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Copy-number variants (CNVs) form an abundant class of genetic variation with a presumed widespread impact on individual
traits. While recent advances, such as the population-scale sequencing of human genomes, facilitated the fine-scale mapping of
CNVs, the phenotypic impact of most of these CNVs remains unclear. By relating copy-number genotypes to transcriptome
sequencing data, we have evaluated the impact of CNVs, mapped at fine scale, on gene expression. Based on data from 129
individuals with ancestry from two populations, we identified CNVs associated with the expression of 110 genes, with 13% of
the associations involving complex, multiallelic CNVs. Categorization of CNVs according to variant type, size, and gene
overlap enabled us to examine the impact of different CNV classes on expression variation. While many small (<4 kb) CNVs
were associated with expression variation, overall we observed an enrichment of large duplications and deletions, including
large intergenic CNVs, relative to the entire set of expression-associated CNVs. Furthermore, the copy number of genes
intersecting with CNVs typically correlated positively with the genes’ expression, and also was more strongly correlated with
expression than nearby single nucleotide polymorphisms, suggesting a frequent causal role of CNVs in expression quantitative
trait loci (eQTLs). We also elucidated unexpected cases of negative correlations between copy number and expression by
assessing the CNVs’ effects on the structure and regulation of genes. Finally, we examined dosage compensation of transcript
levels. Our results suggest that association studies can gain in resolution and power by including fine-scale CNV information,
such as those obtained from population-scale sequencing.

[Supplemental material is available for this article.]

Copy-number variants (CNVs), or unbalanced structural variants,

involving large deletions, insertions, and duplications, are among

the least studied forms of genetic variation, although their net

effect on the genome (in terms of affected base pairs) is higher than

that of SNPs (Iafrate et al. 2004; Sebat et al. 2004; Tuzun et al. 2005;

Redon et al. 2006; Korbel et al. 2007; Kidd et al. 2008; Conrad et al.

2010). CNVs have been associated with several disease pheno-

types (Craddock et al. 2010), including systemic autoimmunity

(Fanciulli et al. 2007), HIV susceptibility (Gonzalez et al. 2005), and

psoriasis (Hollox et al. 2008). Recent reports have further reported

associations of CNVs with gene expression variation, ascribing

such associations to rare pathogenic CNVs (Lupski and Stankiewicz

2005) as well as to CNVs reaching appreciable allele frequencies in

the population (McCarroll et al. 2006; Stranger et al. 2007). Specif-

ically, a comprehensive survey by Stranger et al. (2007) reported

a widespread association of large-scale CNVs with the expression of

genes, an association frequently independent of SNPs.

Stranger and coworkers evaluated the effects of CNVs de-

tected with two microarray platforms (bacterial artificial chromo-

some [BAC] arrays and 500k SNP arrays), which were used to as-

certain CNVs with median sizes of 228 kb and 81 kb, respectively

(Redon et al. 2006; Stranger et al. 2007). Technological advances,

such as improvements in tiling microarray (Conrad et al. 2010) and

sequencing technologies (1000 Genomes Project Consortium 2010),

have recently led to ‘‘second-generation’’ CNV maps with mark-

edly increased resolution and broadened CNV size range, with the

latest study reporting CNVs of 50 bp to a 1 Mb in size (median size

730 bp) in more than 150 individuals (Mills et al. 2011). At the

same time, the number of CNVs ascertained per genome has in-

creased considerably, from less than a hundred (examined in

Stranger et al. 2007) to several thousand per individual (Conrad

et al. 2010; Mills et al. 2011). Advances in technology have further

enabled the systematic distinction of different copy-number states

in CNV regions, allowing the comprehensive genotyping of CNVs

(McCarroll et al. 2008; Conrad et al. 2010; Park et al. 2010; Sudmant

et al. 2010; Mills et al. 2011), which yields crucial information for

associating CNVs with phenotypic data (Craddock et al. 2010).

Furthermore, the mapping of CNV breakpoints has markedly im-

proved in resolution, which enables relating CNVs to gene anno-

tation at high resolution, such as to specific exons of a gene (Conrad

et al. 2010; Kidd et al. 2010a; Pang et al. 2010; Mills et al. 2011). To

our knowledge, no study has so far made use of these recent ad-

vances in technology and computational algorithms for compre-

hensively linking CNVs to gene expression data. Thus, our present

understanding of the effect of CNVs on gene expression is in-

complete.

Here we correlated CNVs recently discovered at fine resolution

with genome-wide gene expression data. We thereby made use of

recent advances in massive-scale transcriptome sequencing (RNA-

seq) and reanalyzed data from two recent expression quantitative

trait loci (eQTL) surveys that focused on SNPs. These two surveys

examined lymphoblastoid cell lines (LCLs) from the HapMap project

(International HapMap Consortium 2005): One study associated
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SNPs with gene expression data in LCLs

derived from 60 unrelated Utah residents of

Northern and Western European (CEU) an-

cestry (Montgomery et al. 2010); the other

study associated SNPs with expression data in

LCLs from 69 unrelated Yoruba individuals

(YRI) from Nigeria (Pickrell et al. 2010). By

analyzing CNV genotypes generated for the

same HapMap individuals, our approach in-

ferred associations between CNVs and the ex-

pression of more than a hundred genes, which

included many novel CNV–gene expression

associations. These results enabled us to eval-

uate relative influences of CNV type (e.g., de-

letion vs. duplication), CNV size, and overlap

with coding regions (genic vs. intergenic) on

such associations.

