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Stochastic fluctuations in epidemics
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The effects of demographic stochasticity on the long-term behaviour of endemic infectious
diseases have been considered for long as a necessary addition to an underlying deterministic
theory. The latter would explain the regular behaviour of recurrent epidemics and the former
the superimposed noise of observed incidence patterns. Recently, a stochastic theory based
on a mechanism of resonance with internal noise has shifted the role of stochasticity closer to
the centre stage, by showing that the major dynamic patterns found in the incidence data can
be explained as resonant fluctuations, whose behaviour is largely independent of the
amplitude of seasonal forcing, and by contrast very sensitive to the basic epidemiological
parameters. Here we elaborate on that approach, by adding an ingredient which is missing in
standard epidemic models, the ‘mixing network’ through which infection may propagate. We
find that spatial correlations have a major effect on the enhancement of the amplitude and the
coherence of the resonant stochastic fluctuations, providing the ordered patterns of recurrent
epidemics, whose period may differ significantly from that of the small oscillations around the
deterministic equilibrium. We also show that the inclusion of a more realistic, time-
correlated recovery profile instead of exponentially distributed infectious periods may, even
in the random-mixing limit, contribute to the same effect.
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1. INTRODUCTION

The incidence patterns of childhood diseases in the
twentieth century have been a challenge and a preferred
testing ground for epidemiological models. One of the
simplest epidemiological models one can consider is
based on dividing the whole population into three
classes of individuals: the susceptible; the infectious;
and the permanently recovered (Anderson & May
1991). It is suitable to study the infection dynamics of
diseases that confer long-lasting immunity, like child-
hood infections, provided that we take into account in
the long-term dynamics the replenishment of suscep-
tibles in the population through births.

The deterministic description of the basic suscep-
tible–infectious–recovered (SIR) model in a closed
population where renewal of susceptibles occurs
through births with a constant birth rate and death
rate is given by the equations

_sZmð1KsÞKbsi and

_i Z bsiKðgCmÞi
ð1:1Þ

where sand iare thedensities of susceptible and infectious
individuals, respectively; g is the recovery rate of the
disease and b is its transmissibility (Anderson & May
1991).A crucial parameter for thebehaviourof thismodel
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is the so-called basic reproductive rate, R0Zb=ðgCmÞ.
For R0!1 the disease dies out, while for R0O1, the
disease is endemic in the population. In this case, system
(1.1) has a non-trivial endemic equilibrium at
s�ZðgCmÞ=b, i�Zðm=bÞð1=s�K1Þ, and the small
oscillations around this equilibrium have damping factor

Km/(2s�) and period 2p=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbð1Ks�ÞKðm=2s�Þ2

q
Þ. The

susceptible–exposed–infectious–recovered (SEIR) model
considers an additional class of infected, but not yet
infectious, individuals.

During the last decade, more sophisticated
approaches building on the traditional SIR and SEIR
models have brought considerable advances in under-
standing and selecting some of the fundamental
ingredients of the complex dynamics of infectious
diseases (Hethcote 1997; Grenfell et al. 2001; Wang
2006). The interplay between the system’s nonlinearity
and the periodic perturbation in seasonally forced SIR
and SEIR models was shown to be a source of complex
dynamics compatible with the diversity of observed
incidence records (Earn et al. 2000; Bausch & Earn
2003; Dushoff et al. 2004).

This body of work belongs to an essentially
deterministic framework, where demographic stochas-
ticity plays a secondary role, except when addressing
stochastic extinction (Bartlett 1957; Nåsell 2005). In
this framework, the role of stochasticity is that
of sustaining small-amplitude oscillations around
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the deterministic system’s equilibrium that follow the
natural frequency given by the local linear approxi-
mation (Bailey 1975; Bausch & Earn 2003; Lloyd 2004),
or else that of promoting the switching between
different competing attractors of the underlying deter-
ministic model (Keeling et al. 2001; Allen & van den
Driessche 2006).

Recently, a stochastic theory developed for a
predator–prey competition model (McKane & Newman
2005) and then applied to the well-mixed SIR model
(Alonso et al. 2007) has shown that the fluctuation
power spectrum of the incidence time series is
essentially determined, in both the presence and the
absence of seasonal forcing, by the resonance with
internal noise of the system’s natural frequency in the
deterministic (infinite population size) limit. The cross-
correlation structure of this internal noise can be
computed analytically from the transition probabil-
ities, and it may shift the resonance peak away from
the system’s natural frequency. Both the amplitude and
the coherence of these resonant fluctuations are large
for the parameter values that correspond to some
childhood diseases, so that they may be comparable
even in large systems to the oscillations induced by
seasonal forcing.

Apart from stochasticity, another missing ingredient
of the standard epidemic models that has been
attracting increasing attention is the host population
contact structure, or ‘mixing network’ (Keeling &
Eames 2005; Edmunds et al. 2006). Most of the research
connecting networks and epidemiology dates from the
last 5 years, when many fundamental results of network
theory became widely known while new ones have been
derived (Albert & Barabási 2002; Dorogovtsev &
Mendes 2003; Boccaletti et al. 2006). These ideas
originated in the mathematics and physics communities
and were applied in an epidemiological setting from the
beginning (Watts & Strogatz 1998; Kuperman &
Abramson 2001; Pastor-Satorras & Vespignani 2001),
prompting the interest of epidemiologists and several
theoretical (May & Lloyd 2001; Eames & Keeling 2002;
Keeling 2005) and field epidemiology (Jolly & Wylie
2002; Riley et al. 2003; Meyers et al. 2005) results.

