produce biomimetic scaffolds for use in
tissue engineering. Electrospun vascular graft materials have included natural proteins, such
as collagen and elastin, and biodegradable polymers either as stand alone materials or as
blends with other polymers or natural proteins [33, 56, 76]. The number of materials used
for electrospinning is increasing as well as the design complexity with multilayered
constructs [16, 58, 59, 77, 78] and materials with tunable mechanical properties [59, 78, 79].
Elastin is emerging as an important component of vascular graft development with our
increased understanding that synthetic polymers alone pose problems with compliance
mismatch and foreign body response [56]. Elastin has unique properties making it a natural
choice as a component in vascular scaffold biomaterials that require long-term durability,
antithrombogenic properties, and elasticity. Elastin is highly insoluble with a half life of
greater than 70 years; it modulates cell function reducing the thrombogenic potential of the
surface; and it is highly elastic thus adding compliance to the structure of the biomaterial
[80]. Electrospinning of tropoelastin into a biomaterial was first reported in 2005 [51].
Widespread use of tropoelastin for biomaterial development has been limited by the
availability of monomeric tropoelastin. Since 2005, the use of tropoelastin has increased and
has been incorporated into additional vascular graft scaffolds [78, 80] and coatings on stent
struts [81]. The current work describes methods of electrospinning recombinant human
tropoelastin into tubular grafts, cross-linking the material into a stable polymer, and
characterizing its structural, mechanical, and cell compatibility properties.

3.1. Morphology and Substructure of prTE Fibers
To produce purely electrospun prTE tubular scaffolds, 15 wt% solutions of rTE were
electrospun onto rotating mandrels and cross-linked. Conduits were 4-10 cm in length, 4 mm
in diameter, with wall thicknesses of 0.43-0.65 mm (Figure 3A). The wall thickness was
dependent on the volume of the rTE solution used. The prTE fibers were randomly oriented
as determined using image analysis to calculate the probability distribution function of fiber
orientation angles relative to horizontal (Figure 4). The average fiber diameters (580 94 nm)
and fiber structure (Figure 3B) of the electrospun protein was maintained throughout the
thickness of the graft (data not shown).

3.2. Mechanical Properties of prTE
Uni-axial tensile testing of prTE samples from 15 wt% rTE produced stress-strain curves
(Figure 5) for both the longitudinal and circumferential sample orientations. The curves
were similar for the two orientations showing a bimodal stress-strain relationship in which
the modulus was dependent on the percent strain. The transition in moduli values occurred
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between 40 and 50% strain. The only mechanical property that was significantly different
between the longitudinal and circumferential orientations of electrospun prTE was the
elastic modulus 2 (t-test, p < 0.01). The remaining mechanical properties (UTS, %
elongation, and elastic modulus 1) were not significantly different (t-test, p > 0.05) between
the two orientations (Figure 6). Combining electrospun prTE’s longitudinal and
circumferential orientations measurements, the average UTS, elastic modulus 1 and percent
elongation were 0.36 ± 0.05 MPa, 0.15 ± 0.04 MPa, and 77 ± 5%, respectively. Elastic
modulus 2 values were not combined because they were significantly different between
orientations.

Ultimate tensile strength (UTS), percent elongation, and elastic moduli for electrospun prTE
were compared to extracted porcine elastin and native porcine carotid arteries for the
longitudinal (L) and circumferential (C) orientations (Figure 6). The electrospun prTE
samples had UTS values of 0.34 ± 0.14 MPa (C) and 0.38 ± 0.05 MPa (L). The UTS values
for the electrospun prTE were comparable to extracted porcine elastin in the longitudinal
direction, yet significantly different to circumferential extracted elastin and both native
carotid artery specimens (ANOVA, Tukey post hoc, p < 0.05). The percent elongation at
failure of the electrospun prTE was 79 ± 6% (C) and 75 ± 5% (L), which was significantly
lower than the control materials in both orientations (ANOVA, Tukey post hoc, p < 0.01).
The average elastic moduli of electrospun prTE were 0.15 ± 0.05 MPa (C) and 0.15 ± 0.03
MPa (L) for elastic modulus 1 and 0.82 ± 0.11 MPa, (C) and 0.99 ± 0.17 MPa (L) for elastic
modulus 2 which were comparable to extracted elastin in the longitudinal direction for
elastic modulus 1 and in both orientations for elastic modulus 2. Both prTE elastic moduli
were significantly different from the native carotid materials (ANOVA, Tukey post hoc, p <
0.05)

Average compliance values for electrospun prTE, extracted elastin, and native carotid
arteries were 20.2 2.6, 32.0 3.1 and 3.4 0.5 % respectively, which were all significantly
different (ANOVA, Tukey post hoc, p < 0.01). Extracted elastin lacks collagen and therefore
is expected to have greater compliance. The compliance of electrospun prTE fell between
extracted elastin and native carotid arteries. This allows for the addition of stiffer materials,
such as collagen, to the biomaterial to both strengthen the vessel in terms of UTS while
maintaining compliance equivalent to native vessels.

