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Abstract
CASP has been assessing the state of the art in the a priori estimation of accuracy of protein
structure prediction since 2006. The inclusion of model quality assessment category in CASP
contributed to a rapid development of methods in this area. In the last experiment forty six quality
assessment groups tested their approaches to estimate the accuracy of protein models as a whole
and/or on a per-residue basis. We assessed the performance of these methods predominantly on
the basis of the correlation between the predicted and observed quality of the models on both
global and local scales. The ability of the methods to identify the models closest to the best one, to
differentiate between good and bad models, and to identify well modeled regions was also
analyzed. Our evaluations demonstrate that even though global quality assessment methods seem
to approach perfection point (weighted average per-target Pearson's correlation coefficients as
high as 0.97 for the best groups), there is still room for improvement. First, all top-performing
methods use consensus approaches to generate quality estimates and this strategy has its own
limitations and deficiencies. Second, the methods that are based on the analysis of individual
models lag far behind clustering methods and need a boost in performance. The methods for
estimating per-residue accuracy of models are less accurate than global quality assessment
methods with an average weighted per-model correlation coefficient in the range of 0.63–0.72 for
the best 10 groups.
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Introduction
The role of protein structure modeling in biomedical research is steadily increasing1–3.
Models are routinely used to address various problems in biology and medicine. Contrary to
experimentally derived structures, where accuracy can be deduced from experimental data
and typically falls within a narrow range, theoretical models are usually un-annotated with
quality estimates and can span a broad range of the accuracy spectrum. Thus, reliable a
priori estimates of global and local accuracy of models are critical in determining the
usefulness of a model to address a specific problem. For example, high-resolution models
(expected C-alpha atom RMSD from the experimental structure ~1Å; expected
GDT_TS>80) often are sufficiently accurate for detecting sites of protein-ligand
interactions4, understanding enzyme reaction mechanisms5, interpreting the molecular basis
of disease-causing mutations6, solving crystal structures by molecular replacement7,8 and
even for drug discovery9–11. A model of medium accuracy (typically 2–3Å C-alpha atom
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RMSD from the native structure, GDT_TS>50) can still be useful for detecting putative
active sites in proteins12,13, virtual screening14 or predicting the effect of disease-related
mutations15. Low resolution models can be useful for providing structural characterization
of macromolecular ensembles13, recognizing approximate domain boundaries13, helping
choose residues for mutation experiments16 or formulating hypotheses on the protein
molecular function17,18.

In response to these needs the computational biology community has focused on the Model
Quality Assessment (MQA) problem, i.e. on the possibility of predicting the accuracy of
structural models when experimental structural data are not available. Several dozen papers
have been published on the subject in the recent years19. CASP now includes a specific
category for testing QA methods and a large number of prediction groups participate20,21. In
CASP9, 46 groups (including 34 servers) submitted predictions of the global quality of
models and 22 also provided estimates of model reliability on a per-residue basis. Here we
assess the performance of these groups and discuss the problems facing the field.

Materials and Methods
Submission procedure and prediction formats

The procedure for submitting QA predictions in CASP9 did not change from that used in
CASP8. Server models submitted in the tertiary structure prediction categories (TS and AL)
were archived at the Prediction Center and posted on the web following the closing of the
server prediction deposition time window on a target. The same day, web locations of the
tarballs were automatically sent to the registered QA servers, which in turn had three
calendar days to submit quality estimates for the models. Human groups were invited to
download the server models and submit their quality estimates to CASP according to the
deadlines set by the organizers for the tertiary structure prediction on the corresponding
target.

The QA predictions were accepted in two modes: QMODE 1 (QA1) for the assessment of
the overall reliability of models, and QMODE 2 (QA2) for the assessment of the per-residue
accuracy of models. In QMODE 1 predictors were asked to score each model on a scale
from 0 to 1, with higher values corresponding to better models and value of 1.0
corresponding to a model virtually identical to the native structure. In QMODE 2 predictors
were asked to report estimated distances in Angstroms between the corresponding residues
in the model and target structures after optimal superposition. Details of the QA format are
provided at the Prediction Center website
http://predictioncenter.org/casp9/index.cgi?page=format#QA.

Evaluation data: targets and predictions
7,116 QA predictions on 129 targets were submitted to CASP9; all are accessible from
http://predictioncenter.org/download_area/CASP9/predictions/ (file names starting with
QA). These predictions contain quality estimates (global and residue-based) for 39,702
tertiary structure models generated by the CASP9 server groups
(http://www.predictioncenter.org/download_area/CASP9/server_predictions/). Thirteen
targets were cancelled by the organizers and the assessors for tertiary structure prediction22,
and those were also excluded from the QA assessment, leaving 116 targets to be assessed*.

*Results presented at the CASP meeting were based on 117 targets including T0549, the target canceled just before the meeting by the
assessors due to its inadequate quality for tertiary structure assessment.
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Protein structure prediction is usually a time demanding process, and in order to allow
human-expert predictors extra time for modeling challenging proteins, CASP9 targets were
released as either human/server or server only targets. In the MQA category, though,
methods are usually much faster and therefore all targets were used for model quality
estimation.