Results

Data set pre-processing and additional
CNV genotyping

We obtained RNA-seq data in the form of Illumina GAII sequenc-

ing reads (with DNA bases called using standard Illumina software)

from both aforementioned eQTL studies. We mapped the RNA-seq

reads onto the human reference genome and further considered

only such reads that displayed a unique (unambiguous) mapping

position in the genome. Subsequently, we used a normalization

procedure, described in the following, to obtain comparable ex-

pression measurements for both populations. In the CEU data set,

which provides paired end sequences, we mapped on average 6.5

million read pairs onto the genome per individual. In the YRI data

set, which provides single end sequences, we uniquely mapped on

average 5.0 million reads onto the genome per individual. We re-

lated the mapped reads to a comprehensive set of protein-coding

genes (see Methods) and normalized each data set to correct for

influences on sample- and gene-specific read counts originating

from: different overall numbers of mapped reads per individual; the

individuals’ sex (Stegle et al. 2010); and sequencing library-specific

properties, such as differences in read lengths and GC-content biases

(see Methods).

We further obtained comprehensive CNV genotype data by

mining several published data sets assaying the same HapMap in-

dividuals. As these previous surveys focused, in part, on ascertaining

different CNV types (e.g., deletions vs. duplications) (see Table 1), we

combined these data sets to obtain a variant set that covers a wide

CNV size spectrum. Specifically, the data sources comprised CNV

(deletion and duplication) genotypes from two different microarray

platforms, namely, genotypes for 1319 CNVs with a median size of

;8 kb, inferred from a SNP/CNV hybrid array platform (McCarroll

et al. 2008) and genotypes for 5037 CNVs (median ;3 kb) from

a high-resolution custom tiling array platform (Conrad et al. 2010).

Furthermore, we used data based on population-scale sequencing:

We included genotypes for 13,826 sequenced deletions (median size

of ;700 bp) that were discovered and genotyped by the 1000 Ge-

nomes Project’s Structural Variation Analysis Group (Mills et al.

2011); furthermore, we analyzed the read depth of Illumina se-

quencing reads generated from the 1000 Genomes Project to extend

the available list of CNVs with genotype information (see the Sup-

plemental Material), by applying the CopySeq copy-number geno-

typing algorithm (Waszak et al. 2010). Specifically, we used CopySeq

to infer CNV genotypes for 2843 CNVs (median ;2 kb) from the

1000 Genomes Project that were released without CNV genotype

information (Mills et al. 2011). We combined data from all four

sources into a nonredundant CNV set with a merging approach that

required both a genomic overlap of CNVs and genotype concor-

dance for merging CNVs (see Methods) (Table 1).

Association of CNVs with gene expression phenotypes

Our approach to detect associations between expression and CNV,

outlined in Figure 1, is analogous to previous eQTL studies that

related RNA-seq data to SNP genotype information (Montgomery

et al. 2010; Pickrell et al. 2010). Specifically, we related normalized

RNA-seq read-count data to CNV genotype information in the

form of copy-number genotypes, i.e., integer values from 0 to 10

reflecting the copy number of the genomic segment in question

(see Methods). This enabled us to examine both biallelic CNVs

(genomic segments with two possible allelic statuses, e.g., deletion

and reference allele) and multiallelic CNVs (genomic segments with

more than two possible allelic statuses, e.g., deletion, duplication,

and reference allele; or several duplication alleles per locus leading

to copy numbers of up to 10 at some loci, as a consequence of

repeated locus duplication). Due to the high number of possible

pairwise comparisons between CNVs and genes, we reduced the

search space by focusing on CNV–gene pairs that would most likely

result in robust associations. To this end, we removed rare CNVs as

well as unexpressed or rarely expressed genes (Methods). Further-

more, we focused on proximal (i.e., putative cis) associations be-

cause, in the past, most strong eQTLs have been mapped close to

their target gene (Stranger et al. 2007; Montgomery et al. 2010;

Pickrell et al. 2010). Specifically, we limited our search to CNV–gene

pairs separated by <200 kb (which we call the ‘‘search range’’). Thus,

we examined CNV–gene pairs on the basis of an operational defi-

nition for cis effects that in reality may also include short-distance

trans effects. Furthermore, we excluded the sex-determining

chromosomes from our analysis because of the imbalance of genes in

males and females. With these filtering steps, our analysis con-

sidered 12,275 expressed genes and 4530 CNVs in the CEU sam-

ples, and 12,113 expressed genes and 5865 CNVs in the YRI sam-

Table 1. Sources of CNV genotype data used in this study

CNV class / CNV source Conrad McCarroll 1000GPa 1000GP_CSb Sum

Biallelic deletions 3824 983 10,540 1710 17,057 (4730; 6275)
Biallelic duplications 792 188 — 110 1090 (268; 283)
Multiallelic duplications 94 10 — 142 246 (109; 104)
Multiallelic duplications and

deletions
296 138 — 427 861 (159; 205)

Homozygous reference allele
in all analyzed samplesc

31 0 3286 454 3771 (0; 0)

Total (before merging) 5037 1319 13,826 2843 23,025 (5266; 6867)
Total (after merging) 19,521 (4530; 5865)

Autosomal CNVs within the 200-kb search range around expressed genes are displayed in paren-
theses (CEU; YRI). We only considered CNVs displaying copy-number variation in at least 5% of the
individuals and for which integer genotype information and gene expression information was
available for at least 20 samples in a population. With ‘‘multiallelic duplications and deletions,’’ we
refer to CNVs that show signatures of both deletions and duplications in a population.
aCNV genotypes released by the Structural Variation Analysis Group of the 1000 Genomes
Project (Mills et al. 2011), who focused on deletions in their pilot project genotype release (Mills
et al. 2011).
bCNVs discovered by the 1000 Genomes Project, for which thus far no genotype information
has been released. We used CopySeq to infer copy-number genotypes for these CNVs.
cLoci not displaying any copy-number variation in the samples this study analyzed.
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ples (note that some genes had several CNVs in their search range,

and vice versa). To test for association, we calculated Spearman

correlation coefficients between copy-number genotypes and

normalized expression values. We adjusted the resulting P-values

for multiple testing to control the false-discovery rate (FDR) with

a conservative threshold of FDR # 10%.