Here we address the effect of relaxing the random
mixing assumption on the behaviour of the resonant
fluctuations of a stochastic SIR model. We assume that
the host population contact network may be rep-
resented by a ‘small-world’ network of the type
introduced by Watts & Strogatz nearly a decade ago
(Watts & Strogatz 1998). Analysis of real networks of
social contacts (Eubank et al. 2004) indicates that this
is a reasonable first assumption to model the contact
structure relevant for the propagation of airborne
infections. We find that spatial correlations have a
major effect on the enhancement of the amplitude and
the coherence of the resonant stochastic fluctuations,
providing ordered patterns of recurrent epidemics. The
shift of the resonance peak away from the system’s
natural frequency also increases significantly due to
correlations. The enhanced amplitude and coherence of
the fluctuations imply that, in populations where a
disease spreads predominantly through local infectious
contacts, large epidemic outbursts with well-defined
J. R. Soc. Interface (2008)
recurrence times are generated by internal noise alone,
without the presence of seasonal forcing. This effect is
illustrated in §2.2 with a particular example and
studied systematically in §3.2.

Another assumption of the SIR model, which has
been challenged (Keeling & Grenfell 1997; Lloyd 2001a;
Wearing et al. 2005), is that of considering a constant
recovery probability during the infection period. We
study the effect on the resonant fluctuations of switch-
ing from the (uncorrelated) exponentially distributed
infection periods used in Alonso et al. (2007) to the
opposite limit of (time correlated) constant infection
periods. Again, we find that the spectrum of stochastic
fluctuations found in Alonso et al. (2007) changes under
more realistic assumptions on the recovery profile in
such a way that the oscillations become larger and more
sharply defined. In this case, the peak frequency shift
with respect to the deterministic prediction is larger,
and towards larger frequencies.

Qualitatively, the effects of spatial and time corre-
lations on the fluctuation spectrum are similar: both the
spatial correlations, introduced through the host
population contact network, and the time correlations,
introduced via constant infection periods, lead to
enhanced, more sharply defined, dominant peaks.
There are analogues of this behaviour in many systems
studied in statistical physics. The peak frequency shift,
however, is more pronounced and has a different sign
for the model with constant infection period. As
discussed in §§2.2 and 3.3, this qualitative difference
can be understood on the basis of an effective
deterministic description.

These results show that the classical understanding
of the incidence time patterns of endemic infectious
diseases, which is mainly based on a seasonally forced
deterministic description, is clearly insufficient to have
a correct description of such fluctuations. These may be
purely stochastic, and the diversity of incidence
patterns found in real data for the same disease in
different populations can be understood in this frame-
work as an effect of population size and contact
structure.

Moreover, the approximate period of the recurrent
epidemics driven by internal noise in the presence of
spatial and/or time correlations differs significantly
from the period computed in the usual deterministic
approach. This is an important cautionary note with
regard to the use, in the framework of the deterministic
description, of the recurrence period to help assess
estimates of epidemiological parameters. The break-
down of the assumptions of random mixing of the
population and/or of constant recovery rate during
the infectious period implies important corrections to
the dominant frequency of the fluctuations.
2. METHODS

2.1. Susceptible–infectious–recovered dynamics
in a randomly mixed discrete population

In a randomly mixed discrete population of N individ-
uals, SIR dynamics may be described as a continuous-
time Markov process on a population divided into three
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classes: susceptible; infectious; and recovered. The
state of the system is characterized by the numbers S,
I and RZNKSKI, of individuals in each of the three
classes, and the events of infection, death, birth and
recovery correspond to the following transitions and
transition rates

T ½ðS;I Þ/ðSK1;IC1Þ�ZbSI=N infection;

T ½ðS;I Þ/ðSK1;I Þ�ZmS death of a susceptible;

T ½ðS;I Þ/ðS;IK1Þ�ZmI death of an infectious;

T ½ðS;I Þ/ðS;I Þ�ZmðNKSKI Þ death of a recovered;

T ½ðS;I Þ/ðSC1;I Þ�ZmN birth and

T ½ðS;I Þ/ðS;I K1Þ�ZgI recovery; ð2:1Þ

where ðS;I Þ/ðS 0;I 0Þ denotes the transition from state
(S, I ) to state (S 0, I 0) and T ½ðS;I Þ/ðS 0;I 0Þ� is the
corresponding transition rate.

As detailed in Alonso et al. (2007), a good
approximation for the power spectrum of the stochastic
fluctuations around the stationary population numbers
can be computed analytically from the linear Fokker–
Planck equation obtained from the next to leading-
order terms in van Kampen’s expansion of the master
equation associated to (1.1). The leading-order terms of
the expansion yield the deterministic equations (2.1)
that describe the behaviour of the system in the limit of
infinite populations.