In CASP9, targets that were difficult for structure prediction also appeared to be difficult for
model quality prediction (see Figure S1 in Supplementary Material). This fact can be
explained, in part, by the observation that the best performing methods are consensus
methods (see further analysis in the Results), which work better for the TBM targets for
which the cluster center is dominated by the presence of structurally similar templates, while
for hard modeling cases there is usually no consensus or, in some cases, a wrong one. As
results from structure comparison programs become less meaningful below some cut-off
(e.g., a model with a GDT_TS score of 20 does not superimpose with a target significantly
better than a model with a GDT_TS score of 15), the relationship between model quality
estimates and structure similarity scores for difficult targets can be misleading. Thus,
inclusion of such targets in the evaluation dataset might have introduced noise. To check
this, we ran three separate evaluations: one on the whole set of 116 targets, and two more on
reduced sets, composed of the targets where at least one model with a GDT_TS score above
40 or 50 existed (102 and 89 targets, respectively). The comparative analysis across these
three target sets showed that each of the main evaluation scores is quite stable with the
SRCC ranging from 0.92 to 0.94 for different pairs of the test sets. Thus, except when
otherwise noted, throughout this paper we refer to the results of the analysis performed on
all 116 targets.

Unlike tertiary structure assessment, the QA evaluation was performed on whole targets
without splitting them into evaluation subunits, as it was impossible to dissect a single score
submitted for the whole model into quality scores for the constituting domains. For the same
reason, we excluded from the calculations the so-called multi-frame models consisting of
two or more segments predicted independently, i.e. not using a common Cartesian frame of
reference†. We also disregarded models shorter than 20 amino acids and, for the QA2
assessment, those for which fewer than seven local quality prediction groups submitted their
estimates. All in all, we evaluated the performance of QA methods on 35,198 server models.

Evaluation measures and assumptions
What is compared and how?—In CASP, model quality predictions are evaluated by
comparing submitted estimates of global reliability and per-residue accuracy of structural
models with the values obtained from the sequence-dependent LGA23 superpositions of
models with experimental structures
(http://predictioncenter.org/download_area/CASP9/results_LGA_sda/). Therefore, perfect
QA1 scores should ideally correspond to the LGA-derived GDT_TS scores (divided by 100)
and predicted per-residue distances in QA2 should ideally reproduce those extracted from
the optimal model-target superpositions. In both prediction modes, estimated and observed
data are compared on a target-by-target basis and by pooling all models together. The first
approach rewards methods that are able to correctly rank models regardless of their absolute
GDT-TS values, while the second accentuates how well the method is able to assign
different scores to models of different quality regardless of their ranking within the set of
models for the specific target.

†Format-wise, multi-frame models are those containing several PARENT…TER blocks - see format description for TS and AL
predictions at http://predictioncenter.org/casp9/index.cgi?page=format.
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Correlation coefficients: Pearson or Spearman?—As predicted values should
ideally duplicate the observed ones, a linear relationship between them is expected. This
assumption is confirmed by the visual inspection of the data (see Figure S2 in
Supplementary Material). Therefore, the Pearson's product-moment correlation coefficient r
is a sensible choice to measure the level of association between the predicted and observed
scores. However, PMCC is very sensitive to outliers and it assumes normally distributed
data, which is usually not the case for sets of per-target GDT_TS scores or residue distance
errors. Thus, it may seem that distribution-free association measures, e.g. Spearman's ρ or
Kendall's τ, are more appropriate for the problem at hand. However, these measures also
have flaws, as it is not appropriate to use rank-based measures for sets with multiple tied
original values and because they present problems in handling big sets of data24. Also, even
though non-parametric measures are more robust in guarding against outliers, they cannot
guarantee more sensible results on such data25. In order to eliminate bias in the analysis
connected with the selection of the association measure, we have evaluated all the data using
both parametric and non-parametric inferential statistic methods. The comparison of the
results showed that the choice of the association measure has only marginal influence on the
conclusions (Spearman's ρ between the rankings based on SRCC and PMCC and their z-
scores ranged from 0.97 to 0.99 for both QA1 and QA2). In what follows, we use Pearson's
r for data analysis since, in general, it gives a more accurate estimate of the correlation
between continuous values, and it has been shown to be less prone to bias than rank-based
measures for big sets of data even when the assumption of a normal bivariate distribution is
violated26. The raw results of the correlation analyses are available at
http://predictioncenter.org/casp9/qa_analysis.cgi.

Transformation of correlation coefficients—As correlation coefficients are not
additive27,28, their averaging has to be preceded by a transformation into additive quantities.
Fisher's transformation29 is the best known technique to do so. The following transformation

(1)

converts the correlation coefficient r into a normally distributed variable Z with variance s2

= 1/(n−3), where n is the number of observations. Once r values are converted into Z values,
an arithmetic mean score  can be computed and subsequently transformed into the
correlation coefficient weighted mean value  by using the inverse formula

(2)

Note that while the Fisher transformation is usually used for PMCCs when observations
have a bivariate normal distribution, it can also be applied to SRCCs in more general cases.

Evaluation measures for QA1 assessment—Correlation between the predicted
accuracy scores and the corresponding GDT_TS values for the submitted server models was
used as a main evaluation measure for assessing the QA1 results. In the per-target
assessment regime, we calculate the Pearson's correlation coefficient for each group on each
target, and the corresponding z-score derived from the distribution of the per-target PMCC
values obtained by all groups. The final score for each prediction group is determined by the
weighted mean of PMCCs and the average z-score over the set of predicted targets. In the
“all models pooled together” regime, correlation coefficients are calculated for all quality
estimates submitted by a group on all targets. The group scores are next compared to the
CCs obtained by other groups using the standard Z-test procedure‡.
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Besides the correlation measure, we have also evaluated performance of the global quality
estimators by (a) testing the ability of prediction groups to distinguish between good and bad
models, (b) calculating the difference in quality between the model predicted to be the best
and the actual best model, and (c) comparing results of the methods to the results of two
naïve predictors: BLAST/LGA20 and NAÏVE_CONSENSUS.