Applying this approach to the aforementioned HapMap

samples yielded significant association between CNVs and ex-

pression for 50 and 73 genes in the CEU and YRI data sets, re-

spectively (Table 2), or 110 distinct genes when combining the

results from both data sets. In several cases, we identified more

than one CNV associated with a given gene (Supplemental Table

3). Unless stated otherwise, the analyses below relate to the most

strongly associated CNV–gene pairs, which we refer to as ‘‘CNV-

associated eQTLs.’’ For ;70% of all CNV-associated eQTLs, the

distance between the respective CNV and gene was <100 kb, i.e.,

the CNV-associated eQTLs were enriched toward short-range as-

sociations (Supplemental Fig. 7). Despite the relative abundance of

deletions in our CNV set (Table 1), CNV-associated eQTLs involving

duplications (;21% of all associated CNVs), including those in-

volving multiallelic CNVs (;13% of all associated CNVs), were

enriched compared with deletions among all CNVs associated with

expression (Supplemental Table 7). This may be attributable to an

abundance of large, gene-duplicating variants in our data, as we

discuss further below.

Overlap of CNV-associated eQTLs between populations
and comparison with previous surveys

To assess the robustness of our CNV–expression associations, we

first examined to what extent CNV-associated eQTLs were in-

dependently observed in both populations, because such obser-

vations would increase statistical confidence. We observed a strong

(>32-fold) enrichment of CNV–gene pairs that were both identified

as significantly associated in the YRI and the CEU samples (Sup-

plemental Fig. 5). Furthermore, when analyzing our results at the

level of identified genes, rather than at the level of identified CNV–

gene pairs, we found that 26% of the genes corresponding to CNV-

associated eQTLs in the CEU were also observed in the YRI. By

comparison, 18% of the eQTLs identified in the YRI were also

observed in the CEU. We may assume that the portion of CNV-

associated eQTLs shared between both populations is actually

higher, because small sample sizes, which limit the detection

power (Gilad et al. 2008), may lead to false negatives in eQTL-

mapping studies. Hence, we focused on genes that were expressed in

both populations and evaluated how often CNV-associated eQTLs

inferred in one population were evident in the other population,

requiring a correlation with the same sign (e.g., positive correlation

in both populations, or negative correlation in both populations)

together with an unadjusted Spearman correlation P-value of

P < 0.05. This analysis revealed markedly higher overlaps (namely,

42% of the genes in the CEU were also found in the YRI, and 46%

for the reciprocal comparison). These results add further confi-

dence to the association signals inferred by our approach.

We also compared the results from our survey to previous

surveys. We first examined the three genes (i.e., UGT2B17, GSTM1,

and GSTT1) reported as associated with expression variation by

McCarroll et al. (2006), which were also expressed in at least one

population in our study: All three were detected as CNV-associated

eQTLs in our data. Furthermore, we compared our results to the

results of Stranger et al. (2007), who identified CNV–expression

associations in individuals from four different populations, in-

cluding individuals from the CEU and YRI populations. In our

comparison, we considered CNV-associated eQTLs that Stranger

et al. reported in the CEU and YRI. Specifically, Stranger et al.

(2007) reported these eQTLs in terms of ‘‘CNV clones,’’ which

they associated with genes that corresponded to 42 unique gene

identifiers in our gene set (Supplemental Material). Nine of these

genes were also identified as eQTLs in our study. We further assessed

the overlap by limiting the comparison to genes that were consid-

ered expressed in our study and that were within a 200-kb search

range with respect to the CNV sets of both our survey as well as that

Table 2. Summary of identified CNV-associated eQTLs

Full gene
overlap

Exonic (gene
partially affected)

Intronic (no exon
affected)

Upstream
of gene

Downstream
from gene Total

Unique
genes

YRI Biallelic deletion 2 (2) 4 (1) 5 (2) 21 (10) 15 (10) 47 73
Biallelic duplication 2 (2) 2 (1) – (–) 7 (2) 3 (2) 14
Multiallelic 5 (5) 1 (1) – (–) 3 (2) 3 (2) 12

CEU Biallelic deletion 5 (5) 2 (2) 7 (3) 13 (8) 12 (6) 39 50
Biallelic duplication 2 (2) – (–) – (–) 1 (1) – (–) 3
Multiallelic 3 (3) 1 (0) – (–) 4 (4) – (–) 8

Nonredundant Biallelic deletion 5 (5) 6 (3) 11 (5) 33 (18) 25 (15) 80 110
Biallelic duplication 3 (3) 2 (1) – (–) 8 (3) 3 (2) 16
Multiallelic 5 (5) 1 (1) – (–) 5 (4) 3 (2) 14

Parentheses indicate the number of CNV-associated eQTLs for which the copy number correlated positively with expression. Rows labeled ‘‘non-
redundant’’ list the total number of nonredundant CNV-associated eQTLs found in the CEU and YRI samples. The eQTLs involved 110 distinct genes (73 in
the YRI and 50 in the CEU; note that some genes displayed their strongest association with different CNVs in the YRI vs. the CEU). If several CNVs were
significantly associated with a gene’s expression, we chose the CNV with the lowest P-value.