Following this approach, we have computed the
power densities PS and PI of the fluctuations of
susceptibles and infectious individuals for process
(2.1), scaled by the square root of the system sizeffiffiffiffiffi
N

p
, as a function of the angular frequency u,

PSðuÞZ2m 1K
gCm

b

� �
ðgCmÞ2Cu2

ðu2KDÞ2CðTuÞ2
and

PIðuÞZ2m 1K
gCm

b

� �
u2Cm2ð1Kb=ðgCmÞCðb=ðgCmÞÞ2Þ

ðu2KDÞ2CðTuÞ2
;

ð2:2Þ

where DZmðbKgKmÞ and TZKbm=ðgCmÞZKR0m,
denoting as before by R0 the basic reproductive rate of
the disease. The parameters D and T are equal to the
determinant and the trace, respectively, of the linear
approximation of (1.1) at the endemic equilibrium and
have a simple dynamical interpretation: D is the square
of the frequency of the small oscillations around the
equilibrium when the damping is small and T is twice
the damping factor of these oscillations.

Equations (2.2) are independent of N because the
dependence of the amplitude of the fluctuations on
system size has been scaled out, and they describe
exactly the stochastic process (2.1) in the limit of large
N. These power spectra are resonant like, showing that
the amplitude of the fluctuations as a function of their
time scale is governed by a mechanism of resonance of
internal noise with the system’s natural frequency

ffiffiffiffi
D

p
.

The resonance peak will be shifted away from
ffiffiffiffi
D

p
,

depending on the values of T and on the terms in
the numerator of (2.2), which are determined by the
cross-correlation structure of the internal noise.
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However, when T is small, the shift in the resonance
peak with respect to

ffiffiffiffi
D

p
is also small.

The relevance and universality of this type of
‘endogenous’ stochastic resonance for ecological
systems in general was first argued in McKane &
Newman (2005). The complete analytic description of
the phenomenon given in McKane & Newman (2005)
and Alonso et al. (2007) relies on the random mixing
assumption and on the constant recovery rate assump-
tion. The effect of relaxing these assumptions, crucial in
more realistic settings, must be tested through stochas-
tic simulations.
2.2. The SIR model on dynamic small-world
networks

Complex network theory (Albert & Barabási 2002;
Dorogovtsev & Mendes 2003; Boccaletti et al. 2006)
focuses on abstract network models such as small-world
networks, which interpolate between regular lattices
and random graphs, and scale-free networks, exhibiting
a power law distribution of the connectivity. In most, if
not all, of the theoretical work in contact network
epidemiology, the host population contact network is
represented by one of these models. The choice of the
right idealized network type, which will be disease
specific, depends on the availability of data on disease-
causing contacts which are hard to get and difficult to
interpret (Keeling & Eames 2005). At this point, an
important concern of contact network epidemiology
is to collect data and build appropriate network
models for different transmission mechanisms (Eubank
et al. 2004).

As a first step to understanding the role of network
structure correlations on the spectrum of stochastic
fluctuations, we have modelled the mixing network of
the populations as a small-world network (Watts &
Strogatz 1998) built over a square lattice with 12
nearest neighbours per node. In these models a fraction
of the links of the lattice is randomized by connecting
nodes, with probability p, with any other node. These
non-local connections are chosen randomly for each
event, instead of being fixed in a frozen, partially
random link configuration. This version of the small-
world network model, which has been dubbed
‘dynamic’ or ‘annealed’ in the literature (Zanette
2003; Szabo & Vukov 2004; Volz & Meyers 2007), is
motivated by the nature of the occasional social
contacts the model tries to represent. For pZ0, each
node interacts with only its nearest neighbours on the
lattice, as in ordinary representation of spatial
structure. For pZ1, the network of interactions is a
random graph, where every pair of nodes, indepen-
dently of the distance on the lattice between the two
nodes, has the same probability of being connected.
Random graphs have the property that the average
path length, or average number of connections of the
shortest path between two nodes, is ‘small’, i.e. of the
order of the logarithm of the total number of nodes.
For a range of p between 0 and 1 the network exhibits
small-world behaviour, where predominantly local
interactions (as in lattices) coexist with a short average
path length (as in random graphs). Analysis of real
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Figure 1. Fluctuation power spectra of infective time series for the SIR model on dynamic networks of NZ106 nodes for small-
world parameter p equal to (a) 1, (b) 0.4 and (c) 0.2 and beff equal to (a) 1.32, (b) 1.01 and (c) 0.79; the networks are built over
regular 1000!1000 lattices with 12 first neighbours and periodic boundary conditions. The solid lines are the averaged numerical
power spectra of 400 stationary time series, each 32 768 time steps long. The dashed lines are the analytic power spectra given by
(2.2), where for p smaller than 1 the value of the parameter b has been taken as beff, defined as the actual number of new infections
per time step and infective individual divided by the density of susceptibles. Parameter values: mZ6!10K4, bZ1.32, tZ1/8.
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networks (Eubank et al. 2004) reveals the existence of
small-world behaviour in many interaction networks,
including networks of social contacts.

An important consequence of the spatial correlations
introduced by predominantly local contacts is what is
called infective screening, or infective clustering. If all
the infected neighbours of an infected node have many
neighbours in common, each of them will be connected
to a number of susceptibles which is smaller than the
average number of susceptible neighbours per node,
and infection will be less likely than in a randomly
mixed population with the same density of infectious
and susceptibles.

The qualitative analysis of time series of SIR and
SEIR stochastic simulations on dynamic small-world
networks for different values of the small-world
parameter p shows that indeed the infection process
becomes less and less efficient as p decreases
and infective screening becomes more pronounced
(Verdasca et al. 2005; Telo da Gama & Nunes 2006).
The global effect of infective clusteringmay be quantified
in terms of the value of beff, defined as the average
number of new infections per time step and infective
individual divided by the density of susceptibles. For
pZ1, beff coincides with the transmissibility b, but as p
decreases, beff also decreases. Another qualitative effect
of spatial correlations reported in Verdasca et al. (2005)
and Telo da Gama & Nunes (2006) is that they have a
major effect on the enhancement of the amplitude of
stochastic fluctuations, which become more and more
pronounced as p decreases.