The ability of predictors to discriminate between good and bad models was assessed with
the receiver operating characteristic (ROC) analysis30§. A ROC curve shows the
correspondence between the true positive rate of a predictor (Sensitivity) and its false
positive rate (1-Specificity) for a set of probability thresholds (from 0 to 1 in our case). For
each threshold, a model is considered a positive example if its predicted QA1 score is equal
to or greater than the threshold value. The area under a ROC curve (AUC) is indicative of
the classifier accuracy31: an AUC of 1 identifies a perfect predictor, while an AUC of 0.5
corresponds to a random classifier. We have computed the AUC scores using the trapezoid
integration rule with a threshold increment of 0.05 for four reference “model goodness”
parameters: GDT_TS=30, 40, 50 and 60. The scores for all goodness parameters appeared to
be highly correlated, with the lowest pair-wise PMCC of 0.98 (for the GDT_TS=30 and
GDT_TS=60 pair). Therefore we show here the results for only one of the goodness
parameters, defining good models as those having GDT_TS≥50.

The loss in quality between the best available and the estimated best model was calculated
for the targets when at least one good model (scoring higher than the specified cutoff) was
present.

The naïve BLAST/LGA predictor assigns a score to a model based on its structural
divergence from the most closely related known protein structure detectable by standard
sequence analysis. The predictor first searches the protein structure database – frozen at the
time of release of the corresponding target – for the best potential template by running at
most five PSI-BLAST iterations with default parameters. Next, it superimposes the selected
structure onto the input protein model by running LGA with default parameters in sequence
independent mode. Finally, the resulting LGA_S score is multiplied by the model-to-target
coverage ratio (the shorter the model – the lower the ratio) and divided by 100 to obtain a
number between 0.0 and 1.0.

The NAÏVE_CONSENSUS predictor assigns quality score to a model based on the average
pair-wise similarity of the model to all other models submitted on that target. The predictor
superimposes all models submitted on the target by running LGA with default parameters in
the sequence dependent mode. Next, for each model the quality score is calculated by
averaging the GDT_TS scores from all pair-wise comparisons, followed by appropriate
scaling.

Evaluation measures for QA2 assessment—As in the QA1 mode, correlation was
the basic evaluation measure for assessing the QA2 results. Here the correlation is measured
between the estimated and actual distances in Angstroms between the corresponding Cα
atoms of the model and the experimental structure after their optimal superposition. The
Pearson r coefficients and the corresponding z-scores are computed for each server model.
While calculating correlation for the QA2 data, we had to overcome the problem of CCs
distortion due to the high distance values in the poorly modeled regions of a protein. From a

‡Details on calculating z-scores and conducting Z-tests are discussed further in this section.
§The conceptually similar analysis can be performed using Matthews' correlation coefficient or statistical accuracy score, but the ROC
curve analysis is more general as it does not require linear relationship between the predicted and observed scores but assumes only
monotony.
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practical point of view, for a residue being misplaced by several Angstroms (e.g. more than
5 Å) the exact distance does not make much difference and thus we set the predicted and
observed distance errors exceeding 5Å to 5Å. The final score of each prediction group is
determined by the weighted mean of PMCCs and the average z-score over the set of
predicted models**.

The aforementioned procedure of setting an upper limit on the distance values makes the
analysis of distance error associations more sensible, but it also introduces a bias into the
analysis as many data points acquire the same values, possibly affecting the accuracy of the
correlation-based conclusions. On the other hand, our analysis in the “all models together”
mode is meant to determine the ability of the QA methods to identify reliable and unreliable
regions in the model regardless of this bias. To perform such an analysis we used two
descriptive statistics measures: Matthews's correlation coefficient32

(3)

and accuracy

(4)

The two measures are calculated on the whole set of residues for two distance cut-offs - 5Å
and 3.8Å – separating reliably predicted residues from unreliable ones. The TP [FN] in
formulae (3) and (4), is the number of residues in the model that are closer than the specified
cut-off to the corresponding residues in the native structure and are estimated to be closer [at
least as far away as] this cut-off in the QA prediction, respectively. The TN [FP] is the
number of residues in the model that are at least as far away as the specified cut-off from the
corresponding residues in the native structure and are estimated to be at least as far away
[closer] than this cut-off in the QA prediction, respectively. The MCC and accuracy scores
are highly correlated (Pearson's r=0.99 [0.98] for 5Å [3.8Å] distance thresholds
respectively), and therefore we show the results for only one of them (MCC) in what
follows.

Ranking of participating groups: z-scores, t-, Wilcoxon-, Z- and DeLong- tests
—The correlation coefficients obtained by each group for each target (in QA1) or model (in
QA2) and on the whole set of targets were converted into z-scores. As in previous
CASPs20,21, the performance of each group was measured by the average of the z-scores
after replacing negative values with zeros. The choice of neglecting negative z-scores is
meant not to penalize groups that, by attempting more novel and riskier methods, might
obtain negative scores in some cases.

The statistical significance of the differences in performance of the participating methods
was verified by the two-tailed paired t-tests (or Wilcoxon tests) on the common set of
predicted targets/models in the target-based analysis regime and by Z-tests for the analysis
of all models pooled together.

**We also calculated QA2 summary scores using somewhat different procedure. First, per-residue scores for each model were
averaged over all models submitted on a target, and then per-target averages were averaged over all targets. The difference in
summary scores from the two procedures constituted 0.35% on the average for all considered measures and all participating groups.
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In the per-target assessment regime, we ran paired t-tests on PMCCs and Wilcoxon signed
rank tests on SRCCs. The raw correlation coefficients are used because the significance
levels of the tests based on Fisher's Z transformations are shown to be severely distorted for
skewed distributions26.