Figure 1. Relating CNVs to variation in gene expression. Flowchart of our approach for mapping CNV-associated eQTLs.
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of Stranger et al. (2007). Following these filtering steps, out of the

13 remaining genes from Stranger et al. (2007), six (46%) were

identified by our approach. Thus, our approach recovers many pre-

viously identified CNV-associated eQTLs and also detects a number

of new associations.

Analysis of CNV-associated eQTLs: Categorization according
to gene overlap and functional categories

We continued by analyzing the inferred associations in detail.

Making use of the high resolution of our CNV set, we first catego-

rized CNV-associated eQTLs according to the type of overlap

between the CNV and its associated expressed gene. We distin-

guished between CNVs overlapping their associated genes entirely

and those leading to partial gene overlap with affected exonic se-

quences (i.e., gene disruption), as well as those affecting nonexonic

regions (i.e., intronic and intergenic categories). In ;20% of our

CNV-associated eQTLs, the CNVs intersected exonic sequences of

the genes or contained genes entirely (Table 2). In the CEU and YRI

data set, CNVs associated with the expression of five and two

genes, respectively, involved full gene deletions (for a specific ex-

ample, see Fig. 2). This included a gene of potential biomedical

relevance, i.e., the CDK11A (CDC2L2) gene (Supplemental Fig. 1),

which has been associated with type 2 diabetes in Asians on the

basis of SNPs (Li et al. 2007). Our results suggest that follow-up

studies should consider CDK11A gene deletion as a possible caus-

ative variant.

There were also several gene duplications among our CNV-

associated eQTLs (Table 2), for example, the PI4KAP1 gene, a gene

within a multiallelic CNV region displaying both duplication and

deletion alleles (Fig. 3). Furthermore, at several gene loci, the as-

sociated CNVs intersected partially with genes, affecting at least

one of their exons (Table 2). A peculiar example is the inferred as-

sociation between the expression of SIGLEC5 and a deletion inter-

secting several of its exons. This deletion fuses SIGLEC5 with the

paralogous SIGLEC14 gene, resulting in an in-frame gene hybrid,

with gene expression patterns supporting the formation of an

expressed SIGLEC14/5 fusion gene that acquired upstream regu-

latory elements from SIGLEC14 (Fig. 4; Supplemental Fig. 2).

CNVs intersecting exonic sequences are particularly relevant,

since for such CNVs a direct effect on gene expression is expected.

Specifically, one would expect that the expression of genes over-

lapping CNVs correlates positively with copy number (with gene

deletions and gene disruptions being associated with a relative ex-

pression decrease, and gene duplications being associated with an

expression increase) (for examples, see Figs. 2, 3). Our data confirm

this expectation: Namely, expression-associated CNVs disrupting,

deleting, or duplicating genes typically displayed the expected posi-

tive correlation (Supplemental Fig. 6), with a few exceptions, which

we examined in detail. First, the aforementioned SIGLEC5 gene

displayed a negative correlation between its expression and the

copy-number genotype of the gene-intersecting deletion. The fusion

of SIGLEC5 with the SIGLEC14 gene and the resulting juxtaposition

of the fusion gene with the SIGLEC14 promoter region can plausibly

serve to explain the observed negative correlation (for details, see Fig.

4). We also examined in further detail the association between a CNV

partially disrupting the ULK1 gene, for which we identified a negative

correlation with the gene’s expression, and obtained evidence, based

on read-depth analysis, that the CNV boundaries were mis-anno-

tated and that the ULK1 coding regions hence were not contained

within the CNV (see the Supplemental Material).

By comparison, for CNVs not affecting exonic sequences, we

had no a priori expectation on the sign of correlations, and, in fact,

we observed a mixture of positive and negative correlations be-

tween copy-number genotype and expression (Supplemental Figs.

3, 4; Table 2). In these cases, the CNVs, or other linked variants,

may contribute to the observed variation in expression through

regulatory mechanisms.

Figure 2. Association of a deletion with gene expression. (A) A biallelic deletion (chr1:110,024,361–110,046,935) fully deleting the GSTM1 gene was
found to be significantly associated with GSTM1 transcript level in the YRI and CEU samples. RNA-seq tracks display gene expression values following
normalization. DNA read-depth tracks were generated based on population-scale sequencing reads (1000 Genomes Project Consortium 2010). (B)
Correlation between copy-number genotype and normalized gene expression values for GSTM1, computed based on the YRI samples. (C ) Summary of
observed sample abundance and median normalized expression values for each copy-number state in the YRI and CEU samples.
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To assess the implications of CNV–expression associations on

gene function, we examined the set of CNV-associated eQTLs with

respect to Gene Ontology (GO) and KEGG functional category

classifications. These analyses revealed a significant enrichment

for functional gene categories related to immunity (Supplemental

Table 1). While relative enrichments of immune-related functions

among CNVs have been reported before (e.g., Conrad et al. 2010

and references therein; Mills et al. 2011), our analysis of gene

functional categories, which used a gene universe that excluded

genes not expressed in LCLs, shows that enrichments in immune-

related functions carry through to the level of CNV–expression as-

sociations. Such enrichment may be of particular relevance given

that several previous studies have related CNVs affecting immunity-

related genes with disease phenotypes, including genes that our

approach identified as CNV-associated eQTLs: namely, the innate

immunity gene APOBEC3B, for which CNVs have also been asso-

ciated with HIV susceptibility (An et al. 2009); and CCL4L1, a che-

mokine gene associated with transplant rejection.