In order to quantify the effect of network structure
on resonant stochastic fluctuations, we have computed
the power spectrum of SIR time series on dynamic
small-world networks for several values of p, and we
have compared it with the analytic power spectrum
given by (2.2) with beff, the effective transmissibility,
instead of b (see appendix A for the details of the
simulations). The results are shown in figure 1. The
solid lines are the averaged numerical power spectra of
the stationary time series, and the dashed lines are the
analytic power spectra given by (2.2) with the correc-
tion due to the effective transmissibility. We see that,
J. R. Soc. Interface (2008)
as p decreases, the resonant fluctuations are larger and
more coherent. Moreover, in the small-world regime,
where local correlations become important, this effect is
much more pronounced than in the predictions of an
effective (corrected for infective screening) randomly
mixed model, represented by the dashed lines in
figure 1. However, this effective model does describe
satisfactorily the shift to the left in the peak frequency,
which means that this can be understood as a
consequence of the reduced effective transmissibility.

The enhanced amplitude and coherence of the
fluctuations imply that a typical time series will exhibit
noisy but regular incidence oscillations, as shown in
§3.2. These sustained oscillations are of a purely
stochastic nature and they disappear in the infinite
population limit.

The influence of the recovery profile on the
behaviour of the system has been discussed in
Keeling & Grenfell (1997), Lloyd (2001b) and
Wearing et al. (2005). In the standard SIR stochastic
model, to which the analytic description (2.2) applies,
the event of recovery occurs at a fixed rate during the
infection, and the recovery time is exponentially
distributed around the average infectious period
tZ1/g, or in other words uncorrelated. We have
computed the power spectrum of the time series
obtained from SIR simulations in randomly mixed
populations where instead of uncorrelated infection
periods the recovery profile was taken in the opposite
limit of constant infection period t or strongly time-
correlated infections. The results are shown in figure 2.
The solid line is the averaged numerical power spectra
of the stationary time series, and the dashed line is the
analytic power spectra given by (2.2) with gZ1/t. We
see that switching to more realistic (time correlated)
recovery profiles leads to a similar effect of enhancing
the amplitude and the coherence of the resonant
stochastic fluctuations predicted by the theory
developed in Alonso et al. (2007). In addition, there is
a large shift to the right of the dominant frequency of
the fluctuations, relative to the peak frequency pre-
dicted for the model with stochastic recovery (Alonso
et al. 2007). Again, the shift in the peak frequency and
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Figure 2. Fluctuation power spectra of infective time series of
stochastic SIR dynamics with deterministic and stochastic
recovery on a randomly mixed population with NZ106

individuals. Deterministic recovery occurs t time steps after
infection. The solid line is the averaged numerical power
spectra of 400 stationary time series, each 32 768 time steps
long. The dashed line is the analytic power spectra given
by (2.2), with gZ1/t. Parameter values: mZ6!10K4,
bZ1.32, tZ8.
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its sign can be understood in terms of an effective
deterministic description, as discussed in §3.3.

Qualitatively, it is to be expected that correlations
in the dynamics of the system’s components should
enhance the global density fluctuations. To assess
quantitatively the effect of spatial and temporal
correlations on the resonant fluctuation spectrum in
the modelling of infectious childhood diseases, we have
performed systematic simulations in a region of
parameter space that includes the values for measles,
chicken pox, rubella, pertussis and mumps according
to published and estimated data for the pre-vac-
cination period (Bausch & Earn 2003). The amplitude
and coherence of the stochastic fluctuations are
measured by the overall amplification A, and by the
coherence factor c, introduced in Alonso et al. (2007),
where analytic results for a randomly mixed SIR
stochastic model with external infection and constant
recovery rate were presented for the same region of
parameter space. The overall amplification A is the
integral over all the frequencies of the power density of
the scaled fluctuations, and it is equal to the mean
square deviation of the time series from the equili-
brium values, divided by the system size N. The
coherence factor c is defined as the integral of
the power density of the scaled fluctuations on the
frequency interval that corresponds to periods within
10% of the peak period 2p/upeak, divided by A. It
measures the relative contribution to the overall
amplification of stochastic fluctuations that are dis-
tributed around the dominant period.

For the randomly mixed case pZ1 with stochastic
recovery, bothA and c canbe computedanalytically from
equations (2.2), which are exact in the limit of largeN. In
the remaining cases there is no analytic description, and
the overall amplification A is computed as the ensemble
average, over several runs, of the integral over all sampled
frequencies of the power density of the stationary time
series of the scaled fluctuations. The coherence factor c is
computed in a similar way on the prescribed frequency
interval. The details of the analytical and numerical
computations are given in appendix A.
J. R. Soc. Interface (2008)
For the model with stochastic recovery, we have also
computed, for several values of the small-world
parameter p, the peak shift factor s, defined as the
distance between the actual peak frequency and the
natural frequency of the system in the deterministic
description (1.1),

ffiffiffiffi
D

p
, divided by

ffiffiffiffi
D

p
. It measures the

relative frequency shift of the dominant frequency due
to the various ingredients that are missing in the
deterministic description (resonance with correlated
internal noise and contact network structure).
3. RESULTS

3.1. Randomly mixed model: finite size effects

The randomly mixed model depends on the demo-
graphic and epidemiological parameters m, b and g.
Following Alonso et al. (2007), we have taken m fixed
and equal to 5.5!10K5, and the reduced variables in
the parameter plane (m/g, b/g). These reduced par-
ameters have an immediate epidemiological interpre-
tation: m/g measures the acuteness, or relative time
scale, of the disease and b/gzR0.