For the “all targets together” assessment, Z-tests were performed on the correlation
coefficients in accordance with standard statistical practice. To test whether Pearson's
correlation coefficients r1 and r2 from two different samples are significantly different, we
converted them into the corresponding Fisher's Z1 and Z2 using formula (1) and then
computed a statistics Z by dividing their absolute difference by the pooled standard error,
i.e.

(5)

where n1 and n2 represent the number of models evaluated by the two predictors. The
corresponding p-value from the standard normal probability table helps assessing whether
the difference between r1 and r2 is statistically significant at the desired confidence level.

Statistical significance of the differences between the AUC scores in the ROC analysis was
assessed using the DeLong non-parametric tests33.

Software used—Quality assessment calculations were performed using a set of in-house
Java, C and Perl scripts pulling data from the CASP results database and the statistical
package R34 with the installed pROC library35.

Results
QA1: assessment of global model accuracy estimates

QA1.1: per-target analysis—Figure 1A shows the mean z-scores and PMCC weighted
means on the whole set of targets for all forty six prediction groups. Several top performing
groups obtained very similar results. This visual conclusion is confirmed by the results of
the statistical significance tests on the common set of predicted targets. According to the
paired Student's t-test, the top-ranked eight predictors (MuFOLD-WQA, MuFOLD-QA,
QMEANClust, United3D, Multicom-cluster, Mufold, MetaMQAPclust and MQAPmulti –
all using clustering techniques) appear to be indistinguishable from each other, and perform
better than the rest of the groups at the p=0.01 significance level (see Table S1 in
Supplementary Material for details).

It should be noted that not all groups submitted quality estimates for all models and
therefore correlation coefficients for different groups on a specific target might be calculated
on slightly different subsets of models. This may raise a question of reliability of direct
comparisons of the scores for different groups. To check the influence of this discrepancy on
the evaluation scores, we compared the results of the QA methods on the whole set of
models with those obtained on randomly selected subsets of models. For each QA group, we
have randomly selected 30 models for each target (approximately 10% of all submitted
models) and calculated the correlation with the observed quality. We repeated this procedure
100 times for each group and for each target and calculated the PMCC means weighted over
the number of trials and over all targets predicted by the group. The resulting PMCCs appear
to differ by no more than 0.2% (data not shown) from the correlation coefficients calculated
on the whole set of models, therefore indicating a very high stability of the results.
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The ability of predictors to identify the best models in the decoy sets of all models submitted
for the target was assessed on targets for which at least one model obtained a GDT_TS score
higher than 40. For each target we have calculated the ΔGDT_TS difference between the
model identified as best by the QA predictor and the model with the highest GDT_TS score.
Average ΔGDT_TS scores over all targets attempted by each group are presented in Figure
2A. The best prediction groups reach an average ΔGDT_TS score of about 5. Thus, the
actual best models might be significantly down the list from those designated as best. Figure
2B supports this conclusion showing that even for the best groups, the model designated as
best is 2 GDT_TS units or closer to the best available model for only approximately one in
three targets (green + yellow bars in the figure). Even though all best predictors are again
clustering methods, it is encouraging to see that the best quasi-single model method
(QMEANdist) and the best single model method (ProQ2) attain ΔGDT_TS scores that are
roughly only 2 GDT_TS units worse than that of the best clustering method (Figure 2A). It
should be noted, however, that this small difference in absolute scores translates into
substantial (approximately 40%) difference in relative terms, and overall low rankings of
these two groups.

QA1.2: models from all targets pooled together—Figure 1B reports the results of
the correlation analysis in the “all models pooled together” mode. The QMEANClust group
proved to be the best in assigning absolute quality scores to models coming from proteins of
different modeling difficulty. It outperforms all other groups, including the three next best -
Multicom-cluster, ModFOLDclust2 and MetaMQAPclust - which are statistically
indistinguishable from each other according to the Z-tests (Table S2 in Supplementary
Material) and not far behind QMEANClust in terms of PMCC values.

The ability of predictors to discriminate between good and bad models was additionally
assessed with the receiver operating characteristic analysis. Figure 3 shows that the ROC
curves for the top performing groups (and subsequently their AUC scores) are very similar,
suggesting that the corresponding methods have similar discriminatory power. However,
according to the results of non-parametric DeLong tests, the QMEANclust AUC score
proved to be statistically better than that of all other groups, except for MULTICOM-cluster
(see Table S2 in Supplementary Material). Comparing the AUC scores for the GDT_TS=40
and GDT_TS=50 goodness cut-offs (see the two panels in the inset of Figure 3), one can
assert that they are similar for all groups except for MuFOLD-WQA, which has better
discriminating power at the smaller “goodness” cutoff.

Summarizing the QA1.2 assessment we want to emphasize that, similarly to QA1.1,
clustering methods dominate the results tables.

QA1 results: comparison with previous CASPs—The comparison of the CASP9
results with the results from previous experiments is important for establishing whether the
MQA field is making progress.

Figures 4A and B show the correlation coefficients obtained by groups participating in
CASP9 and CASP8 for both the per-target and “all models together” assessment. CASP9
groups display better performance than the CASP8 groups according to both assessment
procedures. Consistent improvement in the correlation scores is noticeable for both the best
and moderately-well performing groups, with a more pronounced improvement for the latter
groups.