Novelty of our reported eQTLs and overlap with SNP-focused
eQTL studies

A relevant question relates to the extent at which CNVs and SNPs

are jointly or independently associated with a heritable trait, such

as with gene expression, given that SNPs are the form of genetic

variation primarily ascertained in genome-wide association studies.

Since CNVs often represent ancestral mutations that are in linkage

disequilibrium (LD) with SNPs (McCarroll et al. 2006), SNPs that tag

nearby CNVs could plausibly be used as markers for identifying

CNV-associated eQTLs (hence, an abundance of suitable ‘‘tag SNPs’’

might make a separate ascertainment of CNVs unnecessary). Since

the expression data we used were originally applied to map eQTLs

using SNPs, we compared our results to these previously mapped

SNP-based eQTLs to obtain a point estimate for the fraction of our

CNV-associated eQTLs that could be detected on the basis of SNPs.

Altogether, 53 (48%) out of the 110 genes identified by our ap-

proach were recently observed as eQTLs on the basis of tag SNPs,

using the same expression data (Montgomery et al. 2010; Pickrell

et al. 2010). Namely, of the 50 genes whose expression we found to

be associated with CNVs in the CEU population, 24 (48%) were

also shown to be associated with SNPs by Montgomery et al. (2010),

while 26 were only associated in our study. Furthermore, of the 73

genes we found in the YRI population, 35 (48%) were also reported

by Pickrell et al. (2010), and 38 were only associated in our study.

We also compared our results with the comprehensive list of loci

described in the eQTL browser (Pickrell et al. 2010), a database

summarizing results from seven SNP-focused eQTL studies that

examined distinct cell and tissue types (Myers et al. 2007; Schadt

et al. 2008; Veyrieras et al. 2008; Dimas et al. 2009; Montgomery

et al. 2010; Pickrell et al. 2010; Zeller et al. 2010), and further from

a study analyzing both SNP eQTLs and CNV-associated eQTLs in

LCLs (Stranger et al. 2007). These comparisons showed that 32 out

of the 110 genes (30%) that our approach identified were not

previously reported in conjunction with eQTLs in any study in-

cluded in the eQTL browser. Thus, our CNV-focused study has

inferred several novel eQTLs.

We further evaluated what fraction of the CNV-associated

eQTLs were correlated with a ‘‘tag SNP’’ that was equally, or better,

associated with expression than the CNV in question, making use of

the high-quality SNP genotype data that were recently released by

the 1000 Genomes Project (see the Supplemental Material). Specif-

ically, we calculated correlations between 1000 Genomes Project

SNPs and normalized expression values, using the same criteria as

described above for CNVs (i.e., focusing on the 200-kb search range

defined by our CNV set). This analysis revealed that 57% of expressed

genes in our list of CNV-associated eQTLs displayed a higher corre-

lation with their most strongly associated CNV than with any

SNP in the search range (Supplemental Table 2). Furthermore, the

tendency of genes to display their highest correlation with CNVs,

rather than with SNPs, was markedly more pronounced for CNVs

overlapping exons: That is, all (10/10) of the genes that were

deleted or duplicated displayed a higher correlation with these

CNVs than with any SNP (Supplemental Table 8). This is compatible

with the notion that CNVs affecting exonic sequence typically con-

tribute themselves to the genes’ expression. Furthermore, despite the

CNVs typically showing higher correlations with gene expression

than SNPs, 50% of the CNVs identified in the CEU and 44% of

the CNVs identified in the YRI had strongly correlated SNPs (r 2 >

Figure 3. Association of a multiallelic CNV involving deletion and duplication alleles with gene expression. (A) A multiallelic CNV (chr22:18,763,501–
18,789,830) entirely overlapping the PI4KAP1 gene locus was found to be significantly associated with PI4KAP1 expression. (B) Correlations between copy-
number genotype and normalized gene expression values for PI4KAP1 (YRI samples). (C ) Summary of observed sample abundance and median nor-
malized expression value for each copy-number state.
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0.8) that may serve as a tag for identifying these eQTLs in a SNP-

focused survey.

Large CNVs preferentially contribute to CNV-associated eQTLs

The wide CNV size spectrum available to this study, with genotyped

CNVs from 50 bp up to megabase-pair level in size, enabled us to

evaluate the influence of CNV size on the association between CNVs

and expression. We evaluated to what extent small CNVs contrib-

uted to our list of CNV-associated eQTLs compared with large CNVs,

by examining the spectrum of CNV sizes separately for deletions and

duplications (Fig. 5). Overall, the median size of CNVs significantly

associated with expression was in the lower kilobase range (<4 kb).