The values of the overall amplification

AZ
1

p

ðCN

0
PIðuÞdu ð3:1Þ

and of the coherence

cZ
1

pA

ð
upeak=0:9

upeak=1:1
PIðuÞdu ð3:2Þ

of the infectives power spectrum PI in (2.2) are shown in
figure 3a,b for 441 points in parameter space. The
values of A are normalized by the largest overall
amplification 0.1902. We see that, for the basic SIR
model, A is essentially determined by R0, and both the
overall amplification and the coherence increase as R0

decreases with g fixed. For each R0 the stochastic
oscillations become more and more coherent as g

increases. The symbols mark the parameter values for
measles, chicken pox, rubella and pertussis according to
different data sources for the pre-vaccination period
(Bausch & Earn 2003). The numerical results for the
overall amplification and coherence obtained from
simulations of the stochastic process (2.1) on a
population of size NZ106 are plotted in figure 3c,d.
(see appendix A for the details of the simulations and
numerical computations). Each datum point in
figure 3c is the ratio of the corresponding analytic and
numerical values of the overall amplification, while
each datum point in figure 3d corresponds to the
numerical value of the coherence as defined in (3.2).
The datum points shown in grey correspond to
parameter values where more than 60% of the 50 000-
day long simulations ended up with zero infectives. It is
clear that, for realistic population sizes, in a large region
of parameter space, there are corrections to the analytic
results of figure 3a,b, and that, the fluctuations for small
b and large g are larger than those predicted by the
analytic approach. The numerical power spectra
obtained from stochastic simulations for NZ106 and
50!106 for values of (m/g, b/g) for which these
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560 Stochastic fluctuations in epidemics M. Simões et al.
corrections are more significant are shown in figure 4a.
The analytic power spectrum given by (2.2) overlaps
the numerical curve for NZ50!106 within the res-
olution of the figure. A breakdown of the analytic
description for NZ106 can be detected in the overall
amplification and in the peak frequency shift, as well as
in the loss of coherence due to the appearance of a small
harmonic peak. This effect is more pronounced in the
presence of spatial correlations, as shown in figure 4b
and discussed in §3.2.

The limitations of the analytic description (2.2) are
due to the fact that a linear theory based on van
Kampen’s method is used to approximate the master
equation up to next to leading-order terms, leaving out
the contribution of terms of order 1=

ffiffiffiffiffi
N

p
and higher,

whose influence on the dynamics becomes more
important as the system size and/or the stability of
the stationary state decreases.
3.2. Small-world network: effects of spatial
correlations

To assess the effect of spatial correlations on the
resonant fluctuation spectrum, we have performed, for
the same 441 points in parameter space, systematic
simulations of SIR time series on dynamic small-world
J. R. Soc. Interface (2008)
networks for several values of p (see appendix A for the
details of the simulations). The results for the overall
amplification A when pZ0.6 are shown in figure 5a).
The values of A are normalized by the largest value of
the overall amplification, which is 0.2908. With respect
to the analytic spectrum (2.2), the overall amplitude of
the fluctuations increases by a factor of approximately
1.5, causing more occasional extinctions. As before, the
grey region corresponds to parameter values where
more than 60% of the 50 000-day long simulations
ended up with zero infectives. The dependence of the
amplitude of the fluctuations on the epidemiological
parameters is qualitatively the same as for the
randomly mixed (pZ1) numerical results of figure 3c.
It increases as R0 decreases, and, for fixed R0, it
increases as g increases. Close to the extinction
boundary, especially for low R0, we find a departure
from this general trend which can be due to a sampling
bias, as we have had to select long time series without
disease extinction from a large ensemble of trial runs.

The most relevant effect of spatial correlations is
the increase in the amplitude of the fluctuations as the
small-world parameter p decreases. The plot of the
overall amplification A as a function of p is shown in
figure 5b (data points plotted with diamonds) for
parameter values close to those of pertussis (for other



0

100

200

300

400

500

600

700

0.002 0.004 0.006 0.008 0.010 0.012

angular frequency

(a)

sp
ec

tr
al

 d
en

si
ty

 (
in

fe
ct

iv
es

)

0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1.0

0.001 0.002 0.003 0.004 0

angular frequency

(b)