Figure 5 presents the cumulative distributions of the correlation coefficients for the last three
CASPs. We show the fraction of the observed Pearson's correlation coefficients attaining
values larger than those specified along the x-axis. It is apparent that the fraction of cases
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with larger r has consistently and significantly increased over the last four years. For
example, the percentage of QA1 predictions yielding correlation coefficients 0.8 or higher
increased from 30% in CASP7 to 50% in CASP8 and to 70% in CASP9! These results look
even more impressive when one takes into consideration the fact that CASP9 targets were
harder than CASP8 targets, which, in turn, were harder than CASP7 ones36, and that there
were fewer consensus methods in CASP9 than in CASP8. Therefore, the observed progress
cannot be attributed to the decreased target difficulty or larger number of consensus
methods, but rather reflects methodological improvements implemented over the last three
CASPs. At the same time, it should be mentioned that there are no conceptually novel
approaches among the best performing CASP9 methods and the observed progress is most
likely associated with improvements of the existing QA servers. Indeed, the comparison of
performance of the best CASP9 groups that have also participated in CASP8 shows that
none performed worse, with many significantly improving their results. This is particularly
true of the MUFOLD-QA and United-3D (Circle in CASP8) groups, which have improved
their correlation scores by more than 30%.

QA1 results: comparison with naïve methods—The effectiveness of QA1 methods
in CASP9 was tested by comparing their performance with that of two naïve predictors:
BLAST/LGA, assigning a global accuracy score to a model based on its distance from the
best template found by sequence similarity, and NAÏVE_CONSENSUS, assigning a quality
score based on the structural similarity of a model to other models submitted on the target
(see Materials and Methods).

BLAST/LGA uses only the information available from the best template and therefore is
conceptually similar to quasi-single model methods. Quality assessment scores were
generated for all models submitted on 79 single-domain TBM targets, where PSI-BLAST
detected at least one potential template. In order to compare the naïve predictor with
participating groups in an unbiased manner, we recomputed the z-scores on the selected 79
TBM targets from the average and standard deviation values of the Pearson's r distributions
for the forty six official predictors. It is apparent that while the BLAST/LGA predictor
performs worse than the best clustering and quasi- single model methods, its z-score is
higher than that of any of the CASP9 pure single-model methods (see Figure S3,
Supplementary Material).

To benchmark the effectiveness of clustering techniques we compared them to the
NAÏVE_CONSENSUS method utilizing information from all tertiary structure models
submitted on a target. Figure 1 demonstrates that this method would have been among the
best performing methods, had it participated in CASP9. In the QA1.1 assessment mode, the
naïve method achieves the highest wmPMCC of 0.97 and is statistically indistinguishable
from the eight top performing groups (Table S1 in Supplementary Material); in the QA1.2
mode, it attains a PMCC of 0.946 and is statistically indistinguishable from the best
performing method (QMEANclust, PMCC=0.949) both according to the correlation-based
and ROC-based analysis (Table S2 in Supplementary Material). These results show that
even though the best CASP consensus predictors reach very high correlation scores, they do
not compare favorably with a simple naïve clustering method.

Open issues—Comparison of the QA1 results from the latest CASPs points to clear
though modest progress in the area: all assessment scores have improved since CASP8 and
correlation coefficients for the best groups have nearly reached saturation (0.97) so it may
seem that the QA1 problem has been solved. But a closer look reveals hidden problems and
issues that need attention.
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As in two previous CASPs, all top performing methods in CASP9 relied on a consensus
technique to assess model quality (see Figures 1–3 for the results and Table I for the
classification and brief description of the methods). However, for real life applications
researches may want to obtain estimates for single models downloaded from one of the
many widely used model databases37–39. Therefore there is an urgent need for methods that
can assign a quality score to a single model without requiring the availability of tens of
models from diverse servers. Unfortunately, these methods lag behind the best consensus-
based techniques: the best quasi- single model method in CASP9 was ranked 18th in both
QA1.1 (Lee group) and QA1.2 (Splicer) correlation-based assessments, while the best
“pure” single-model method (Multicom-novel) was ranked only 28th in both QA1.1 and
QA1.2.

Appreciating the outstanding performance of clustering methods in CASP, the question
arises of whether such a performance can be attributed to the CASP model set being easier
(for quality assessment) than those that one might expect in real life applications. As the
CASP model set contains many models of different quality (while this is not necessarily the
case in real life applications), it can be hypothesized that there is a bias in the scores arising
from diversity of the models in the datasets. Unfortunately, it is impossible to confirm or
reject this hypothesis based on the CASP data alone, but we can obtain an approximate
answer to this question by assessing how much the scores of the participating methods differ
for various subsets of the CASP models. Figure 6 shows that the correlation scores of the
QA1 methods drop significantly and approximately linearly with the decrease in the number
of bad models in the subset. If only the best 50% of the models for each target are taken into
account, the PMCC values decrease by about 50% as well. When only the 60 best models
per target (approximately 20% of the whole target set) are used for the analysis, the
correlation coefficients for all groups drop below the significance level (<0.2). Another way
of verifying that method scores are worse on sets of models with limited spread in quality is
illustrated in Figure S4 of the Supplementary Material, where the correlation coefficients
calculated on the whole model dataset are compared with those calculated on relatively good
models only (GDT_TS above 50). Analysis of the results shows that the correlation
coefficients for the best groups drop by approximately 0.2 in both assessment modes.