Many expression-associated CNVs were below 1 kb in size (32%

CEU, 23% YRI), and thus in a size range that recent technological

advances (e.g., high-throughput DNA sequencing and tiling

microarray technology) have made amenable to systematic anal-

ysis (Fig. 5AB). Despite the abundance of these relatively small

CNVs, however, we observed a relative enrichment of large CNVs,

including large deletions (Fig. 5A) and large duplications (Fig. 5B),

among the CNV-associated eQTLs. This enrichment was signifi-

cant, even when controlling for the fact that large CNVs are, based

Figure 4. Detailed expression analysis for a CNV-associated eQTL involving a polymorphic fusion gene. The expression of the adjacent genes SIGLEC5
and SIGLEC14 is affected by a deletion that partially disrupts both genes, resulting in the ‘‘SIGLEC14/5’’ gene hybrid. (A) SIGLEC14/5, which displays
>99.8% coding sequence identity with SIGLEC5, encompasses exons 1–3 as well as upstream regulatory sequences from SIGLEC14, and further contains
exons 4–9 from SIGLEC5 (Supplemental Fig. 2). We identified a CNV-associated eQTL involving the biallelic deletion and SIGLEC5 in both populations and
analyzed the expression patterns of the locus making use of published nucleotide resolution breakpoint information for the deletion (Yamanaka et al.
2009). (B) The observed negative correlation between copy number and expression can plausibly be explained by the comparably higher expression of
SIGLEC14 in the absence of the deletion, and further by the juxtaposition of SIGLEC14/5 with the SIGLEC14 upstream (promoter) region. Because
SIGLEC14/5 displays high sequence identity with SIGLEC5, transcripts originating from the fusion gene were mostly mapped to the SIGLEC5 gene locus.
Although the fusion gene is not represented in the reference genome, RNA-seq-based expression measurements at the locus were allele-specific in the
presence of the homozygous reference allele (copy number [CN] = 2), and also in the presence of the homozygous deletion (CN = 0). Namely, displayed
read counts for CN = 0 stem from SIGLEC14/5; for CN = 2, depicted read counts were unambiguously assigned to either SIGLEC14 or SIGLEC5 (the latter is
expressed at very low level). By comparison, for CN = 1, we measured a mixture of reads originating from all three genes. (C ) Read counts are shown in the
form of a heat map for YRI samples, based on the raw number of RNA-seq reads that uniquely map to the reference genome at SIGLEC5 and SIGLEC14 loci.
Few reads could be uniquely mapped into exons 1–3, since these fall into a segmental duplication and thus lack unique sequence. We found the deletion
genotype and the expression of SIGLEC14 to be positively correlated (Spearman rank correlation P-value < 0.003 for YRI and < 0.05 for CEU), as expected as
the deletion disrupts most transcript sequence unique to SIGLEC14.
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on our criteria (see Methods), more often present in the herein

defined search range of genes than small CNVs (Fig. 5AB; Supple-

mental Table 6). The enrichment of large CNVs among CNV-as-

sociated eQTLs was evident also when limiting our analysis to CNV

data from a single data source (e.g., tiling array based CNVs, or

population-scale sequencing-based CNVs).

One plausible explanation for the enrichment of large CNVs

among CNV-associated eQTLs is the abundance of gene-intersecting

CNVs among our eQTLs, since gene-intersecting CNVs are compa-

rably large and since CNVs overlapping genes are expected to typ-

ically affect expression. Interestingly, however, we observed an en-

richment among our CNV-associated eQTLs also for large intergenic

CNVs (Fig. 5CD; Supplemental Table 6), specifically for deletions

(the enrichment we observed of intergenic duplications was mar-

ginally significant). Thus, the overlap with genes may only in part

account for the preferential association of large CNVs with expres-

sion. We note that the enrichment of large CNVs, including large

intergenic CNVs, suggests that these CNVs more frequently con-

tribute to expression variation. (They might do so by changing a

gene’s copy number, by affecting DNA regulatory regions through

positioning effects [Kurth et al. 2009; Ricard et al. 2010], or by altering

the copy number of a regulatory site [Kasowski et al. 2010].) Fur-

thermore, the general abundance of large (often gene-overlapping)

CNVs among duplications may account for

the observed relative abundance of dupli-

cations among CNV-associated eQTLs (Fig.

5B; Supplemental Table 7).

Evaluation of possible dosage-
compensation effects associated
with gene deletions

Especially for CNVs fully overlapping a

gene, we expect a direct effect on expres-

sion level—therefore, expression should be

proportional to copy number, unless gene

dosage variation is compensated by buff-

ering or feedback-regulation mechanisms

(Deng and Disteche 2010). Such compen-

sation for gene dosage was, for example,

used to explain the observation that less

than a third of all genes on chromosome 21

are overexpressed in the case of Down

syndrome caused by trisomy 21 (Ait Yahya-

Graison et al. 2007). Recent reports further

noted that dosage compensation may ex-

plain why some CNV regions displayed

limited correlation between copy number

and expression in rodent species (for re-

view, see Henrichsen et al. 2009). An eval-

uation of the magnitude with which

CNVs typically influence expression levels

in humans is highly relevant for deducing

their effects on phenotypes.