Figure 4. Numerical power spectra obtained from stochastic simulations for NZ106 and 50!106 (solid and dotted lines,
respectively) for values of (m/g, b/g)Z(0.00094, 7.9) with pZ1. The spectra were taken from 218, instead of 215, time-step long
simulations for increased resolution in frequency. The curve forNZ106 shows a larger overall amplification and a peak frequency
shift, as well as loss of coherence due to the appearance of a small harmonic peak. (b) Power spectra of stochastic simulations on a
dynamic small-world network with pZ0.2 and NZ106 nodes (solid line) and NZ50!106 (dotted line), for the parameter values
(m/g, b/g)Z(0.00182, 4.0) chosen in the region where the amplitude of the harmonic peaks is larger. Both plots are scaled to the
largest spectral power (3960 forNZ106 and 71 000 forNZ50!106). The ratio of the heights of the second peak to the first peak is
approximately 7z

ffiffiffiffiffi
50

p
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dependence.
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Figure 5. Overall amplification of the SIR model with stochastic recovery on a dynamic small-world network with NZ106

individuals and pZ0.6 (see appendix A for details of the simulations). The values of the overall amplification A are normalized in
the plot by the largest amplitude (0.2908). Again, grey areas denote regions where only a small percentage of time series survive
after 215 time steps (each sampled point requires the survival of at least 200 out of 500 runs). (b) AmplificationA (diamonds) and
coherence c (circles) for the point (m/g, b/g)Z(0.00116, 17.0) as a function of the small-world parameter p. The chosen point lies
approximately at the centre of the region plotted in (a).
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disease parameter values the behaviour of the ampli-
tude of the fluctuations as a function of p is similar).
There is a fourfold increase in the amplitude of the
fluctuations for pZ0.2 with respect to the randomly
mixed case pZ1.

For the same parameter values, the plot of the
coherence c as a function of p is also shown in figure 5b
(data points plotted with circles). There is an increase
in the coherence of the fluctuations as p decreases,
which means that as the fluctuations get larger they
also exhibit a more regular temporal pattern. For a
fixed value of p, the coherence is uniformly very high in
parameter space (results not shown), with changes of
less than 10% in a region that includes all the parameter
values considered for childhood infectious diseases.
However, in a small region close to the b/gZ4
horizontal line and for pZ0.2 there is loss of coherence,
due to the appearance of harmonic peaks that are more
J. R. Soc. Interface (2008)
pronounced than those found for pZ1, and persist for
larger values of N (figure 4b). Although the relative
amplitude of the harmonic peaks seems to scale with
1=

ffiffiffiffiffi
N

p
, the fact that they are enhanced is due to the

presence of spatial correlations, and could be related to
the existence of an oscillatory phase for small values of
m/g in deterministic SIR models that include, at the
simplest level, the effect of these correlations (Benoit
et al. 2006). Indeed, the breakdown of van Kampen’s
1=

ffiffiffiffiffi
N

p
scaling is expected in the oscillatory phase of this

model, where the ratio of the amplitudes of the
harmonic peaks is constant, in the infinite size limit.

The combined effect of the spatial correlations on the
amplitude and coherence of the fluctuations can be seen
in figure 6, where a typical time series for the parameter
values of figure 5b and pZ0.2 is shown. The purely
stochastic incidence peaks can be as high as 3500
individuals per day in a population of NZ106, with
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troughs of one or two hundred infectious, and a period
of recurrence of epidemics can be clearly identified.
Indeed, the pattern of sustained oscillations shown in
figure 6 is similar to that found in incidence data for
measles in the pre-vaccination records of English cities
of comparable population size (www.zoo.ufl.edu/
bolker/measdata.htm), and it is more sharply defined
than that of real time series for the most childhood
disease incidence data (Olsen et al. 1988; Ferguson et al.
1996; Broutin et al. 2005; Trottier et al. 2006).

Another important effect of contact network
structure is the shift in the dominant frequency of the
power spectrum. In figure 7 we plot, as a function of p,
the peak shift factor s, defined as the difference between
the actual peak frequency and the natural frequency
of the system in the deterministic description (1.1),ffiffiffiffi
D

p
, divided by

ffiffiffiffi
D

p
. Again, we have chosen the

same parameter values of figure 5b, (m/g, b/g)Z
(0.00116, 17.0), but the results for other points in
parameter space are similar. We found that, as p
decreases, the dominant frequency of the time series is
shifted increasingly to the left. As discussed in §2, this
can be understood as a result of the reduced effective
transmissibility due to clustering of infectives. Since
both the overall amplification and the coherence
increase as p decreases, the time series of long-term
simulations will, as shown in figure 6, exhibit recurrent
epidemics with approximate period close to that given
by the dominant frequency of the resonant fluctuations.
However, this value can be very different from the
period that corresponds to the natural frequency of the
system in the deterministic limit (1.1).
3.3. Recovery profile: effects of time
correlations

The results for the overall amplification and coherence
in the randomly mixed SIR model with deterministic
recovery are shown in figure 8. The values of A in
figure 8a are normalized by the largest value of the
overall amplification 0.6901, which means that the
overall amplitude of the fluctuations increases by a
factor of approximately 3.5 with respect to the model
with stochastic recovery. In agreement with the results
of figure 2, the enhancement of the peak amplitude will
in general be even larger, since, as shown in figure 8b,
the coherence of the fluctuations for the case of
deterministic recovery is larger for most parameter
values. Realistic recovery profiles will therefore be
associated with time series whose fluctuation power
spectra will be larger and more sharply peaked than for
J. R. Soc. Interface (2008)
constant recovery rate models. The peak frequency
shift relative to this model is towards larger frequencies,
and it may partially cancel the effect of internal noise
correlations that shift the peak frequency to the left offfiffiffiffi
D

p
, bringing the resulting dominant frequency closer

to the natural frequency of the system in the
deterministic description.