The aforementioned analyses provide grounds for speculation that clustering methods in
general might lose their edge when the set of assessed models is more uniform in quality and
composed of only relatively good models. This suggestion is backed up by two examples
obtained retrospectively, after the end of CASP9 (August 2010), and presented at the CASP
meeting in December 2010. We asked Pascal Benkert, the leader of the QMEAN and
QMEANclust groups, to re-run his methods on the reduced datasets, containing for each
target only the models with GDT_TS ≥ 50 (these datasets, for 85 targets having at least 30
qualified models, are publicly available at
http://predictioncenter.org/download_area/CASP9/server_pred_over50/). Results of these
two post-CASP model quality assessments were evaluated in the same way as those of
regular CASP9 groups. Figure 7 compares the results of QMEAN and QMEANclust on
three different prediction/evaluation datasets. It can be seen that for both methods the
reduction in the number and diversity of models in the prediction datasets produces a similar
drop-off in correlation scores as that caused by the removal of the same models from the
evaluation datasets. It is also interesting to notice that the drop in performance is observed
for both methods, with the decrease in scores for the clustering method (QMEANclust)
being slightly more pronounced, as expected. This might indicate that both single-model and
clustering methods are less effective in discriminating models of similar but reasonable
quality, and that it is hard to expect the high, CASP-like correlation coefficients in
applications outside of CASP.
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Another aspect of global quality assessment that needs improvement is the capability of
selecting the very best model in a decoy set. Even though the best methods can attain very
high correlation coefficients, none can consistently select the best models for all targets††.
Figure 2B shows that even the best methods miss the best available model by 10 GDT_TS
units or more in ~20% of cases (red bars).

QA2: Assessment of residue-level accuracy estimates
For the twenty one groups that submitted model confidence estimates at the level of
individual residues‡‡, we measured the correlation between predicted and observed distance
errors as well as the accuracy with which the correctly predicted regions were identified. As
it is described in more detail in Materials and Methods, all distances higher than 5Å were set
to 5Å in the calculation of the correlation coefficients.

QA2.1: local accuracy assessment on per-model basis—Figure 8A shows the
mean z-scores and PMCC weighted means for the twenty one QA2 groups on the whole set
of models. The PconsM group achieves the highest score according to both measures. The
results of this group are statistically indistinguishable from those of the ModFOLDclust2
group (Table S3, Supplementary Material), but differ from those of the second tier of five
QA2 groups - IntFOLD-QA, MQAPmulti, MetaMQAPclust, MULTICOM and Pcomb -
which are statistically different from the first two and statistically indistinguishable from
each other.

QA2.2: residues from all models and all targets pooled together—To evaluate
the ability of prediction groups to identify good and bad regions in a model, we pooled the
submitted estimates for all residues from all models and all targets together (approximately
7,000,000 residues from 35,000 models per QA predictor), and calculated the MCC and the
accuracy on this dataset (see Materials and Methods). Figure 8B shows the results of this
analysis. Two methods developed by the same research group (ModFOLDclust2 and
IntFOLD-QA) show the best results in this analysis, although they are not very different
from the others, as the MCC5 for the median 11th group differs from that of the 1st group by
only 0.05.

QA2 results: comparison with previous CASPs—Figure 9A shows the weighted
means of the correlation coefficients over all models submitted to CASP9 and CASP8. The
best groups show a slightly worse performance in CASP9, while the remaining ones seem to
have improved.

The analysis of performance of the best CASP9 QA2 groups that also participated in CASP8
shows that, on average, there is not much progress, with the best CASP8 group performing
noticeably worse in CASP9 (likely due to an error in the automatic procedure of the server).

The cumulative distribution of the QA2 correlation coefficients for the last three CASPs is
shown in Figure 5. In contrast to QA1, there is no clear progress between the last two
CASPs according to this measure. Also, the percentage of correlation coefficients that are
higher than a selected value is always lower in the QA2 mode than it is in the QA1.

Figure 9B compares the ability to distinguish between the well and not so well modeled
regions in a protein. The accuracy is measured in terms of the averaged Matthews
correlation coefficient MCC_avg=(MCC5+MCC38)/2. Similarly to what we have observed

††This is not only a limitation of the QA methods, but also a partial limitation of the assessment method, since QA predictions and
evaluations are done on full (i.e. not split in domains) targets.
‡‡QA2 results from the group Pcons were excluded from the analysis as they were identical to the results from the group PconsM.
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for the other measures in QA2, the results of the best groups did not improve, while groups
achieving an average accuracy have submitted better predictions in CASP9 than in CASP8.

Discussion and conclusions
In this paper we present the results of the third round of model quality assessment
experiment within the scope of CASP. The methodology for the assessment is now
sufficiently robust for drawing general conclusions about the state of the art in the field.

There is clearly room for improvement in this category of prediction. In particular, there is
an apparent need for improving single-model methods. The ability to rank models by
consensus methods, i.e. to sort a set of models according to their quality, is very useful for
structural meta-predictors, but is of limited use for biologists who often need to estimate the
quality of a single model or its specific regions.

To further promote the development of single-model methods, we plan to emphasize them in
the next CASP by a separate assessment. Looking at the clustering approach, we note that
the best methods participating in CASP9 cannot outperform a naïve consensus technique
tested in this paper, a rather disappointing result. We also would like to see improvement in
the ability of clustering methods to rank models of similar and relatively high quality.

Another issue is that presently the QA1 type assessments cannot be performed at the level of
individual domains. This would be desirable though, as individual domains usually present
different levels of modeling difficulty and thus constitute separate model quality assessment
problems. However, separation into structural domains is feasible only with the knowledge
of target structures. Solving the domain level assessment problem might be possible by
developing techniques capable of deriving global quality estimates directly from those made
at the level of individual residues.