The mechanical properties of electrospun proteins are dependent on the specific proteins
selected, the protein concentration, electrospinning parameters, cross-linkers, and fiber
orientation [51, 76, 85-87]. The mechanical properties of the circumferential and
longitudinal orientations of the prTE materials were similar, where the only measured
significant difference was in the elastic modulus 2 of electrospun prTE. UTS values of prTE
electrospun materials were between the values of native extracted elastin in the longitudinal
and circumferential directions and were much lower than the native carotid artery [88-93].
These results were expected due to the random (non-oriented) nature of the electrospun
prTE fibers compared with the oriented fibers of native elastin [94], and due to the presence
of collagen in the native matrix. Additionally, the elastic modulus 1 of electrospun prTE,
measured on the initial linear slope of the stress-strain curve, were comparable to the
extracted elastin. Native elastic fibers (composed of elastin and fibrillin-1) contribute
significantly to the material properties of native elastic arteries [95] in this initial linear slope
region of the stress-strain curve. Native arteries are true composites of matrix proteins and
the transition in elastic modulus is primarily due to elastin and collagen’s unique mechanical
contributions working in concert. Therefore, the incorporation of prTE into a collagen
scaffold is likely to increase the compliance of the vascular graft. The material properties of
the electrospun prTE biomaterials were significantly different from the electrospun human
tropoelastin by Li et al. [51]. The prTE had lower average UTS (0.36 MPa vs. 13 MPa) and
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average elastic moduli (0.15 MPa (elastic modulus 1) and 0.91 MPa (elastic modulus 2) vs.
289 MPa), yet a higher average percent elongation at failure (77% vs. 15%). It should be
noted that only a single mechanical test was reported for Li’s electrospun tropoelastin due to
limited availability of protein [51]. The prTE materials were more elastic with a lower
failure stress than Li’s previously reported electrospun tropoelastin [51]. These disparities
could be due to significant differences in electrospinning methods, testing methods, and
cross-linking strategies. Our electrospinning parameters differ from Li et al., in several
ways, including lower concentration of tropoelastin, higher accelerating voltage, and a
smaller gap distance, which resulted in smaller and cylindrically-shaped fibers [96] for our
prTE. The mechanical property evaluation by Li et al. utilized a unique testing system
designed to evaluate textiles, which included the measured material weight to calculate
stress. This measurement can be variable due to differences in the hydration of the
tropoelastin. Our engineering stress calculations were based on the measured initial cross-
sectional area. Additionally, to crosslink the tropoelastin Li et al. used hexamethylene
diisocyanate (HMDI), which binds lysine or hydroxylysine residues, but may also react with
nucleophilic functional groups such as amines, alcohols, and protonated acids. HMDI has
been shown to react with side chains of lysine, cysteine, histidine and tyrosine and may as
well react to arginine, and aspartic acid. Nonspecific binding of residues by HMDI may
affect the functionality and water content [97], thus altering the mechanical properties of
cross-linked tropoelastin. DSS in comparison is specific to amines on lysine residues with an
8 atom bridge resulting in a 11.4 Angstrom crosslink arm. The specificity of DSS to lysine
[98] leaves the cell binding domains available on the molecule as well as results in improved
consistency of mechanical properties.

The mechanical properties were comparable to extracted elastin scaffolds, but still lack the
tensile strength to support in vivo arterial pressures. For vascular graft applications, the
tensile strengths of the prTE scaffolds must be further increased by reinforcement or co-
spinning with either collagen or synthetic materials.

3.3. Burst Pressure of prTE Scaffolds
The electrospun prTE tubular scaffolds (n=3) had an average wall thickness of 453 74 μm
and an average burst pressure of 485 25 mmHg. Scaffolds increased in size both
longitudinally and circumferentially throughout the burst pressure test and test samples
failed longitudinally in all cases. Saphenous vein and internal mammary artery grafts, the
gold standard treatments, have reported burst pressures of 1599 877 and 3196 1264 mmHg,
respectively [101]. Extracted porcine carotid elastin has a reported burst pressure of 162 ±
36 mmHg [69], which is significantly lower than the electrospun prTE, however, the UTS
measurements were comparable between our electrospun and extracted elastin samples.
Burst pressure differences could be due simply to differences in wall thickness or a more
complex mechanism involving variations in fiber architecture, which would lead to altered
loading on individual fibers during biaxial deformation of the matrix. While an average
burst pressure of 485 mmHg for our electrospun graft is sufficient for initial in vivo testing
of host response, higher failure pressures of at least 1500 mmHg would need to be achieved
to give an ample safety factor (>10) for its widespread clinical use.