In Lloyd (2001b), the basic SIR model (1.1) was
modified to include a family, parametrized by an
integer n, of infectious period distributions that
interpolate between the exponential distribution (for
nZ0) and delta distribution associated with determi-
nistic recovery (in the limit n/N). Although there is
no simple expression in closed form in this case for the
period of the damped oscillations close to the system’s
equilibrium, it was shown that the period decreases as n
increases. Our findings are in agreement with the
expectation of an increase of the dominant frequency in
the limit of fixed recovery time.
4. DISCUSSION AND CONCLUSIONS

The relevance of the phenomenon of resonance with
internal noise for the understanding of the long-term
dynamics of childhood infections, with or without the
presence of seasonal forcing, has been uncovered in
Alonso et al. (2007). The power spectrum of the
fluctuations of the stochastic process of infection in a
population has been given a complete analytic descrip-
tion, under the following basic assumptions:

(i) there is external infection at a small constant rate,
(ii) the population is randomly mixed and internal

infection follows a law of mass action with
constant transmissibility,

http://www.zoo.ufl.edu/bolker/measdata.htm
http://www.zoo.ufl.edu/bolker/measdata.htm
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(iii) recovery from the disease occurs at a constant
rate, and

(iv) the behaviour of the fluctuations is well described
by the lowest order van Kampen expansion of the
master equation.

The above basic assumptions correspond to a
stochastic open SIR model and large population sizes.

We have extended the analytic results of Alonso
et al. (2007) to a closed stochastic SIR model, with no
external infection, which models an isolated popu-
lation, and compared these with the results of extensive
numerical simulations. Owing to stochastic extinctions,
simulations of the long-term behaviour of this model
require large population sizes, and we took NZ106 as a
typical value for the population size. We have found a
good agreement between the analytic description and
the results of the simulations for most values of the
parameters. However, in a region of parameter space
that includes in particular measles, we have found that
there are significant finite size corrections to the
analytic power spectrum of the fluctuations, which
means that assumption (iv) is fulfilled only for much
larger population sizes (indeed for population sizes of
NZ5!107 we have found good agreement between the
analytic description and the results of the simulations,
over the whole range of parameters).

We have then investigated the effects on the
fluctuation power spectrum of relaxing (ii) or (iii) in
order to account for more realistic contact networks of
the population or disease recovery profiles. These are
examples of spatial and temporal correlations that are
always present in real interacting systems. In either
case, the approximate analytic description is no longer
valid and we must resort to systematic simulations.
However, we have found fluctuation power spectra that
are dominantly resonant like, which suggest that the
basic mechanism at play is still resonance with
demographic stochasticity.

Instead of assuming (ii), we have modelled the
mixing network of the populations as a dynamic small-
world network and considered several different values
of the small-world parameter p that measures the
degree of randomness of the contact network. We have
found that, as p decreases, the resonant fluctuations
become larger and more coherent over the whole range
of parameters that are relevant for the description
of childhood infections, and the dominant frequency
of these fluctuations is shifted towards smaller
frequencies.

Instead of (iii), we have considered the opposite
(strongly correlated) limit of deterministic recovery at
the end of the infectious period. Clearly, realistic
recovery profiles will lie between these two extremes.
We have found, again, resonant fluctuations that are
much larger, and more coherent than when recovery
occurs randomly at a constant rate, and that the
dominant frequency is shifted to larger frequencies.

Then the main conclusion is that the importance of
the phenomenon reported in Alonso et al. (2007) to the
description of the long-term dynamics of childhood
diseases is enhanced when the model is modified to
include more realistic assumptions (correlations),
J. R. Soc. Interface (2008)
either on the populations contact patterns (spatial
correlations) or on the disease recovery profile (time
correlations). Our results apply to a large region in the
epidemiological and demographic parameter space, and
in this sense they are applicable in general to the
modelling of infectious disease dynamics. They show
that stochasticity may play the leading role in
determining the incidence temporal patterns, through
resonance of internal noise with the dynamics that
governs the system in the limit of an infinite population.

Our results also show that the analytic theory
developed in Alonso et al. (2007) provides an overall
good description for well-mixed populations and
diseases with gradually decaying recovery profiles,
and a useful guideline for the case of populations with
non-trivial contact networks. When these contact
networks include a large fraction, of 50% or more, of
random connections, an effective theory based on the
analytic treatment of the randomly mixed case with a
correction of the transmissibility to account for
infective screening gives a good description of the
incidence fluctuations spectrum. In highly correlated
contact networks, however, the overall amplitude of the
fluctuations is much larger than was predicted by this
effective theory.

The qualitative picture for the dependence of
demographic stochasticity on the system parameters
that emerges from our results is more subtle than one
would expect from linear perturbation analysis, either
of the deterministic model (1.1) or even of the full
stochastic description (2.1). First, in the presence of
correlations, the dominant frequency of these resonant
organized fluctuations differs significantly from the
natural frequency of the deterministic description. The
fact that this naive expectation may seem to lead to a
good description, as argued in Bausch & Earn (2003),
must be attributed to the cancellation of several
missing effects. Second, the amplitude of these fluctu-
ations decreases withN, or more precisely with

ffiffiffiffiffi
N

p
, but

finite size effects will be important for realistic
population sizes, of the order of 106, except for diseases
with an epidemiological profile similar to that of
pertussis. Third, the amplitude of the fluctuations
increases when R0 decreases, and, for fixed R0, it
decreases as g decreases. This additional dependence of
the amplitude of the fluctuations on the average
infectious period is unaccounted for by the analytic
description (2.2).