To examine this effect in detail, we

assessed to what extent human genes af-

fected by the CNVs in our list showed signs

of dosage compensation. Specifically, we

analyzed 18 deletions of expressed genes

for which detailed inspection of the locus

confirmed the evidence for full gene de-

letion (see the Supplemental Material). We

assessed in these loci whether transcript levels associated with

a heterozygous deletion (copy number [CN] = 1) were markedly

higher than half of the level observed for the homozygous reference

(CN = 2), which would be indicative of dosage compensation. Spe-

cifically, we computed point estimates for relative expression levels

by dividing the median of the normalized expression values

obtained for individuals with CN = 1 by the median of the ex-

pression from individuals with CN = 2, and then used boot-

strapping to define confidence intervals (see the Supplemental

Material). Twelve genes displayed tight confidence intervals (i.e.,

such that they enabled us to discriminate between a relative ex-

pression level of ;0.5 and ;1) (see the Supplemental Material). In

nine loci, such as the CDK11A, GSMT1, and UGT2B17 loci, we

found the correlation between copy number and expression to be

compatible with negligible dosage compensation, because these

loci displayed a relative expression level of ;0.5 relative to the

homozygous reference. Three loci (ACOT1, LRP5L, ZNF280B),

however, displayed confidence intervals indicative for dosage

compensation (Fig. 6; Supplemental Table 9), and buffering or feed-

back regulation mechanisms may contribute to transcript levels of

these genes. While we envision that future studies will also examine

the impact of dosage compensation on duplications, such analysis is

currently complicated by uncertainties about the functionality of

Figure 5. Enrichment of large deletions and duplications among CNV-associated eQTLs. (A) En-
richment of large deletions among expression-associated variants. (Blue line) Cumulative distribution
functions of the size of expression-associated deletions. (Gray line) The size distribution of the entire list
of deletions in the search range of our survey. The distribution is adjusted for the fact that large variants
have a higher chance to be within the search range of a gene than small variants, by considering each
variant as many times as there are expressed genes in its search range. The P-values shown are based on
Kolmogorov-Smirnov (KS) tests. (B) Significant enrichment of large duplications (red line) among ex-
pression-associated variants. (Gray line) The size distribution of duplications considered in our survey.
(C ) Significant enrichment of large intergenic deletions (light blue line) among expression-associated
variants. (Gray line) The size distribution of intergenic deletions considered in our survey. (D) Marginally
significant enrichment of large intergenic duplications (light red line) among expression-associated
variants. (Gray line) The size distribution of intergenic duplications considered in our survey.
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DNA regulatory elements (e.g., promoters and enhancers) in dupli-

cation alleles.

Discussion
We have examined the impact of CNVs covering a wide size spec-

trum on gene expression, motivated by the concept that variation in

expression may serve as a model for phenotypic variation (Myers

et al. 2007; Stranger et al. 2007; Schadt et al. 2008; Veyrieras et al.

2008). Our approach revealed more than a hundred associations

between CNVs and gene expression, confirming several previously

identified associations and also revealing several novel ones.

Therefore, our analysis benefitted from recent advances in analysis

approaches and DNA sequencing technology. We assessed a CNV

size spectrum from 50 bp up to a megabase pair, which facilitated

evaluation of the impact of CNV size. Furthermore, comprehensive

copy-number genotype information enabled us to ascertain asso-

ciations between distinct CNV types; as an example, we reported

that approximately a fifth of our CNV–expression associations in-

volved duplications, and ;13% involved multiallelic CNVs. The

CNV data set resolution further enabled us to elucidate the impact of

CNVs on expression in detail. For example, while our results suggest

that CNVs with impact on expression frequently intersect with gene

sequences, most associations that we reported involved intergenic

CNVs, and these CNVs were often relatively small (i.e., <4 kb in

size). Nonetheless, our analysis shows that large duplications and

deletions, including large intergenic CNVs, are generally enriched

among CNV-associated eQTLs. This suggests that CNV–expression

associations involving large CNVs are particularly frequently at-

tributable to the CNVs themselves, rather than to a linked variant

(conversely, this is likely to be less often the case for small CNVs).

Furthermore, when categorizing CNVs according to gene

overlap, we observed that CNVs intersecting genes typically affect

genes in the expected direction, i.e., involving a positive correla-

tion between gene copy number and expression level, as was also

observed previously in an assessment of the impact of large-scale

(mostly >100 kb) CNVs on expression (Stranger et al. 2007). On the

other hand, we found that associations of CNVs in intergenic re-

gions displayed a mixture of positive and negative correlations.

Further analyses allowed us also to elu-

cidate rare, unexpected negative corre-

lations between gene copy number and

expression. Several instances of unex-

pected negative correlations have been

observed before (e.g., Stranger et al. 2007;

Henrichsen et al. 2009), and our study

shows how detailed analyses of fine-res-

olution CNV data can help to clarify the

basis of such intuitively unanticipated

correlations.

We also evaluated the effect of gene

dosage reduction (i.e., heterozygous gene

deletions) on transcript levels. While the

expression of some genes may be affected

by dosage changes, our results suggest that

dosage compensation in human cells may

be less pronounced than in Drosophila

melanogaster, where autosomal genes are

typically partially compensated for dosage,

with relative expression levels (heterozy-

gous deletion vs. homozygous reference

allele) of ;0.75 (Zhang et al. 2010). Other

human cell types (i.e., non-LCL cells) may show a different pro-

pensity for dosage compensation, since compensatory loops may

differ between tissues and developmental time points (Chaignat

et al. 2011).

Half (48%) of the genes we identified in the context of

CNV-associated eQTLs were recently associated on the basis of

SNPs with the same expression data (Montgomery et al. 2010;

Pickrell et al. 2010). This portion is higher than the fraction of

genes associated with CNVs by Stranger and coworkers that also

displayed a significant SNP association (18%; see Stranger et al.

2007). The comparably higher overlap observed in our study is,

however, not surprising, given the increased density at which

CNVs and SNPs can now be ascertained in the genome (Supple-

mental Table 4). Regardless of the overall level of correlation be-

tween CNV genotypes and genotypes of nearby SNPs, the relatively

strong association we observed among CNVs’ overlapping genes and

these genes’ expression is explainable either by the CNVs frequently

representing causative variants or by CNV genotypes displaying

a slightly reduced genotyping error rate compared with SNP geno-

types (which also would cause CNVs to be more strongly associated).

Strikingly, we found an abundance of gene-duplicating and gene-

deleting CNVs among the variants that were particularly strongly

associated with expression. Such an abundance of plausible

causative variants underlines the value of an independent as-

sessment of CNVs in association studies, and we conclude that

inclusion of CNVs increases the power for identifying eQTL loci

and further facilitates their ‘‘fine mapping’’ to the actual functional

variant.