We hope that residue-based estimates of model accuracy will gain more attention and that
improvements in this area will continue to appear. After an impressive advances made
between CASP7 and 8, the progress seems to have slowed down. Our assessment shows that
the best QA2 methods in CASP9 performed at the same level or even slightly worse than
those in CASP8. The reasons behind this are not clear, and the observed decrease in QA2
performance might just reflect an average increased difficulty of targets in CASP936. In any
case, we would like to underline that the residue-based error estimates are still less than
satisfactory and hope that this somewhat disappointing result will encourage the community
to direct efforts in this direction.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was partially supported by the US National Library of Medicine (NIH/NLM) - grant LM007085 to KF,
and by KAUST Award KUK-I1-012-43 to AT.

Abbreviations

MQA Model Quality Assessment

QA[1,2] Quality Assessment mode [1,2]

TBM Template-Based Modelling
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RMSD Root Mean Square Deviation

GDT_TS Global Distant Test – Total Score

CC Correlation Coefficient

PMCC Pearson's product-Moment Correlation Coefficient

SRCC Spearman's Rank Correlation Coefficient

MCC Matthews' Correlation Coefficient

MCC5 / MCC38 MCCs for two distance cut-offs - 5Å and 3.8Å

wmPMCC weighted mean of PMCC
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Figure 1.
Performance of individual groups in the global quality prediction category (QA1).
Evaluation scores for the 46 participating groups and the NAÏVE_CONSENSUS
benchmarking method are presented for (A) per-target based assessment (QA1.1) and (B) all
targets pooled together assessment (QA1.2). Clustering methods are shown in blue, single
model methods in red, quasi-single model methods in green, and unidentified in grey (see
Table I for a more detailed description of the methods). Bars corresponding to z-scores have
black borders and are drawn in darker colors; bars corresponding to correlation coefficients
are drawn in lighter colors (legend for clustering methods is shown as an example). The z-
scores for the naïve method are calculated from the average and standard deviation values of
the correlation coefficients for the 46 participating predictors. Statistically indistinguishable
top groups are marked with shaded rectangles.
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Figure 2.
Ability of QA predictors to identify the best models in the decoy sets. Analysis was carried
out on the 102 targets having at least one structural model with a GDT_TS score over 40.
(A) Average loss in quality between the models predicted to be the best and actual best
models. For each group, ΔGDT_TS scores are calculated for every target and averaged over
all predicted targets. The lower the score, the better the group performance. Coloring of the
methods is the same as in Figure 1. (B) Stacked bars show the percentage of predictions
where the model estimated to be the best is 0–1, 1–2, 2–10 and >10 GDT_TS units away
from the actual best model, respectively. Groups are sorted according to the results in the 0–
2 bin (sum of green and yellow bars).
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Figure 3.
ROC curves of the binary classifications of models into two classes - good (GDT_TS≥50)
and bad (otherwise). Groups in the legend are ranked according to decreasing AUC scores.
The inset shows the AUC scores for all the groups for two definitions of “model goodness”:
GDT_TS=40 and GDT_TS=50.
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Figure 4.
Correlation coefficients in the last two CASPs. Groups are sorted from the best to worst in
each CASP. (A) Weighted means of PMCCs from the per-target QA1.1 assessment. (B)
PMCCs from the “all models together” QA1.2 assessment.
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Figure 5.
Cumulative distribution of Pearson's r in the last three CASPs. Only positive CC values are
shown. Black color indicates the global quality estimates (QA1) while grey refers to the per-
residue estimates (QA2).
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Figure 6.
Weighted mean of Pearson's correlation coefficients as a function of the number of analyzed
models. Each line corresponds to one group. Data are shown for the best 25 groups. Server
models submitted on a target (from 265 to 333 models per target) are sorted according to
their GDT_TS scores. Correlation coefficients on the incremental sets of 30*n models (n=1,
…,10) are then calculated for each QA group on the targets having at least one model over
GDT_TS=50 (maximum - 89 targets). PMCCs weighted means are calculated over the
targets attempted by a group at each increment cut-off (30 models, 60, …) separately.
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Figure 7.
Comparison of the performance of two selected CASP9 methods (QMEAN and
QMEANclust) on three different prediction/evaluation datasets: 1) both the prediction and
the evaluation are performed on the complete dataset of models (hollow bars), 2) the
prediction is performed on the complete dataset and the evaluation – on the reduced dataset
(grey bars); 3) both the prediction and the evaluation are performed on the reduced dataset
(black bars).
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Figure 8.
Assessment scores for individual groups in the per-residue quality prediction category
(QA2). (A) Correlation analysis results calculated on a per-model basis and subsequently
averaged over all models. (B) Accuracy of the binary classifications of residues (good / bad)
expressed in terms of Matthew's correlation coefficients calculated for two distance cut-offs
– 5.0Å (MCC5) and 3.8Å (MCC38). Two groups (Modcheck-J2 and Distill_NNPIF)
submitted all distance estimates below 3.8Å resulting in zeroing of TN and FN values (at
both cut-offs) and, subsequently, the MCC scores for these groups could not be properly
computed.
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Figure 9.
(A) Weighted means of correlation coefficients for the per-residue assessment in the last two
CASPs. Groups are sorted from the best to worst in each CASP. (B) Comparison of the
predictors' ability to distinguish between correctly and incorrectly modeled regions in
proteins in the two last CASPs. Groups in each CASP are sorted according to their
MCC_avg=(MCC5+MCC38)/2 score. Only the results for the fifteen best performing
groups are shown.
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Table I

Classification and short description of CASP9 QA methods.

Method C/S M G/L Scoring function

1D-jury40 C G Similarity of secondary structure and solvent accessibility of
equivalent residues in the model and all models in a decoy set

AOBA C L+G

TM-score41 (global) and per-residue CA-CA distance (local)
between the model and the average structure calculated from the
subset of best 16 models selected using score combining the all-
model consensus TM-score41, per-residue Verify-3D42 and
Stability43 scores.