On more conceptual grounds, the finding that in
finite, discrete populations internal noise together with
correlations produces sustained incidence oscillations of
significant amplitude all over the parameter region that
includes childhood infectious diseases is of importance
for the long-standing controversy in epidemiology and
ecology as to the driving mechanisms of the pervasive
noisy oscillations observed in these systems (Grenfell &
Bjørnstad 2005). Whether these are mainly intrinsic or
external seems to depend not only on the model’s
nonlinearities but also on the correlations between the
systems’ units, which most traditional approaches
neglect.

As the need for spatial models of infectious disease
transmission is increasingly acknowledged, there are
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different modelling strategies that try to reconcile
explicit spatial representation with computational
costs and the information available on the patterns of
contact of the populations (seeRiley 2007 and references
therein). In the context of this discussion, it should be
stressed that the kind of intrinsic stochastic effects
highlighted in the present paper are specific of models
that explicitly represent individuals (or small units such
as households), and that computationally lighter,
coarse-grained models will miss this phenomenology.
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APPENDIX A

All simulations were carried out over a population of
individuals arranged on a square lattice with periodic
boundaries where each site connects to its 12 closest
neighbours. A random fraction p of these local links is
replaced at each step with random long-distance links.
The population size was 106 individuals for all
simulations, with the exception of the results of figure 4
where a population of 50!106 individuals was also
considered.

The simulations implemented the stochastic process
of the SIR model, or its modification to include
deterministic, instead of stochastic, recovery on this
network. For the case of stochastic recovery, we have
used the efficient algorithm for stochastic processes in
spatially structured systems described in Bortz et al.
(1975). Local and long-range infections are dealt with
separately, and a local (respective long range) infection
event occurs with probability 1Kp (respective p). For
pZ1, the presence of spatial structure is irrelevant, and
the algorithm reduces to the application of the method
of Gillespie (1976) to the stochastic process (2.1). When
p!1 and local infections may occur, their probability
depends on the number of infected neighbours of each
susceptible node, and so susceptible nodes with k
infected neighbours, kZ0, ., 12, are treated as
J. R. Soc. Interface (2008)
separate classes. For the case of deterministic recovery,
this algorithm is extended with the inclusion of a linked
list of infected nodes. Each entry in the list records the
position of an infected node in the lattice, along with
the time-step number (counting from 0 at the start of
the run) at which this particular node should recover
(in case it has not been removed previously by a
stochastic death transition). The list is ordered by
recovery time-step number; that is, it always contains
the oldest nodes at the start. In this way, recovery is
efficiently performed by checking, at the beginning of
each time step, which nodes are due for recovery and
replacing them in the lattice with recovered nodes.

The numerical results of figures 3, 5 and 8 were
obtained through systematic simulations of the SIR
model for a set of 21!21 evenly spaced points covering
the (m/g, b/g) plane, for the regiondepicted in the figures
(and keeping mZ5.5!10K5 fixed). Four separate sets of
simulations were carried out, one for each of the specific
cases considered in the main text, namely the SIR model
with stochastic recovery forpZ1.0 and0.6, theSIRmodel
with stochastic recovery for (m/g, b/g)Z(0.00116, 17.0)
and several values of p, and the SIR model with
deterministic recovery and pZ1.0.

For each sample point, 500 independent runs of the
model were taken, each lasting for 50 000 time steps or
days, of which only the last 215 are used; approximately
17 000 time steps are discarded at the beginning, to
allow each run to ‘settle down’ to its steady state. If
fewer than 200 of these 500 runs survive (i.e. finish with
more than zero infectives), then this particular sample
point is discarded (shown as grey in the plots);
otherwise, the power spectral densities of the surviving
runs are computed (using an FFT routine) and
averaged together. The remaining power spectrum
plots shown in the figures were obtained in the same
way, except those of figure 4a, in which 218 time-steps
long stationary time series were used, eight times longer
than those used for other plots, to provide the increased
frequency resolution necessary to check the perfect
agreement with the analytical prediction (2.2) for
50!106 individuals.
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From the final averaged spectrum, the quantities A,
c and s are computed. The overall amplification, which
is defined as AZð1=pÞ

ÐCN
0 PIðuÞdu, where PI(u) is

the power spectrum density of the scaled fluctuations,
is numerically approximated by a sum over the
squared moduli of the scaled coefficients Zk=

ffiffiffiffiffi
N

p
of

the discrete Fourier transform of the time series.
Sincethe sampling interval is 1 day, the band width of
the signal is u2[Kp,p], and we have

Az
1

p

ðCp

0
PðuÞduZ

1

L

ðL
0
Pðpk=LÞdkz 1

L

XLK1

kZ0

jZk j2

N
;

where k is the integer index of the Fourier coefficient
and L the sample length (here LZ215). The coherence
is defined as cZAp/A, where Ap is the integral of the
power spectrum density of the scaled fluctuations over
the frequency range that corresponds to G10% of the
period of the dominant peak. The numerical value of
Ap is obtained in the same manner as A from the
squared moduli of the scaled coefficients Zk=

ffiffiffiffiffi
N

p
,

replacing the summation limits appropriately.
The position of the dominant peak upeak is found from

the largest Fourier coefficient, and is also used to compute
the shift factor sZðupeakK

ffiffiffiffi
D

p
Þ=

ffiffiffiffi
D

p
shown in figure 7.
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