3.4. Endothelial Cell Growth on prTE Scaffolds
Organic solvents, such as HFP, facilitate the electrospinning of pure protein solutions, due to
improved protein solubility and solvent volatility. HFP has been shown to affect the
conformation of electrospun collagen [99], which could have a drastic effect on its stability
and mechanical properties. Tropoelastin is unlikely to be affected, as it is a single chain
molecule that easily regains its secondary structure on removal of denaturants. The
similarity in mechanical properties of prTE and extracted native elastin indicate minimal
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conformational changes in the prTE. The cytotoxic effects of HFP must be considered in
construct design. HFP at concentrations above 250 ppm is toxic to cells [100]. The residual
solvent HFP can be present in electrospun materials, but is likely removed through post
processing (heat/vacuum treatments) of the material [100]. Our electrospun materials have
been shown to support vascular cell growth [96], thus indicating low residual solvent levels,
but a full evaluation of residual HFP should be conducted prior to conducting in vivo
implant studies.

Bone marrow derived endothelial outgrowth cells (BMEOCs) attached, spread, and grew on
the 15 wt% prTE tubular scaffolds. BMEOCs stained positive for vWF indicating an
endothelial cell population (Figure 7A & B). Confocal images taken at 48 hours showed
cells well attached and spread on the electrospun fiber matrix. Cells formed a confluent
monolayer with typical endothelial cell cobblestone morphology (Figure 7C). This supports
the hypothesis that prTE is a cell compatible matrix for both endothelial cells as well as,
previously reported, smooth muscle cells [102], which demonstrated positive SMC growth
and proliferation on prTE over a week with logarithmic cell growth between 3 and 5 days
via integrin mediated binding mechanisms.

4. Conclusions
An electrospun tubular vascular scaffold material has been developed, composed of cross-
linked recombinant human tropoelastin, which has physical and mechanical properties
similar to extracted arterial elastin. The graft architecture, i.e. length and diameter, of the
prTE scaffold can be precisely designed and controlled. A cross-linked stable polymer
assembled from recombinant human tropoelastin provides both the compliance and support
of endothelial cell adhesion for a component of a vascular graft biomaterial. While the
mechanical strength of the prTE scaffolds are insufficient for implantation alone, the
relatively lower compliance compared to native arteries will allow for the addition of
stronger, but stiffer biomaterials. This technology holds great promise for incorporation in
small diameter vascular graft biomaterials.
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Figure 1.
Stained electrophoresis gel showing purified human tropoelastin from 7 different batches
(lanes 1-3 and 5-8) illustrating the purity of the product and reproducibility of the
purification process. Lane 4 is a molecular weight standard.
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Figure 2.
Diagramatic representation of human tropoelastin protein domains. The number of the
corresponding exons and the sizes of the domains are shown. The exon numbering system is
based upon the bovine elastin gene sequence. The human gene has no exons 34 and 35,
while exon 26A is rarely expressed in human tropoelastin. Cross-linking domains are shaded
black and hydrophobic domains are white.
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Figure 3.
Electrospun tubular prTE vascular scaffold. (A) The vascular scaffold was 7 cm in length, 4
mm internal diameter, and consisted of pure prTE fibers. (B) The prTE fibers were
randomly oriented with average fiber diameters of 580 94 nm. The scale bar indicates 5 μm.
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Figure 4.
MATLAB image analysis of fiber orientation. (A) Image of electrospun prTE fibers (B)
Normalized probability distribution function plotted as probability of the feature orientation
versus angle. Fibers were randomly oriented in these samples.
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Figure 5.
Average stress-strain curves for electrospun prTE fibers from a 15 wt% solution for both
circumferential and longitudinal orientations (average with 95% confidence interval). The
only significant difference in mechanical properties was in the elastic modulus 2 of the
tested orientations.
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Figure 6.
Mechanical properties of the electrospun prTE scaffolds. (Top) Representative stress-strain
curves of electrospun prTE, extracted porcine elastin, and native porcine carotid arteries.
(Bottom) Table of mechanical properties including ultimate tensile strength (UTS), percent
elongation at failure, and elastic moduli of electrospun prTE compared to extracted porcine
elastin and native porcine carotid arteries. The UTS and elastic moduli of electrospun prTE
were not significantly different from the extracted elastin in the longitudinal direction.
Note: aindicates no significant difference (ANOVA, Tukey post hoc, p > 0.05), compared to
electrospun prTE in the same orientation, *indicates a significant difference (ANOVA,
Tukey post hoc, p < 0.05) for comparisons to electrospun prTE in the same orientation, and
**indicates p < 0.01, t-test.
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Figure 7.
(A) BMEOCs stained for vWF (red) with a DAPI (blue) nuclear stain. (B) Control for vWF
stain with the DAPI nuclear stain. (C) Endothelial cell monolayer on 15 wt% prTE after 48
hours in culture. Nuclei are stained with DAPI and the cytoskeleton (f-actin) is stained with
rhodamine phalloidin (red). BMEOCs attached and spread on the prTE scaffold.
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