Our approach focused on proximal effects, defined by a search

range of 200 kb, and did not consider associations between distal

CNVs and expression variation (i.e., most trans effects). In this

regard, for ;70% of all CNV-associated eQTLs, the distance between

the respective CNV and gene was <100 kb, such that CNV effects on

expression were enriched toward short-range signals. Not surpris-

ingly, given the abundance of deletions in our CNV sources, most

associations we found involved deletions, despite an enrichment

of duplications among CNV-associated eQTLs. We envision that

future surveys will strengthen their focus on simultaneously

ascertaining structure, content and location of duplications, on

Figure 6. Evaluation of dosage compensation in gene deletion loci. The figure displays relative
normalized expression values of samples with copy number (CN) = 1 relative to samples with CN = 2.
The circles mark the ratio between the median expressions of samples with CN = 1 and samples with
CN = 2. The error bars indicate bootstrap confidence intervals for 68% (short blue horizontal lines) and
95% (long red horizontal lines).
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the basis of recently developed approaches (Kidd et al. 2010b;

Sudmant et al. 2010), to facilitate inferring associations for an

increased number of duplications. This will also enable crucial

analyses relating to the integrity of regulatory regions in dupli-

cations and will further facilitate the discrimination of intact

gene duplicates from pseudogenized duplicates (Korbel et al.

2008). Regardless of these expected coming advances, our results

suggest that studies that aim to assess relationships between ge-

netic variation and heritable traits will benefit from considering

CNVs discovered and genotyped with the latest technologies.

Methods

CNV genotype sources
SNP/CNV hybrid microarray based genotypes for 1319 CNVs
(McCarroll et al. 2008) and custom microarray-based genotypes for
5037 CNVs (Conrad et al. 2010) were obtained from the Database
of Genomic Variants (Iafrate et al. 2004). Population-scale se-
quencing based genotypes for 13,826 deletions (Mills et al. 2011)
were obtained from the 1000 Genomes Project’s website (http://
1000genomes.org). We further inferred genotypes for an addi-
tional 2843 CNVs using the CopySeq genotyping algorithm (see
the Supplemental Material; Supplemental Table 5), by using
CopySeq on population-scale sequencing-based CNVs from Mills
et al. (2011) that were released without genotype information.
We assessed all CNV genotypes in the form of copy-number ge-
notypes, i.e., integer values reflecting the absolute copy number
(CN) of a genomic segment in question, with, for example, ho-
mozygous and heterozygous deletions reflected by CN = 0 and
CN = 1, respectively, and duplications reflected by CN = 3 or
higher.

CNV data set merging

CNVs from different sources that overlapped in their genomic co-
ordinates were merged if they exhibited a perfect (100%) genotype
concordance across all available samples (i.e., we did not merge
overlapping CNVs that displayed discordant genotypes to avoid
discarding significant associations between CNVs and expressed
genes). We merged CNVs by keeping the breakpoint annotations
from the CNV source generated at higher resolution; to this end, we
used the median CNV size of each source as a guideline for ranking
CNVs by resolution. According to this criterion, the CNVs based on
population-scale sequencing were assumed to have a higher reso-
lution than the array-based CNVs; furthermore, the custom micro-
array-based CNVs were assumed to have a higher resolution than
the SNP/CNV hybrid array-based CNVs.

RNA-seq data retrieval and read mapping

RNA-seq reads were obtained from recent publications (Montgomery
et al. 2010; Pickrell et al. 2010). We aligned all reads onto the human
reference genome (hg18) using GSNAP (2011-03-28.v3) mapping
software (Wu and Nacu 2010) with default parameters and retrieved
the number of mapped reads for our set of 19,950 protein-coding
genes (based on Ensembl Build54). We discarded all reads that
mapped to more than one position with a score of $20 as non-
specific (‘‘ambiguous’’).

RNA-seq quality filtering and normalization

We normalized the RNA-seq data by first correcting all data sets for
GC content effects as in Pickrell et al. (2010). We further scaled the

number of reads in each individual according to a normalization
scheme provided by DESeq (Anders and Huber 2010). Next, we
corrected the YRI data for sequencing center/protocol based-effects
(e.g., distinct read lengths used), as previously described (Pickrell
et al. 2010). Fourth, all YRI and CEU read data were corrected for sex
effects using a method previously developed to correct for se-
quencing center-based effects (Pickrell et al. 2010). The normalized
read counts were then used as ‘‘normalized expression values.’’

Filtering expressed genes and common CNVs

We limited our analysis to expressed genes, which we defined as
those displaying a normalized expression value of at least 20 in at
least 5% of the samples (i.e., in at least four YRI samples or in at
least three CEU samples). (The normalized expression value was
scaled in such a way that the expression value 20 corresponded to
20 reads mapping onto a gene of interest in a sample sequenced at
average sequencing depth.) We further removed CNVs displaying
copy-number variation in very few samples, by excluding CNVs
with an inferred genotype that differed from the most common
genotype in <5% of the individuals for which gene expression data
were available. Last, we considered CNVs only if integer copy-
number genotype information and gene expression information
were available for at least 20 samples in a population.

Inference of associations between CNVs and expressed
gene loci

We calculated pairwise association values between transcript levels
and CNVs by computing Spearman rank correlation coefficients
between vectors of normalized gene expression values measured
across all samples from a population (CEU or YRI) with vectors of
copy-number genotypes measured in the same samples. We lim-
ited our analysis to a search range of 200 kb by evaluating CNV–
gene pairs only if the distance between the closest coordinates
corresponding to the annotated genomic CNV and transcript co-
ordinates was #200 kb. To assess the significance of these corre-
lations, we calculated P-values, which we adjusted for multiple
hypothesis testing according to (Benjamini and Hochberg 1995)
by controlling the false discovery rate (FDR) at 10%. Whenever we
report an association between a gene and a CNV in the text, we are
referring to the CNV with the lowest P-value with the gene in
question (if not stated differently).
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