Baltymus S G Combines a potential based on the volume of the cavities
surrounding a residue and statistical pairwise potentials44

ConQuass45 http://bental.tau.ac.il/ConQuass S G Correlation between each residue's degree of evolutionary
conservation and its solvent accessibility in the structure

Distill NNPIF S L+G An artificial neural network based on Cα-Cα contact interactions

IntFOLD-QA46 www.reading.ac.uk/bioinf/IntFOLD C/S* L+G

ModFOLD 3.0 method capable of carrying out either single-model
mode or multiple-model mode clustering. In the single-model mode
an ensemble of supplementary models is generated by nFOLD4,
and the quality score is deduced from comparison of a model
against this set using ModFOLDclust2 method.

Kurcinski-Kihara47 http://kiharalab.org/SubAqua MS G A meta-approach combining scores from several QA methods

Lee (human); GWS (server) S* G Similarity (TM-score) to the putative best template identified with
the in-house method

MetaMQAP48 http://genesilico.pl/toolkit/mqap MS L+G
A machine learning approach combining the output from a number
of primary MQAPs and local residue features: secondary structure
agreement, solvent accessibility, and residue depth

MetaMQAPclust MC L+G
MetaMQAP followed by a 3D-Jury-like procedure for 15% of the
top-ranked models. The consensus score of a given model is its
average GDT_TS to all models in the subset

Modcheck-J2 C L+G Structural similarity of the model to other models in the ensemble

ModFOLDclust2 CM L+G
Global: mean of the QA scores obtained from the ModFOLDclustQ
and the original ModFOLDclust methods49. Local: the per-residue
score taken from ModFOLDclust.

ModFOLDclustQ C L+G
Similar to the original ModFOLDclust method49, but using a
modified version of the alignment-free Q-measure instead of the
TM-score

MQAPmulti C L+G
Compares structural features of the model with those predicted
from its primary sequence and uses statistical potentials and
information from evolutionary related proteins

MQAPsingle MC L+G Compares the model against a subset of models comprised of
GeneSilico, Pcons, and HHpred models

MUFOLD MC G Combination of knowledge-based scoring functions, consensus
approaches and machine learning techniques

MUFOLD_QA C G Average pair-wise similarity (in terms of GDT_TS) of the model to
all models in a non-redundant subset of server models

MUFOLD_WQA C G MUFOLD_QA + empirical weighting of models in the set

MULTICOM50 http://sysbio.rnet.missouri.edu/apollo MC L+G A meta-approach, averaging quality scores of CASP9 QA
predictors with post-refinement

Multicom-construct C L+G The average Q-score51 between the model and all other models in
ensemble with post-refinement

Multicom-cluster C L+G
Average GDT-TS between the model and all other models in a
decoy set (similar to the NAÏVE_CONSENSUS method - see
Materials)
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Method C/S M G/L Scoring function

Multicom-novel52 S G Uses secondary structure, solvent accessibility, beta-sheet topology,
and a contact map to generate quality estimates

Multicom-refine C L+G A hybrid approach to integrate ab initio model ranking methods
with structural comparison-based methods

Pcons53,54 http://pcons.net/ C L+G Average S-score55 to all other models in a decoy set

PconsM56 C L+G Pcons with re-scoring on a selected subset of best models

Pcomb CM L+G Linear combination of Pcons and ProQ2 scores

ProQ54 S L+G Combination of structural features of the model using ANN

ProQ2 S L+G
A successor of ProQ54; combines evolutionary information,
multiple sequence alignment and structural features of a model
using an SVM

QMEAN57–59 http://swissmodel.expasy.org/qmean S L+G

Combines four potentials of mean force (analyzing long-range
interactions, local backbone geometry and burial status of the
residues) with two agreement terms verifying fit between the
predicted and observed secondary structure and solvent
accessibility

QMEANclust57 http://swissmodel.expasy.org/qmean C L+G QMEAN-weighted mean GDT_TS deviation of the model to all
models in the subset

QMEANdist S* L+G
QMEAN with an additional term that accounts for the agreement
with residue-level distance constraints extracted from related
protein structures

QMEANfamily57 S* G
Average of QMEAN scores for ensemble of supplementary models
generated for protein sequences sharing at least 40% sequence
identity with the target, using the starting model as a template

SMEG-CCP C G Agreement of the model's contact map with the sample mean of
contact maps of all models in the decoy set

Splicer (human); Splicer_QA (server) S* G
Combination of two statistical potentials, a physics-based potential
and a template-derived residue-residue distance potential using non-
linear and linear regression methods

United3D C G Combination of scores from structural clustering of models and
conservation of contacts

Legend:

G – a global quality estimator (one score per model).

L – a local quality estimator (per-residue reliability scores).

S – a single model method capable of generating the quality estimate for a single model without relying on consensus between models or templates.

C – a clustering (consensus) method that utilizes information from a set of different models.

S* – a quasi-single model method capable of generating the quality estimate for a single model but only by means of preliminary generation of
auxiliary ensembles of models or finding evolutionary related proteins and then measuring similarity of the sought model to the structures in the
ensemble.

M – a meta-method combining scores from different quality assessment methods.

Note. Both clustering and meta- methods are often called consensus methods in the literature. To avoid confusion, we here use the term “consensus
method” meaning a method based on the agreement between the features of different models (clustering) – rather than on scores derived from
different MQAPs (meta).

Single model approaches (S) are shaded
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